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Abstract

Precise Point Positioning (PPP) is an increasingly recognized precisely the GPS/GNSS positioning technique. 
In order to improve the accuracy of PPP, the error sources in PPP measurements should be reduced as much as 
possible and the ambiguities should be correctly resolved. The correct ambiguity resolution requires a careful 
control of residual errors that are normally categorized into random and systematic errors. To understand 
effects from two categorized errors on the PPP ambiguity resolution, those two GPS datasets are simulated by 
generating in locations in South Korea (denoted as SUWN) and Hong Kong (PolyU). Both simulation cases 
are studied for each dataset; the first case is that all the satellites are affected by systematic and random errors, 
and the second case is that only a few satellites are affected. In the first case with random errors only, when the 
magnitude of random errors is increased, L1 ambiguities have a much higher chance to be incorrectly fixed. 
However, the size of ambiguity error is not exactly proportional to the magnitude of random error. Satellite 
geometry has more impacts on the L1 ambiguity resolution than the magnitude of random errors. In the first case 
when all the satellites have both random and systematic errors, the accuracy of fixed ambiguities is considerably 
affected by the systematic error. A pseudorange systematic error of 5 cm is the much more detrimental to 
ambiguity resolutions than carrier phase systematic error of 2 mm. In the 2nd case when only a portion of 
satellites have systematic and random errors, the L1 ambiguity resolution in PPP can be still corrected. The 
number of allowable satellites varies from stations to stations, depending on the geometry of satellites.

Through extensive simulation tests under different schemes, this paper sheds light on how the PPP ambiguity 
resolution (more precisely L1 ambiguity resolution) is affected by the characteristics of the residual errors in PPP 
observations. The numerical examples recall the PPP data analysts that how accurate the error correction models 
must achieve in order to get all the ambiguities resolved correctly.
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1. Introduction

The Global Positioning System (GPS) has been widely used 
for various precise positioning applications. Over the past 
decades, a new positioning technique, called the Precise Point 
Positioning (PPP) has gotten significant attentions (Zumberge 
et al., 1997; Kouba and Héroux, 2001; Gao and Shen, 2002; 
Le and Tiberius, 2007; Bisnath and Gao, 2009; Huber et al., 

2010). The PPP technique determines a receiver’s position 
using the un-differenced code and carrier-phase observations 
from one dual or multiple frequency receivers, with the use 
of precise orbit and satellite clock data. The precise data are 
usually obtained from International GNSS Service (IGS) 
(Dow et al., 2009). Compared with traditional relative 
positioning, the major difficulty in the PPP technique happens 
in fixing ambiguities to integer values due to the fractional-
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cycle biases (FCBs) in un-differenced observations (Collins, 
2008; Ge et al., 2008). In recent years, as various techniques 
for ambiguity resolution have been developed (e.g. Bertiger 
et al., 2010; Collins et al., 2010; Ge et al., 2008; Geng et 
al., 2009), the PPP is able to provide millimeter positioning 
accuracies in static mode, and centimeter accuracies in 
kinematic mode. Due to its unique efficiency and reasonable 
accuracy, the PPP technique has been used in various 
applications, such as airborne mapping, atmospheric science, 
and precise positioning for mobile objects.	

The correct ambiguity resolution is the most crucial 
procedure in applying the PPP technique (Ge et al., 2008; 
Laurichesse et al., 2009; Geng et al., 2011). All error sources 
must be mitigated as much as possible to resolve the PPP 
ambiguities correctly. To correct every error source in the 
PPP, compared to relative positioning, more attentions need 
to be paid. This is because many errors, which are mostly 
able to cancelled or mitigated in relative positioning, cannot 
be cancelled in the PPP. Thus, a major task in PPP application 
is to correct, model or estimate all the errors as much as 
possible (Abdel-salam, 2005). Nevertheless, residual errors 
always are remain due to the imperfection of models or data. 
Since the direct consequence of residual errors has impacts 
on PPP ambiguity resolution, those incorrect ambiguities may 
be resulted in the worst case. 

In many of past years, efforts have been invested to correct 
the errors in PPP to achieve correct PPP ambiguity resolution 
(Kouba and Héroux, 2001). The ionospheric delay generally 
could be cancelled through ionosphere-free combination 
observations. The receiver clock offset and wet tropospheric 
delay are usually estimated as unknown parameters. The 
other errors are supposed to have been eliminated through 
modeling processes. For instance, errors in satellite clock 
and orbit could be corrected by IGS precise products (Kouba 
and Héroux, 2001), while effects from site displacements and 
satellite (such as satellite antenna offsets and phase wind-
up) could be also corrected by mathematics models (Kouba, 
2003). However, these errors are unable to be eliminated 
completely due to limitations in modeling accuracy. Taking 
the precise IGS products as an example, the final products of 
precise IGS orbit and clock currently have an accuracy of ~2.5 
cm and ~2.2 cm, respectively (Dow et al., 2009). The residual 

errors resulting from imperfect models will aggregately 
affect the PPP ambiguity resolution. 

Only limited attention has been paid to study, however, on 
how the residual errors aggregately affect the PPP ambiguity 
resolution. This paper aims to investigate the impact of 
residual errors, categorized as random errors and systematic 
errors, on PPP ambiguity resolution. Since only the aggregate 
effect is studied, the source of each individual contributing 
residual error is not important in this study, so which will 
not be identified. The impact of aggregate residual errors is 
investigated through data and error simulations. Such a study 
will help understand the relationship between residual errors 
and ambiguity resolution errors. It will allow PPP researchers 
to understand what sizes and types of residual errors are 
tolerable to exist in the carrier phase and pseudorange 
measurements, while still getting the PPP ambiguities 
resolved correctly.

Section 2 of this paper introduces the methods of generating 
simulation data, random errors as well as systematic errors. 
In Section 3, the PPP mathematics model and the method of 
ambiguity fixing are presented. In Section 4, the effect of both 
errors in random and systematic on PPP ambiguity resolution 
is analyzed. The conclusion is given in Section 5.

2. GPS Data Simulation and Random and 

Systematic Error Generation

In order to analyze the impact of residual errors on PPP 
ambiguity resolution, we first generate GPS simulation data 
and random and systematic errors. Since we know the true 
values of the simulated errors, the influence of the random 
and systematic errors on PPP can be analyzed.

2.1. GPS data simulation

In this study, to compare the effect of satellite geometry, the 
static data for the “SUWN” reference station are simulated, 
where located in Korea GPS network, and the “PolyU” station 
located in Hong Kong. The simulation data from 1 January, 
2011 are generated at an interval of 30 seconds for 30 minutes 
period. The known coordinates of both “SUWN” and “PolyU” 
stations are in Table 1, used as the receiver’s positions in data 
simulation. 
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The satellite positions are calculated from IGS precise 
ephemerides corresponding to the time period of the 
simulation data. With the known positions of both receiver 
and GPS satellites, the geometric distances between them 
can be calculated. To simulate ionospheric delay by the 
single-layer ionospheric model, we assumed that heights of 
ionosphere and VTEC are 400 km and 40TECU respectively. 
The tropospheric delay is simulated by the Saastamoinen 
model and the Niell mapping function. The zenith of total 
delay can be computed by Saastamoinen model, as the 
meteorological parameters (such as pressure, temperature and 
partial water vapor pressure) are derived from the standard 
atmosphere model, based on the height of station. The 
simulated ionospheric and tropospheric errors are added to the 
geometric distances. The receiver clock error is simulated by 
the clock model, which applies the 2nd order process with the 
correlated white noise (Brown and Hwang, 1997). In the clock 
model, the typical Allan variance parameters for ovenized 
crystal oscillators (OCXO) values are used. A satellite clock 
error, orbit error or other errors, such as multipath, are not 
simulated at here since these errors are not estimated anyway 
in the PPP data processing. The generation of carrier-phase 
measurements is similar to that of pseudorange data, except 
an opposite sign in ionosphere delay and an introduction of 
carrier-phased integer ambiguities. The values of integer 
ambiguities are randomly generated in the range from -108 to 
108 cycles with an assumption in no loss of lock with a cut-
off angle of 15°. In this way, the simulated carrier-phase and 
pseudorange measurements for GPS L1 and L2 frequencies 
are generated. Mathematically, the carrier-phase and 
pseudorange data are produced using the following formulas: 2.1
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 are random errors 
with potentially existing systematic errors, contributing to 
carrier-phase and pseudorange measurements, respectively. 
Neither multipath effect nor the initial fractional phase 
at transmitter and receiver is included in the simulation. 
Their effects on PPP ambiguity resolution, together with 
other unmodeled residual errors, such as residual errors in 
satellite precise orbit and satellite clock, will be investigated 
by treating all the aggregate residual errors as random plus 
systematic errors.

2.2. Random and systematic errors

As discussed previously, multiple types of errors 
could not be removed completely due to the limitation of 
modeling accuracy. The residual errors could generally be 
categorized into random and systematic errors. Accordingly, 
we can assume that the characteristics of residual errors 
are either random error, systematic error, or both. The 
systematic error may result from different error sources in 
GPS measurements. In this study, we define the systematic 
error as a constant. Two cases are considered in the data 
simulation; the first case is that all satellites are considered 
to have random errors and systematic errors with generating 
three types of simulation data, as shown in Table 2. The first 
type, denoted as Type 1.1, includes only random error, while 
the second and third types, denoted as Types 1.2 and 1.3, 
respectively, include both random and systematic errors. 
The type 1.3 has systematic errors twice larger than the 
type 1.2. For each type in Table 2, the standard deviation of 
random errors in the pseudorange measurements varies from 
5 to 50 cm with an interval of 5 cm. Similarly, the standard 
deviation for carrier-phase data varies from 0.5 to 5 mm with 
an interval of 0.5 mm. There are 100 pairs of pseudorange 
and carrier-phase random errors, when all the combinations 
are considered.

For the second case, some satellites have systematic and 

Station Latitude Longitude Ellipsoidal 
Height

SUWN 37˚16’ 31.8529” 127˚03’ 15.2638” 83.816 m
PolyU 22˚18’ 13.5558” 114˚10’ 43.4467” 45.479 m

Table 1. Coordinates of two test datasets
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random errors, while other satellites have random errors 
only. In the 2nd case, each standard deviation of pseudorange 
and carrier-phase random errors is simulated by 5 cm and 0.5 
mm, orderly, when the systematic errors in pseudorange and 
carrier-phase data are fixed as 5 cm and 1 mm, respectively. 
The simulation data types of the 2nd case for both SUWN and 
PolyU stations are summarized following in Table 3 and 4.

3. PPP Model and Ambiguity Fixing

In this section, the PPP mathematic model and adjustment 
model are presented, which are followed by PPP ambiguity 
resolution method. 

3.1. �PPP mathematic model and adjustment 

model

PPP model using dual frequency measurements 
usually is based on ionosphere-free (IF) combinations 
in order to eliminate the first-order ionospheric effect. 
The IF combinations for carrier-phase and pseudorange 
measurements are given by:
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 are carrier-phase and pseudorange 
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frequencies of GPS L1 and L2 signals, respectively; 
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 are random 
errors of IF combination contributing to carrier-phase and 
pseudorange measurements, respectively. All the other 
terms are same as those in Eq. (1).  The other errors such as 
multipath, satellite clock offset and satellite orbit error are 
assumed to be completely mitigated or corrected.

In this study, the block-wise least squares adjustment (Xu, 
2007) for IF combinations was applied. This adjustment 
model is able to separate the unknowns into two groups: 
ambiguities and other parameters such as receiver’s position, 
clock offset, and zenith tropospheric delay. The block-wise 
observations of IF combination at a particular epoch are 
presented by:
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where l1
 

and l2
 

denote the observed minus computed 
measurements for carrier-phase and pseudorange, 
respectively; vector 
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 contains the receiver position vector, 
receiver clock offset and zenith tropospheric delay and 

Table 2. The range of random and systematic errors in first case
Systematic 

Error Random Error

pseudo- 
range
(cm)

carrier-
phase
(cm)

pseudo- 
range
(cm)

interval
(cm)

carrier-
phase
(cm)

interval
(cm)

Type1.1 0 0 5 ~ 50 5 0.05 ~ 0.5 0.05
Type1.2 5 0.1 5 ~ 50 5 0.05 ~ 0.5 0.05
Type1.3 10 0.2 5 ~ 50 5 0.05 ~ 0.5 0.05

Table 4. Data types of systematic errors in second case at PolyU 
station; Ο (with systematic error); Χ (without systematic error)

PRN #
7 8 11 17 20 24 28 32

Type 3.1 Ο Χ Χ Χ Χ Χ Χ Χ

Type 3.2 Ο Ο Χ Χ Χ Χ Χ Χ

Type 3.3 Ο Ο Ο Χ Χ Χ Χ Χ

Type 3.4 Ο Ο Ο Ο Χ Χ Χ Χ

Type 3.5 Ο Ο Ο Ο Ο Χ Χ Χ

Type 3.6 Ο Ο Ο Ο Ο Ο Χ Χ

Type 3.7 Ο Ο Ο Ο Ο Ο Ο Χ

Type 3.8 Ο Ο Ο Ο Ο Ο Ο Ο

Table 3. Data types of systematic errors in second case at SUWN 
station; Ο (with systematic error); Χ (without systematic error)

PRN #
7 8 11 17 19 20 24 28 32

Type 2.1 Ο Χ Χ Χ Χ Χ Χ Χ Χ

Type 2.2 Ο Ο Χ Χ Χ Χ Χ Χ Χ

Type 2.3 Ο Ο Ο Χ Χ Χ Χ Χ Χ

Type 2.4 Ο Ο Ο Ο Χ Χ Χ Χ Χ

Type 2.5 Ο Ο Ο Ο Ο Χ Χ Χ Χ

Type 2.6 Ο Ο Ο Ο Ο Ο Χ Χ Χ

Type 2.7 Ο Ο Ο Ο Ο Ο Ο Χ Χ

Type 2.8 Ο Ο Ο Ο Ο Ο Ο Ο Χ

Type 2.9 Ο Ο Ο Ο Ο Ο Ο Ο Ο
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they are epoch-dependent parameters; vector X2 contains 
the non-integer IF ambiguities that are epoch-independent 
parameters; A11 and A12 are design matrices for the X1 and 
X2 vectors, respectively; P0 is weight matrix; wc and wp 
are weight factors for IF combination carrier-phase and 
pseudorange measurements, respectively.

3.2. Ambiguity fixing

The ambiguities in carrier-phases measurements should be 
fixed to integers in order for ensuring the high accuracy in 
the PPP solutions, if the fractional-cycle biases (FCBs) are 
not considered at this moment. It is assumed in this study that 
the FCBs have been correctly compensated. This will allow 
the exploitation of the integer property of the ambiguities. 
The impact of residual FCBs, if not fully compensated, can 
be assessed in the systematic error analysis, since they can 
be treated as a type of systematic errors. In this study, the 
procedure of ambiguity fixing includes five steps; the first 
step is those float solutions for widelane and IF ambiguities 
are estimated by the least squared adjustment, together with 
their variance-covariance matrices; at second, the estimated 
float solution of widelane ambiguities is adjusted and fixed 
to integer values; thirdly, the float solution for L1 ambiguity 
is calculated by float solution of IF ambiguities and integer 
solution of widelane ambiguities; at fourth, the estimated 
real-value solution of L1 ambiguities is fixed to integer 
values. Integer L2 ambiguities are obtained by subtracting 
the L1 ambiguities from the widelane ones; lastly, the 
IF ambiguities are recalculated with integer solutions of 
widelane and L1 ambiguities.

The IF ambiguity can be decomposed as the following 
equation of the widelane and L1 ambiguities:
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iN  are integer ambiguities for widelane 

combination and L1 carrier-phase, respectively. Other terms 
in Eq. (4) have been defined in Eq. (2). The Melboune-
Wübbena combination is used to estimate widelane 
ambiguity. At the un-differencing level, this combination 
uses both carrier-phase and pseudorange measurements to 
yield widelane ambiguity as:
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 is the wavelength of widelane 
observation. The estimated float solutions for widelane 
ambiguities should be fixed to integer values. 

A number of studies have been developed for the 
resolution of ambiguities in PPP (e.g. Ge et al., 2008; 
Laurichesse et al., 2009). The LAMBDA (Least-squares 
Ambiguity Decorrelation Adjustment) is applied in this 
study because of its high success rate in the resolution of 
ambiguities. In the ambiguity validation, the ratio test of the 
best and second-best solutions (Leick, 2004) is used, e.g. 
with the following formula: 
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                                                             (6)

After the widelane ambiguities are successfully fixed, the 
L1 ambiguities can be derived according to Eq. (4) as
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The ambiguity resolution and fixing decision for L1 

ambiguities are same as the case of widelane ambiguities. 
After both the widelane and L1 ambiguities are fixed into 
their integer values, the IF ambiguities can be recalculated 
with Eq. (4)

4. Numerical Result and Analysis

The data analysis is performed, according to the random 
and systematic error simulation cases, described in Section 
2. Each data set has a length of 30 minutes at an interval of 
30 seconds, equivalent to the total of 60 epochs at SUWN 
station. Nine satellites are observed at the beginning, 
but the satellite PRN 7 drops at epoch 47. At the PolyU 
station, eight satellites are observed at the beginning, as a 
new satellite PRN 4 is observed after the 52nd epoch. Fig. 1 
shows the observed satellites at both stations. In the PPP data 
processing, the Saastamoinen tropospheric model and Niell 
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mapping functions are used to correct the errors in the same 
way that is used to generate simulation data. Therefore, all 
the errors, except the systematic and random errors, were 
completely corrected. We use the LAMBDA method for 
ambiguity resolution, while tolerance values for the ratio test 
is chosen as 3.

4.1 �PPP ambiguity resolution with random error 

only (Type 1.1)

In this section, we analyze the time-to-ambiguity-
fix (TTAF) and the error of ambiguity resolution, when 
all the observations for all the satellites have random 
errors, specified in Type 1.1. The standard deviation of the 
pseudorange random errors varies from 5 cm to 50 cm, with 
an interval of 5 cm. The standard deviation of the carrier-
phase random errors varies from 0.05 cm to 0.5 cm, with an 
interval of 0.05 cm. Our ambiguity resolution result shows 
that both widelane and L1 ambiguities were fixed in integer 
ambiguities (not necessarily correct ones). Fig. 2 contains the 
TTAF, computed for Type 1.1. As seen in Fig. 2, the TTAF at 
SUWN station is generally increased along with magnitude 
of random errors, especially, the TTAF at SUWN station 
is affected more by the magnitude of pseudorange random 
error than by that of carrier-phase random error. However, 
as seen in the case of PolyU station, the TTAF is not clearly 
associated with the magnitude of random errors. Also, the 
TTAF at PolyU was smaller than that at SUWN. This result 
might be caused by complex effect of satellite geometry 

and the number of unknown ambiguities appearing in the 
resolution of ambiguities. As seen in Fig. 3, the GDOP at 
SUWN is actually smaller than that at PolyU, but the TTAF at 
SUWN is generally longer than at PolyU, as displayed in Fig. 
2. On the other hand, the number of unknown ambiguities at 
SUWN is 9 but 8 at PolyU. Therefore, the TTAF is combined 
function of magnitudes of random errors, satellite geometry, 
and the number of ambiguities. 

All the widelane ambiguities at both SUWN and PolyU 
stations are resolved correctly, when compared to the known 
widelane ambiguities derived from simulated L1 and L2 
ambiguities. Since the widelane ambiguities are fixed 
correctly, the focus of our analysis is placed on the errors 
in L1 ambiguities. Fig. 4 and 5 show the errors of L1 fixed 
ambiguities at SUWN and PolyU stations, respectively. 
In the case of PolyU station, ambiguities of 8 satellites are 
simultaneously fixed first and the ambiguity of PRN 4 is 
fixed after the 52nd epoch. At the SUWN station, all the L1 
ambiguities are fixed correctly, when pseudorange random 

Fig. 1. The observed satellites at SUWN (left plot) and PolyU 
(right plot) stations

Fig. 2. The time-to-ambiguity-fix with random errors 
at both SUWN (left plot) and PolyU (right plot) stations 
using simulated GPS data. SUWN and PolyU stations 

have 9 and 8 ambiguities, respectively

Fig. 3. GDOPs at SUWN and PolyU stations
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error varies within 5~20 cm and carrier-phase random error 
varies within 0.05~0.25 cm. If the pseudorange random error 
is larger than 25 cm, L1 ambiguities at SUWN are almost 
definitely incorrectly fixed, regardless of sizes of random 
error in carrier-phase measurements 

At the PolyU station, when pseudorange random error is at 
5 cm, and carrier-phase random error varies within 0.05~0.20 
cm, all the L1 ambiguities, except the PRN 4 (PRN4 is 
observed after the 52nd epoch), are fixed exactly. Same as 
other satellites, the ambiguity of PRN 4 is fixed correctly 
without errors when pseudorange random error is at 5 cm, 
and carrier-phase random error varies within 0.05~0.20 cm. 
Even if the pseudorange random error increases up to 30 cm, 
the PRN 4 ambiguity can be correctly fixed, however, if the 
carrier phase random error decreases proportionally. This 
might be a benefit from facts; one that ambiguities for other 
satellites have been resolved, while the other one ambiguity 
from the PRN 4 needs to be resolved.

It can be seen from Fig. 4 and 5 that the size of ambiguity 
error is not necessarily proportional to the magnitude of 
random errors. For example, the largest ambiguity errors 
occur when the pseudorange errors are in the range of 30~35 
cm and carrier-phase error in the range of 0.20~0.30 cm in 
the case of SUWN station. At both stations, the magnitude of 
the ambiguity fixing error varies for different satellites. This 
might be explained that different satellites have different 
positions, so as their contributions to the geometry matrixes 

in the Least Squares are different. As seen in Fig. 3, the 
GDOP at SUWN is better than that at PolyU. Comparing 
the Fig. 4 with the Fig. 5 the percentage of correctly fixed 
L1 ambiguities at SUWN (35.67%) is higher than PolyU 
(11.44%). This implies that the ambiguity resolution is 
considerably affected by satellite geometry, in addition to the 
magnitude of random errors.

In order to verify the effect of geometry on the resolution 
of ambiguities, we generate an additional simulation dataset. 
The starting time of this dataset is from the 11th epoch of 
dataset type 1.1 at SUWN station, but other conditions (such 
as the number of satellites, the magnitude and shape of 
random error) are exactly identical. Therefore, the difference 
between the additional dataset and Type 1.1 at SUWN is only 
the geometry of satellites. As shown in Fig. 6, the GDOP 
within the first 25 epochs is worse than that in Type 1.1 at 
SUWN.

Fig. 4. The error of fixing L1 ambiguities at SUWN station 
in Type 1.1 (in unit of cycle); Overall, 321 out of 900 (35.67%) 

L1 ambiguities at SUWN are fixed correctly Fig. 5. The error of fixing L1 ambiguities at PolyU station in 
Type 1.1 (in unit of cycle); 88 out of 800 (11%) L1 ambiguities 

for 8 satellite (not including PRN 4) are fixed correctly; 15 
out of 100 (15%) L1 ambiguities of PRN 4 are fixed correctly

Fig. 6. GDOP at SUWN and additional dataset
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All widelane ambiguities of this additional dataset are 
fixed correctly. Fig. 7 shows the error of L1 fixed ambiguities 
in the dataset. Comparing Fig. 7 with Fig. 4, the overall 
percentage of correct ambiguities decreases from 35.67% to 
21.44% in the additional dataset, a degradation of 14.23%. 
This clearly shows that the resolution of ambiguities is 
dependent on geometry of satellites more than the magnitude 
of random errors. 

4.2 �PPP ambiguity resolution with both random 

and systematic errors on all the satellites 

(Type 1.2 and 1.3)

In this section, the scenario of having both systematic 
and random errors in all GPS satellites is studied. The 
systematic errors simulated in pseudorange and carrier-phase 
observations are 5 cm and 1 mm, respectively in Type 1.2. In 
Type 1.3, the systematic errors are increased to 10 cm and 
2 mm for pseudorange and carrier-phase data, respectively. 
The random errors simulated in Types 1.2 and 1.3 are same 
as Type 1.1.

Our data analysis shows that both the widelane and 
L1 ambiguities at both SUWN and PolyU stations are 
successfully fixed to integer values (not necessarily correct 
ones) in both Types 1.2 and 1.3. The time-to-ambiguity-fix 
of both Types 1.2 and 1.3 are shown in Fig. 8. Fig. 8(a) and 
8(b) shows the TTAF values for Types 1.2 and 1.3 at SUWN 
station. The TTAF values for the PolyU station are shown 
in Fig. 8(c) and 8(d). It can be seen that larger systematic 

errors result in longer time to fix the ambiguities.

From results analysis of the study, in both Types 1.2 and 
1.3, all the widelane ambiguities at SUWN stations are 
fixed correctly, while the majority of the L1 ambiguities are 
incorrectly fixed, as shown in Fig. 9 and Fig.10. Comparing 
three of Fig. 4, Fig. 9 and 10 clearly indicate that the L1 
ambiguities have a much higher probability to be incorrectly 
fixed, when systematic error is included. In the case of Type 
1.2 shown in Fig. 9, only 27 out of 900 (3%) L1 ambiguities are 
correctly fixed, while in the Type 1.3 shown in Fig. 10, only 
20 out 900 (2.22%) L1 ambiguities are correctly resolved. 
By examining Figs. 9 and 10, the L1 ambiguity resolution 
is incorrect even if the random errors of both pseudorange 
and carrier phase measurements at their smallest level. The 
results in Fig. 9 and 10 clearly suggest that systematic errors 
can drastically degrade L1 ambiguity resolution, even if the 
systematic errors in carrier phase and pseudorange data are, 
respectively, 1~2 mm and 5-10 cm, only.  

To understand which type of systematic error (pseudorange 
or carrier phase) results in bigger impacts on the incorrect 
L1 ambiguity resolution, one additional test with the SUWN 
dataset is conducted. Various combinations of different 
sizes of pseudorange and carrier phase systematic errors 
are tested. The Table 5 of L1 ambiguity resolution results 
corresponding to the combinations clearly demonstrates 
that pseudorange systematic errors (of 5-10 cm) have a 
remarkably larger impact on the L1 ambiguity resolution than 

Fig. 7. The error of fixing L1 ambiguities in the additional 
dataset (in unit of cycle); Overall, 193 out of 900 (21.44%) L1 

ambiguities are fixed correctly

Fig. 8. The TTAF in both Types 1.2 and 1.3 at SUWN (top 
plots) and PolyU (bottom plots). (a) and (c): random error 
plus systematic error (pseudorange: 5 cm, carrier-phase: 
1 mm); (b) and (d): random error plus systematic error 

(pseudorange: 10 cm, carrier-phase: 2 mm)
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do the carrier-phase random errors (of 1-2 mm). resolution 
than do the carrier-phase random errors (of 1-2 mm).  

In the case of PolyU station, all widelane ambiguities are fixed 
correctly too. Fig. 11 and 12 show the error of L1 ambiguity 
resolution for Types 1.2 and 1.3, respectively. When compared 
to the results in Type 1.1 and the first 8 satellites are considered 

(PRN 4 is observed at the 52nd epoch), the percentages of correct 
L1 ambiguities decreases by 6.12% and 6.37% in Types 1.2 and 
1.3, respectively. This has consistent results at SUWN station 
because of the introduction of systematic errors in Types 1.2 
and 1.3. The L1 ambiguity resolution of the first 8 satellites (not 
including the PRN 4) is wrong, according to Figs. 11 and 12, 
even if the random errors of both pseudorange and carrier phase 
measurements at their smallest level. This again clearly indicates 
that systematic errors have a dramatic effect on L1 ambiguity 
resolution. For the PRN 4, however, the number of correct L1 
ambiguities increases dramatically in both Types 1.2 and 1.3, 
which is believed to be just a coincident. It can be explained 
that the L1 ambiguity error of the PRN 4 and the introduced 
systematic errors cancel each other. Thus, the L1 ambiguity 
resolution of the PRN 4 increases instead.

 

Fig. 9. The error of fixing L1 ambiguities in Type 1.2 at 
SUWN station (in unit of cycle); only 27 out of 900 (3%) L1 

ambiguities are fixed correctly

Fig. 10. The error of fixing L1 ambiguities in Type 1.3 at 
SUWN stations (in unit of cycle); only 20 out of 900 (2.22%) 

L1 ambiguities are fixed correctly

Table 5. The success rate of ambiguity resolution at 
SUWN station for different combinations of systematic 

error and random error

Systematic error Correctly fixing 
rate (%)Pseudorange (cm) Carrier-phase (mm)

0 1 35.67 %
0 2 35.44 %
5 0 2.33 %
10 0 3.00 %
5 1 3.00 %
10 2 2.22 %

Fig. 11. The error of fixing L1 ambiguities in Type 1.2 at 
PolyU station (in unit of cycle); 39 out of 800 (4.88%) L1 

ambiguities (not including PRN 4) are fixed correctly; 64 out 
of 100 (64%) L1 ambiguities of PRN 4 are fixed correctly

Fig. 12. The error of fixing L1 ambiguities in Type 1.3 at 
PolyU station (in unit of cycle); 37 out of 800 (4.63%) L1 

ambiguities (not including PRN 4) are fixed correctly; 88 out 
of 100 (88%) L1 ambiguities of PRN 4 are fixed correctly
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Similarly, different sizes of systematic errors in pseudorange 
and carrier phase data are combined and their impact on 
L1 ambiguity resolution is investigated. As seen in Table 
6, the pseudorange systematic errors (of 5-10 cm) affect the 
resolution of ambiguity resolution considerably more than the 
carrier-phase systematic error (of 1-2 mm). This is consistent 
with the results obtained at SUWN station.

4.3 �PPP ambiguity resolution with both random 

and systematic errors on some satellites 

(Type 2.2 to 2.9)

Different from the above section where all the satellites are 
simulated with systematic errors, this section studies the case 
of only a portion of satellites having systematic errors. As 
mentioned before, the systematic errors in pseudorange and 
carrier-phase data are fixed as 5 cm and 1 mm, respectively. 
The pseudorange and carrier-phase random errors are chosen 
as 5 cm and 0.5 mm, respectively. This is because the L1 
ambiguities for all the satellites are fixed correctly at SUWN 
and PolyU stations at this level of random errors, as shown 
in Figs. 4 and 5.

The analysis results show that all the widelane ambiguities 
at both stations can be correctly resolved but it is not true 
for L1 ambiguity. As seen in Table 7 for station SUWN, 
when 6 or less satellites have systematic errors (5 cm for 
pseudorange and 1 mm for carrier-phase data), the L1 
ambiguities can be resolved correctly. And when 7 satellites 
have systematic error, the L1 ambiguities fail to fix to integer 
values. Incorrect L1 ambiguities are obtained if 8 or more 
satellites are simulated with systematic errors. The failure to 
fix ambiguity is denoted as N/A in Table 7.

Same as the SUWN station, the widelane ambiguities for 
all satellites at PolyU station can be fixed correctly, even if 
systematic errors are present. In fact, the resolution of L1 
ambiguities depends on the number of satellites containing 
systematic error. Table 8 indicates when if 2 or fewer of 
satellites have systematic errors (5 cm for pseudorange and 
1 mm for carrier-phase data), the L1 ambiguities for all 
satellites are fixed correctly. When 3 or more of satellites 
contain systematic errors, the L1 ambiguities for all the 
satellites will be fixed incorrectly. Compared to Table 7 
in the case of SUWN, the resolution of L1 ambiguities at 
PolyU is more influenced by the number of satellites having 
systematic errors. This result can probably be explained by 
the different geometry contributions from different satellites, 
which is same as the scenario of Type 1.1.

Tables 7 and 8 suggest that in the PPP ambiguity 

Table 6. The success rate of ambiguity resolution at PolyU 
station excluding PRN 4 for different combinations of 

systematic error and random error

Systematic error Correctly fixing 
rate (%)Pseudorange(cm) Carrier-phase (mm)

0 1 12.00 %
0 2 12.38 %
5 0 5.38 %
10 0 4.13 %
5 1 4.88 %
10 2 4.63 %

PRN #

7 8 11 17 19 20 24 28 32
Type 2.1 0 0 0 0 0 0 0 0 0
Type 2.2 0 0 0 0 0 0 0 0 0
Type 2.3 0 0 0 0 0 0 0 0 0
Type 2.4 0 0 0 0 0 0 0 0 0
Type 2.5 0 0 0 0 0 0 0 0 0
Type 2.6 0 0 0 0 0 0 0 0 0
Type 2.7 N/A N/A N/A N/A N/A N/A N/A N/A N/A
Type 2.8 -1 -1 -1 -1 -1 -1 -1 -1 -1
Type 2.9 -1 -1 -1 -1 -1 -1 -1 -1 -1

Table 7. Error of L1 ambiguities at SUWN station in case 
of systematic error in some satellites (in unit of cycle)

Table 8. Error of L1 ambiguities at PolyU station in case of 
systematic error in some satellites (in unit of cycle)

PRN #

7 8 11 17 20 24 28 32
Type 3.1 0 0 0 0 0 0 0 0
Type 3.2 0 0 0 0 0 0 0 0
Type 3.3 -1 -1 -1 -1 -1 -1 -1 -1
Type 3.4 -1 -1 -1 -1 -1 -1 -1 -1
Type 3.5 -1 -1 -1 -1 -1 -1 -1 -1
Type 3.6 -1 -1 -1 -1 -1 -1 -1 -1
Type 3.7 -1 -1 -1 -1 -1 -1 -1 -1
Type 3.8 -1 -1 -1 -1 -1 -1 -1 -1
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resolution, small magnitude of systematic errors (e.g. 5 cm 
for pseudorange and 1 mm for carrier-phase data in this 
study) is allowed to exist in a given number of satellites. The 
appearance of systematic errors in some satellites can still 
produce correct ambiguity resolutions for all the satellites. 
However the number of allowable satellites varies from 
station to station, largely depending on the satellite geometry.

5. Conclusions 

In GPS/GNSS PPP processing, after correcting 
various types of errors in pseudorange and carrier phase 
measurements, residual errors still remain in the form of 
systematic and random errors. The impact of systematic and 
random errors on PPP ambiguity resolution is studied using 
simulation data for two GPS stations of different geometries: 
SUWN site located in South Korea and PolyU site located in 
Hong Kong. The results can be summarized as follows:

-  The time-to-ambiguity-fix (TTAF) is affected by the 
magnitude of pseudorange random error than that of 
carrier phase random error.

-  When the magnitude of random error is increased, PPP L1 
ambiguities have a much higher chance to be incorrectly 
fixed. However, the size of ambiguity error is not exactly 
proportional to the magnitude of random error.

-  The satellite geometry has more impacts on the PPP L1 
ambiguity resolution than the magnitude of systematic 
and random errors.

This study can help understand the impacts from random 
and systematic errors on PPP ambiguity resolution, which 
of more precisely on L1 ambiguity resolution, since the 
widelane ambiguity resolution is relative easy. It is useful for 
the PPP researchers to control and budget the random and 
systematic errors in PPP data analysis. It can be concluded, as 
if the aggregate errors in PPP measurements are over certain 
limits, it will be difficult or even impossible to resolve correct 
integer ambiguities, even if the fractional-cycle biases have 
been compensated.
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