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Abstract:

This study provides new estimates for the orientation of a geometrically best fitting lunar triaxial ellipsoid with respect to the mean

Earth/polar axis reference frame calculated from the footprint positions of the Chang'E-1 (CE-1), SELenological and ENgineering Explorer

(SELENE) laser altimetry measurements and Unified Lunar Control Networks 2005, (ULCN 2005) station coordinates. The semi-principal

axes of the triaxial ellipsoid and the coordinates of its geometric center are also calculated simultaneously. All the estimated parameters

from all three data sets are found to be consistent. In particular, the RMS differences of the semi-principal axes of the triaxial ellipsoids

and the locations of their geometric centers from solutions with and without modeling Euler angles (orientation of the triaxial ellipsoid)

using uniformly distributed laser altimetry (LAL) footprints are 29 and 31 m respectively. The misclosures of all the solutions indicate a

better fit for the triaxial ellipsoid to the footprint and station coordinates if the Euler angles are included in the models.
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1. Introduction

The parameters of various lunar figures are of interest to the

scientific community working on lunar exploration. Improved

quantification of the geometric and dynamic figure of the Moon

allows one to study the origin of the Moon, its interior structure,

andcomposition. Amathematical referencesurface is also required

for horizontal lunar control networks for lunar mapping as in the

case of the Earth. To achieve these ends, improved estimates of

the size of the lunar figures, and their geometric centers (center of

figure) with respect to the center ofmass of theMoon, are needed.

In2009, Izpublishedthemost recent semi-principalaxesofa triaxial

ellipsoid and its geometric center, at that time, using a geometric

∗E-mail: lshbiz@polyu.edu.hk

model of a triaxial ellipsoid from the ULCN lunar control station

positions (Archinal et al., 2005). Since then, two of the recent lunar

missions, namely, Chang'E-1 (China) and SELENE (Japan), where a

majorgoalhasbeentomapthesurfaceof theMoon,producedover

17 million laser altimetry (LAL) measurements of the lunar surface.

Most recently, Ping (2009) and Araki (2009) estimated the semi-

principal axes of a triaxial ellipsoid from the spherical harmonic

models of the lunar topography derived from the Chang'E-1 (CE-1)

and SELENE LAL data. Iz et al. (2010b) updated these estimates

using the footprint coordinates of the LAL measurements from

the CE-1 and SELENE missions for spherical, biaxial, and triaxial

ellipsoidal representations of the lunar figure. In all these solutions,

the principal axes of the lunar figures were assumed to be parallel

to the axes of the mean Earth/polar axis reference frame but their

geometric centers were allowed to get adjusted with respect to

the origin of the reference frame, which coincides with the center
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ofmass of theMoon. An earlier solutionby Smith et al. (1996) using

Clementine mission's LAL measurement revealed that the polar

axis of the triaxial lunar ellipsoid is tilted toward the Earth by 24

degrees in the mean Earth / polar axis reference frame, evidently

caused by the uneven distribution of large lunar topographical

features, mainly South Pole-Aitken basin (ibid).

This study provides new estimates for the orientation parameters

of the lunar triaxial ellipsoid (Euler angles), solved together with

the shape parameters of the triaxial ellipsoid (its semi-principal

axes) and the position of its geometric center with respect to the

mean Earth/polar axis reference frame using three contemporary

data sets; ULCN 2005 station coordinates, and CE-1and SELENE

LAL footprint positions.

2. Data Sources

ULCN 2005 is a unified three dimensional photogrammetrically

determined network, which consists of 272,931 control points

realized in the mean Earth/polar axis reference system with an

average of one point approximately 46 km2 (Archinal et al., 2005).

The accuracy of the ULCN 2005 control points is reported to be a

few hundred meters (Iz et al. 2009).

CE-1 is the first lunar exploration mission of China, which was

launchedonOctober24th 2007. TheonboardLAL systemproduced

measurements with a surface spot size of 120 m when satellite

altitude was about 200 km. The distance/ranging resolution of

LAL measurements was estimated to be less than ±5 m (Ping et

al. 2009). The along-track shot spacing was about 1.4 km, and

the minimum foot spacing along the equator is about 7.5 km

after two months of measurements. In this study, over 8.5 million

selenocentric distances (after removing over 300,000 outliers)

and their latitudes and longitudes of CE-1 LAL measurements'

footprints, provided by the China Lunar Exploration Center are
used. The radial distances of the LAL footprints were calibrated

by comparing them against the radial distances of the Lunar Laser

Ranging (LLR) sites (Iz, et al. 2010b).

Japan Aerospace Exploration Agency (JAXA) launched SELENE on

14 September 2007. Themain satellite KAGUYA, orbited the Moon

100 km ±30 km above the lunar surface with an inclination of

90±1 degrees and a period of two hours. The footprint size of

the laser spot produced by the onboard LAL system was typically

40m, and the data spacing is about 1.6 km in along-track direction.

The range resolution was 1mwith 5m accuracy (Araki et al. 2009).

JAXA (2009) provided over 8.8 million selenocentric SELENE

LAL measurements and their subsatellite locations (latitudes and

longitudes of the LALmeasurement footprints). Statistical analysis

of the LAL footprint positions nearby the LLR station coordinates

did not show any statistically significant differences (ibid), hence

no calibration correction was applied to the SELENE LAL footprint

radial distances.

3. Mathematical and Statistical Models

Earlier approaches in computing the orientation of the lunar figure

involved spherical harmonic models of the lunar topography.

Through the analysis of their spherical harmonic coefficients, the

lunar orientation parameters were estimated (Smith et al. 1996).

Alternatively, as early as 1968, Gavrilov used the least squares

method, to estimate the coefficients of an ellipsoidal quadric

from which he calculated the lunar orientation parameters using

the eigenvectors of the estimated coefficients of the quadric.

What is common to both approaches is that the orientation

angles are estimated using a two-step procedure. In this study, a

direct formulation is developed, which is equivalent to the second

approach under proper conditions.

Consider the following representation of the lunar shape by a

triaxial ellipsoid whose equatorial semi-major axis is denoted by

a, semi-minor axis by b, and polar axis by c. The coordinates of

its geometric center in the mean Earth/polar axis reference frame,

are denoted by xc, yc, zc . The triaxial ellipsoid's orientation with

respect to the x, y, z axes of the mean Earth/polar axis reference

system (whose origin is at the center of mass of the Moon) is given

by the three Eulerian angles α , β , and γ respectively;

 x − xc
y − yc
z − zc


T

RT

 a−2 0 00 b−2 00 0 c−2
 R

 x − xc
y − yc
z − zc

−1 = 0
(1)

where,

R :=
 1 0 00 cosα sinα0 − sinα sinα


 cosβ 0 − sinβ0 1 0sinα 0 cosβ

 cos γ sin γ 0
− sin γ cos γ 00 0 1

 .
(2)

In the statistical context, this is anon-linearconditioned equations
with unknown parameters, which contain the Cartesian coordi-

nates x, y, z, that refer to the locations of the laser altimetry

footprints (as observations) to be adjusted, and the semi-principal

axes of the triaxial ellipsoid (a, b, c), and its geometric center

(xc, yc, zc ), are the unknown parameters to be estimated.

As far as the statistical properties of the Cartesian coordinate

components of the footprints are concerned, their standard errors

are assumed to be the same and not correlated with each other

(i.e. the weight matrix is equal to identity). Note that, the standard

errors of the estimates may need to be scaled by the a posteriori

variance of unit weight (variance factor) after the adjustment.

However, because the residuals always include unmodeled and

non-stochastic lunar topography, the a priori variance of unit

weight cannot be replaced by its a posteriori variance. Hence,

a conservative 100 m standard error, a conservative estimate
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inferred from a parallel study by Iz et al. (2010a), was assumed for

each component of the CE-1 and the SELENE footprint Cartesian

coordinate errors and an a priori variance of unit weight equal to

one in evaluating the standard errors of the estimates. The above

condition equations with unknown parameters are solved using

the iterative algorithm given by Pope (1972), (cf. Iz, 2009 for a

partitioned computational counterpart).

Two different solution scenarios were considered to assess the

impact ofmodeling the orientation on the triaxial ellipsoid and the

location of its geometric center. Under the first scenario, labeled,

solutions without Euler angles, the lunar figure is represented by

a triaxial ellipsoid whose semi-principal axes are parallel to the

mean Earth/polar axis reference frame (i.e. Euler angles are set to

zero), together with its geometric center. Alternative solutions,

labeled solutions with Euler angles, included the three Eulerian

angles in addition to the semi-principle axes and the coordinates

of the geometric center of the triaxial ellipsoid to be estimated.

4. Solution Comparisons

Table 1 lists the estimated triaxial ellipsoid's shape and its geo-

metric center parameters without considering its orientation in

the solution model (without Euler angles) using different data

sets. The standard errors of the estimates are less than 1m for the

semi-principal axes and the geometric center of the triaxial ellip-

soid. The standard errors of all the estimates are found to be less

than 10 m for the solution using ULCN 2005 station coordinates.

The estimated parameters reported by Smith et al. (1996) that

were calculated from the spherical harmonic models of the lunar

topography using Clementinemission LALmeasurements are also

included in this table in order to establish a baseline for the solu-

tions with and without triaxial ellipsoid orientation parameters.

Note that this is the only recent solution for the orientation of

a triaxial ellipsoid but unfortunately the geometric center of the

triaxial ellipsoid was not modeled.

Two additional solutions using downsampled CE-1 and SELENE

data are also reported because, initially, the solutions with the

Euler anglesusingall theavailabledatahadconvergenceproblems

causedby the high density of the data at polar regions as a result of

the polar orbits of the CE-1 and SELENEmissions and the presence

of multiple local minima in minimizing the target function of the

least squares solution of the conditioned equations with unknown

parameters. Instead of down weighting the LAL data at the polar

regions, theLALdata frombothmissionsweredownsampledusing

randomly generated two sets of 250,000 uniformly distributed

points on a unit sphere (Appendix A). Fortuitously, it turned out

that, the global convergence for the nonlinear solutions with the

lunar orientation parameters can also be achieved if the estimated

parameters from solutions with the downsampled data are used

as approximate values (nominal values) to start the iterations

overcoming the convergence problem to the global minimum.

Table 1 results show that there are large differences in the semi-

principal axes of the ellipsoids fromClementine (Smith et al., 1996)

and the other solutions mainly because of the limited distribution

of the LALmeasurements (not available towards the poles) and the

omission of the geometric center of triaxial ellipsoid parameters in

the Clementine solution model.

As far as the differences of the estimated parameters among

the remaining solutions are concerned, different solutions agree

well with each other especially between the solutions with the

downsampled data for which 48 m is the largest difference in the

equatorial semi-major axes, andaminimumdifferenceof 5m in the

polar axes, with 29 m RMS difference in the estimated parameters.

Part of the improved agreement between the parameters of the

solutions using the downsampled data can be attributed to the

uniform distribution (in statistical sense) of the data used in the

solutions (down-sampling also removes some of the erroneous

CE-1 data at polar regions as will be discussed in the following

paragraphs) and the successful calibration of the CE-1 data.

Table 2 lists the solutions with Euler angles. The standard errors

of the estimated parameters are again less than 1m for the lunar

shapeand for the center of the triaxial ellipsoidparameters and less

than 0.001 degrees for the Euler angles. In all these solutions, the

standard errors aremore precision statements than representative

of the accuracies of the estimated parameters because of the

unmodeled lunar topography in the mathematical models. The

latitudes and longitudes of the lunar North Pole (NP) position of

the polar axis of the triaxial ellipsoid in the mean Earth/polar axis

coordinate frame calculated from the estimated Euler angles are

also included in this table. The Euler angles for the Clementine

solution were not reported by Smith at al. (1996).

Some of the results are in better agreement across the solutions as

revealed by the parameter differences from solutions with Euler

angles. The differences in the estimated parameters in some cases

can be as small as a few meters. Although the ULCN 2005 data

are not completely independent from the Clementine LAL data

(the latter is included in the former), CE-1 and SELENE LAL data

are completely independent. These two data sets are the product

of different instruments on board of the satellites at different

altitudes, and processed by different software, yet producing

measurements that enable solutions in some cases, which are in

agreement down to 3 meters (in b and c, in Table 2).

Table 2 estimates also reveal that the CE-1 solutions using all

available data deviate systematically from the other solutions

significantly in the polar axis and the estimated xc component of

the geometric center of the triaxial ellipsoid. The closer agreement

between the CE-1 and SELENE solutions estimates (29 m RMS

difference) fromthedownsampleddatasuggests that thesolutions

that are based on all available data are influenced by the dense

LAL data at the polar regions (near polar orbits) that are reduced

in number after down-sampling. An earlier study by Shum et al.

(2010) revealed large cross over differences in the CE-1 orbits over

the poles thereby adversely influencing the solutions using all the

available LAL data.

Brought to you by | Hong Kong Polytechnic University
Authenticated

Download Date | 2/5/15 7:22 AM



Journal of Geodetic Science 55

Table 1. Solutions without Euler angles. All units for all the estimates are in meters. The standard errors of the estimates are less than 1m for the
semi-principal axes of the triaxial ellipsoids and the coordinates of their geometric centers based on 100 m a priori standard deviation in the
Cartesian coordinates. The radial distances of the LAL footprints were calibrated at nearby LLR sites (Iz et al., 2010b). The Clementine
solution did not include center of figure parameters (Smith et al., 1996). N/A: Not available. RMS refers to the RMS misclosures.

Clementine* ULCN 2005 CE-1 All Data SELENE All Data CE-1 Sampled SELENE Sampled

a 1738056 1737899 1737810 1737953 1738022 1738070
b 1737843 1737570 1737597 1737594 1737615 1737661
c 1735485 1735742 1735947 1735996 1735686 1735691
xc 0 -1658 -1485 -1671 -1718 -1736
yc 0 -681 -695 -698 -710 -721
zc 0 133 269 207 217 230

RMS N/A 3507 3931 4528 3759 3786
*Smith et al., 1996.

Table 2. Solutions with Euler angles. The standard errors of the estimates for the semi-principal axes of the triaxial ellipsoids and the coordinates
of their geometric centers are less than 1m and less than 0.001 degrees for the Euler angles based on 100 m a priori standard deviation
in the Cartesian coordinates. The values listed in the last row are the latitudes and longitudes of the lunar North Pole (NP) position of the
triaxial ellipsoid in the mean Earth/polar axis coordinate system.

Clementine* ULCN 2005 CE-1 All Data SELENE All Data CE-1 Sampled SELENE Sampled

a 1739020 1739001 1739057 1739115 1739024 1739088
b 1737567 1737249 1737323 1737335 1737338 1737370
c 1734840 1734960 1734998 1735158 1734963 1734969
xc 0 -1628 -1451 -1567 -1718 -1736
yc 0 -695 -676 -686 -714 -723
zc 0 182 262 205 220 226
α N/A 19.200 18.75 19.18 17.530 17.390
β N/A 21.620 25.52 23.75 21.350 21.240
γ N/A 29.590 27.95 27.59 27.190 27.330

NP 66.00N 10.40E 61.440N 13.860W 58.750N 10.340W 59.870N 13.300W 62.690N 13.850W 62.850N 13.600W
RMS N/A 3075 3077 2896 3367 3391

*Smith et al., 1996.

Meanwhile, there is a considerable difference in the orientation

of the lunar figures, mainly between those from the Clementine

solution and the others (NP values in Table 2). The Clementine data

is also included in the ULCN 2005 solution, and their estimated

semi-principal axes of triaxial ellipsoids are in close agreement;

however, their NP positions are different suggesting that the

difference in the orientation is likely due to the center of figure

parameters not being included in the Clementine model. The

global distribution of the Clementine data is also limited, not

covering the North and South poles, as compared to the other

data sets. In any case, the end point of the south polar axis still

remains within the boundaries of the South Pole-Aitken basin in

all other solutions demonstrating the dominant role played by this

extraordinary topographical feature in the solutions. At this point,

it is important to note that the prevalence of the South Pole-Aitken

basin in the orientation of the triaxial ellipsoid in the Clementine

solution evidence that the solutions from the coefficients of the

spherical harmonic models of the lunar topography are not robust

to the lunar topography as expected.

TheRMSdifferenceof thesemi-principalaxesof thetriaxialellipsoid

and the estimates of its geometric center between the solutions

using the downsampled CE-1 and SELENE data is 31 m; a solid

performance of the downsampled data sets and a validation of

the calibration for the CE-1 LAL radial footprints. The differences

in the Euler angles estimated from the downsampled data sets are

less than 4.3 km along the lunar equator. Evidently, the estimates

for the Euler angles are more sensitive to the data sets when

compared to the other parameters. This sensitivity is more due

to the nature of the parameters (small variations in the angles

lead to large displacements on the surface of the Moon) since the

correlation matrix of the estimates for the downsampled data is

nearly an identitymatrix, exhibiting negligible correlations among

the parameters.

The misclosures that are calculated using Equation (1) and (2) for
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the different solutions are also informative (the RMS misclosures

are listed in the last rows of Table 1 and 2). The misclosures

were calculated using the estimated parameters and the observed

footprint Cartesian coordinates, rather than the adjusted Cartesian

coordinates which will result in zero misclosures if used. Although

the misclosures are dominated by the differences between the

radial distances of the footprints and the radial distances of their

projected points on the ellipsoid (lunar topography), they are also

influenced by the effect of errors in the horizontal LAL footprint

positions, hence making them better statistics to assess the best

fit.

The RMSmisclosures (Table 2) from the solutionswith Euler angles

are consistently smaller compared to those from the solutions

without Euler angles simply due to the freedom of the triaxial

ellipsoid to orient itself in the solutions and the presence of

large topographical features, mainly, South Pole-Aitken basin that

dominate the orientation of the triaxial ellipsoids (Figure 1). Hence,

it is evident that a triaxial ellipsoid representing the lunar shape,

will not be aligned with the underlying lunar reference frame in

these solutions. Note that the fit provided by the ULCN 2005

solution without the Euler angles is consistently smaller than the

others. However, this is not the case for the solutions with the

Euler angles for which the RMS misclosures of the solution with
the downsampled SELENE data are improved by 10 percent over

the RMSmisclosures of the ULCN 2005 solution with Euler angles.

Meanwhile, the RMS misclosures from the CE-1 and SELENE solu-

tionswith andwithout Euler angles both based on the downsam-

pled data do not deviate much from each other (the difference

in the RMS misclosures is only 2 m) when compared with the

solutions with all data solutions RMS misclosures.

The consistent positive differences of the RMS misclosures with
and without Euler angles, suggest that Euler angles must be

included in the geometric model of a lunar figure, but unfor-

tunately, we cannot support this conclusion statistically using a

null-hypothesis test because of the presence of the unmodeled

andnon-stochastic lunar topography in the residuals, whichmakes

all the statistical comparisons meaningless. Yet, the differences in

themisclosures fromwithout andwith Euler angle solutions eval-

uated at each footprint locations and displayed in Figure 1 show

unambiguously the impact of the inclusion of the Euler angles in

the solutions, especially in the South Pole-Aitken basin region and

on the highlands on the far side of the moon.

5. Conclusion

The lunar figure and center of figure parameters estimated from

all three data sets, namely ULCN 2005, CE-1, and SELENE are con-

sistent. In particular, the RMS differences between the estimated

semi-principal axes of the triaxial ellipsoids and their locations are

as small as 29 and 31 m for the solutions with and without Euler
angles respectively, based on the downsampled LAL footprints

from the CE-1 and SELENE missions over the lunar surface.

Figure 1. First, misclosures for solutions with and without Euler an-
gles are calculated using Equation (2), as deviations from
unity and scaled by 1737 km from the CE-1 down-sampled
data. Their differences (without minus with Euler angles)
for the near side (top) and far side are then plotted. The fig-
ure shows the locations and the magnitude of the changes
in the misclosures as a result of considering Euler angles
in the solution on an orthographic projection.

Meanwhile, smaller misclosures and better agreement between

the solution parameters using the downsampled CE-1 and SELENE

data suggest that CE-1 orbits above polar regions need further

attention, possibly in modeling along-track satellite accelerations.

The magnitudes of the estimated Euler angles and the differences

in the misclosures between solutions with and without Euler

angles confirm a better fit if the triaxial ellipsoid is allowed to

adjust its orientation. The estimated location of the polar axis is
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within theboundariesof theSouthPole-Aitkenbasin inall solutions

but deviates from the earlier Clementine solution in magnitude.

It is also desirable to remove the contribution of the South Pole-

Aitken basin, (the largest, deepest and oldest basin recognized

on the Moon, and the biggest hole in the Solar System), in the

solutions in order to better assess the shape and the orientation

of the Moon. Nonetheless, additional runs with the Euler angles

using an iteratively weighted scheme, where the weights are

proportional to the topography to down-weight its influence, do

not converge. Also, the solutions with the LAL data excluded from

theSouthPole-Aitkenbasin are ill-conditionedbecauseof thepoor

geometry. The location of the pole axis of the triaxial ellipsoid (in

the South Pole-Aitken basin region) inferred from the coefficients

of the spherical harmonics of the lunar topography in an earlier

solution shows that this approach is also unduly influenced by

the lunar topography. It is therefore necessary to investigate and

devise alternativemodels that aremore robust to the effects of the

large-scale lunar topography.

Appendix A

Two sets of 250,000 uniformly distributed points were generated

ona lunar sphere, first bygeneratingx, y, z independent standard
normal variates, i.e.,N(0,1), and then calculating( x

s
y
s

z
s

)
, where s := √x2 + y2 + z2

for eachvariate. Thegenerated triplets areuniformlydistributedon

a sphere (Marsaglia, 1972). The random points were rescaled with

an average radius of the Moon to generate uniformly distributed

footprint positions on the lunar surface. Each lunar data set (CE-1

and SELENE) were then downsampled by choosing the nearest

footprint for each uniformly distributed point.
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