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Abstract: The Mw=7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu 
fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture 
Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground 
displacements. There have however been significant limitations in the studies. First, only 
one-dimensional displacements along the Line-of-Sight (LOS) direction have been 
measured. The large horizontal displacements along the Chelungpu fault are largely missing 
from the measurements as the fault is nearly perpendicular to the LOS direction. Second, 
due to severe signal decorrelation on the hangling wall of the fault, the displacements in that 
area are un-measurable by differential InSAR method. We estimate the co-seismic 
displacements in both the azimuth and range directions with the method of SAR amplitude 
image matching. GPS observations at the 10 GPS stations are used to correct for the orbital 
ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface 
displacements field using the descending ERS-2 SAR image pair. The results show that the 
co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with 
the positive direction pointing to the flight direction), with the footwall side of the fault 
moving mainly southwards and the hanging wall side northwards. The displacements in the 
LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in 
the northeastern part of the hanging wall (the positive direction points to the satellite from 
ground). Comparing the results from amplitude matching with those from DInSAR, we can 
see that while only a very small fraction of the LOS displacement has been recovered by the 
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DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR 
measurements as they are almost perpendicular to the LOS. Therefore, the amplitude 
matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi 
earthquake. Another advantage of the method is that the displacement in the hanging wall of 
the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost 
completely retrieved in this research. This makes the whole co-seismic displacements field 
clearly visible and the location of the rupture identifiable. Using displacements measured at 
15 independent GPS stations for validation, we found that the RMS values of the differences 
between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the 
range directions. 

Keywords: Chi-Chi earthquake, Differential Synthetic Aperture Radar (DInSAR), 
amplitude image match, GPS, Two dimensional (2D) displacements 

 

1. Introduction 

On 21 September 1999, a Mw=7.6 earthquake occurred near Chi-Chi Town in Taiwan. The 
devastating earthquake was triggered by the reactivation of the north-south-trending Chelungpu fault 
and caused an approximately 80 km long surface rupture along the Chelungpu fault [1]. More than 
2,000 people died in the earthquake and 53,551 buildings were destroyed [2].  

Differential Interferometic Synthetic Aperture Radar (DInSAR) has been used to measure the co-
seismic displacements of the earthquake. Pathier et al. [3] found about 10 interferometric fringes in a 
differential interferogram spanning the earthquake. The fringes are equivalent to about 0.28 m surface 
displacements in the LOS direction at the footwall of the Chelungpu fault. Liu et al. [4, 5] reported that 
the largest LOS displacements in the footwall of the Chelungpu fault calculated from an averaged 
interferogrm was about 0.33 m. In these DInSAR studies however, only one-dimensional displacement 
along the radar Line-of-Sight (LOS) direction were determined. As the Chelungpu fault strike is nearly 
parallel to the azimuth direction (with an angle of about 12º), the LOS measurements are insensitive to 
the displacements along the fault strike. In addition, the severe loss of coherence (coherence is defined 
as the amplitude of the complex correlation coefficient between two patches of co-registratered SAR 
images, see e.g. [6]) on one side of the fault make it very difficult to determine the displacements with 
the DInSAR method in the area. Global Positioning System (GPS) has also been used to study the 
displacements caused by the earthquake although it offers much lower spatial resolution compared 
with that of the InSAR method. For example, Yu et al. [7] reported that 2.4-10.1 m horizontal 
displacements and 1.2-4.4 m vertical displacements were observed with GPS across the Chelungpu 
fault. In general, displacements of such magnitudes are difficult to be measured with C- or X-band 
DInSAR method as the displacements may cause mis-registrations of images and result in fringe rates 
exceeding the saturation threshold of half a fringe per pixel, which will lead to severe signal 
decorrelation [8, 11]. Such disadvantages of the DInSAR method have been the motivation to study 
the ground displacements of the earthquake with the SAR amplitude image matching [8-10] and SPOT 
image matching methods [22].  
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We will first present results of co-seismic ground deformation measurements from DInSAR method, 
followed by those from the method of SAR amplitude images matching. By combining the Azimuth 
Offset (AZO) and the Range Offset (RO) of the SAR amplitude images, a two-dimensional (2D) 
surface displacement fields associated with the earthquake will be generated. The results will be 
compared with GPS observations at some GPS stations in the study area. 

 
Figure 1. Location of the Chi-Chi earthquake in the WGS 84 system (all figures presented 
in this paper are in the same reference system except otherwise stated). The red star 
represents the position of the epicenter. The yellow line represents the Chelungpu fault [7]. 
The white rectangle indicates the area covered by the ERS-2 descending SAR images used 
in this study.  

 

2. Data Analysis 

2.1 Analysis of Co-Seismic Interferogram 

Two C band (λ = 5.6 cm) ERS-2 satellite SAR images (Table 1) are used to study the co-seismic 
ground displacements of the Chi-Chi earthquake. The angle of incidence of the radar sensor is about 
23 degrees, and the satellite revisit time is 35 days. The images are both from descending orbit, one 
acquired before the earthquake and the other after the earthquake. Although some ascending SAR 
images are also available, their time spans are too long to produce meaningful interferograms or offset 
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images. They are therefore not used for this study. The location of the descending SAR images is 
shown in Figure 1.  

Table 1. ERS-2 SAR data used. 
 
 
 
 

The SAR images are first processed with the two-pass DInSAR method and the GAMMA software 
[12]. The perpendicular baseline is about 223 m and the ambiguity height is about 43 m. The 3 arc-
second DEM data from the Shuttle Radar Topography Mission (SRTM) is used to remove the 
topographic phase [13]. Precise ERS-2 orbits from the Delft University of Technology are used in 
processing the data to reduce errors associated with image co-registration and flat earth phase removal 
[14-15]. The differential interferogram is then filtered with the improved Goldstein Filter to reduce the 
phase noises [16]. Finally the co-seismic interferogram of the earthquake is obtained as shown in 
Figure 2.  

 
Figure 2. Co-seismic interferogram of Chi-Chi earthquake. Each interferometric fringe 
represents 2.8 cm of relative displacement in the radar LOS direction. The black line 
represents the Chelungpu fault. The inset diagram shows the corresponding coherence 
map. The value zero means that the signals are completely decorrelated and value unity 
fully coherent. 

 
 
It can be seen from Figure 2 that there are about 7-8 fringes in the footwall side of the Chelungpu 

fault that are equivalent to about 21 cm of total relative radar range changes. Comparing with GPS 

No. Date Orbit Frame Track 
1 15 July 1999 22130 3123 232 
2 28 October 1999 23633 3123 232 
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results reported by Yu et al. [7], i.e., 2.4-10.1 m horizontal displacements and 1.2-4.4 m vertical 
displacements across the Chelungpu fault, it is known that only a very small fraction of the co-seismic 
displacements have been captured by the DInSAR method. In addition, no good DInSAR results on the 
hanging wall side of the Chelungpu fault have been reported as the area is covered by forest and serious 
decorrelaton has been experienced in the area [5, 17]. 

2.2 Offsets Derived from Co-Seismic Amplitude Images 

A SAR image contains the phase as well as the amplitude information. We will in this study 
estimate the co-seismic displacements of the Chi-Chi earthquake with the method of SAR amplitude 
image matching. The principles of the method are based on the considerations that the post-seismic 
SAR amplitude image will have pixel-by-pixel shifts with respect to pixels of the pre-seismic SAR 
amplitude image and that the shift values can be determined through a correlation analysis. The shift 
values are directly related to the ground displacements caused by the earthquake. The shifts are in 
general estimated in two orthogonal directions, i.e., the azimuth and range directions, and are 
correspondingly called AZO and RO, respectively [18]. The amplitude image matching method 
measures sub-pixels position shifts and can in general achieve an accuracy of about 1/32 pixel [18]. 

To determine AZO and RO, the amplitude images first need to be co-registered. The co-registration 
will be implemented in two steps, i.e., coarse and fine co-registration. Preliminary offsets in the 
azimuth and range directions can be determined in the coarse co-registration. Finer scale offsets can 
then be calculated in the step of fine co-registration. The AZO and RO between the two amplitude 
images will be measured in their original sampling space, i.e., about 5 m in azimuth and 8 m in slant 
range directions. The window size used for estimating the correlation is 64 × 64 pixels. The accuracy 
of the measurements is about 15 cm in the azimuth direction and 25 cm in the slant range direction. 
For each pixel, the offset is [19]: 

offset orbit defoR R R= +            (1) 

where offsetR  is related to the AZO and RO between the two images; orbitR  represents the non-coseismic 
component that is due to the difference in the imaging geometries; defoR  represents the surface 

displacement in the azimuth or range directions.  
Figure 3 shows the calculated AZO and RO between the SAR images list in Table 1. Although 

there are significant systematic offsets, the trends of the displacements caused by the earthquake can 
be clearly seen. 

The non-coseismic components due to the difference in the imaging geometries in Equation (1) 
needs to be removed in order to get the surface displacements. Wang et al. [20] suggested to model the 
non-coseismic components using a bilinear equation: 

0 1 2 3orbitR a a x a y a xy= + + +           (2) 
where x  and y are the coordinates of the pixels in WGS 84 coordinate system, and 0a , 1a , 2a  and 3a  

are coefficients accounting for the difference in the imaging geometries. 



Sensors 2008, 8                            
 

 

6489

Figure 3. The estimated of AZO (left) and RO (right). Unit: m. 

 
 
Ten of the 25 GPS stations in the study area given by Yu et al. [7] will be used as the Ground 

Control Points (GCP) in this study to help to estimate the non-coseismic components (See Figure 4). 
The 10 GPS stations selected are evenly distributed over the footwall area of the Chelungpu fault to 
cover well the displacement trend in the area. GPS observations can give three orthogonal components 
of the co-seismic displacements in the up, northern and eastern directions. Suppose that the vector 

[ ]Tu n er r r r= represents the three-dimensional (3D) displacements at a GPS site, the displacements 

vector can be converted into azimuth and range displacements [ ]Tdefo AZO ROR R R=  following [20] 

defoR U r= ⋅                  (3) 

where U  is a matrix that consists of two unit projection vectors, one for the azimuth direction and the 
other for the range direction 

0 cos sin
cos sin sin cos sin

U
α α

θ α θ α θ
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
        (4) 

where θ  is the radar incidence angle at the scattering target; and α  is the azimuth angle of the satellite 
flight path (clockwise from the North). In the calculations, we define the up, northern and eastern 
directions as positive for ur , nr  and er . Similarly, we define the satellite flight direction as positive 
for AZOR , and the direction towards the satellite from the ground as positive for ROR . 

The non-coseismic component orbitR  in Equation (1) at the 10 GCPs can be calculated with the 
azimuth and range displacements of the GCPs. The orbitR  values thus calculated are then used to 
determine the coefficients 0a , 1a , 2a  and 3a  in Equation (2) in a least-squares solution. The 

coefficients are estimated for AZO and RO separately. The non-coseismic components thus obtained 
for the whole images are shown in Figure 5. Topographic variations can also cause non-coseismic 
range offsets. However, as such offsets are difficult to model and the baseline of the SAR pair is only 
223 m, the effect is neglected in this study. 
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Figure 4. GPS stations used in the study. The yellow triangles represent the stations used 
as GCPs. The blue dots represent the stations used for validating the results. The inset 
diagram shows the geometry of radar image acquisition. 

 

Figure 5. The non-coseismic components of AZO (left) and RO (right) estimated from the 
GPS observations. Units: m. 
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3. Results 

Once the azimuth and range offsets and their corresponding non-coseismic components are 
determined, the azimuth and range displacements caused by the Chi-Chi earthquake can be easily 
computed by using Equation (1). The results are shown in Figure 6. 

Figure 6. The ground surface displacements in (a) the azimuth and (b) the range directions. 
The black solid line shows the location of the Chelungpu fault. 

 
 
Figure 6A shows the ground displacements in the azimuth direction. It is clear that the co-seismic 

displacements range from about -2.0 m to 0.7 m in this direction, with the footwall of the fault moving 
southwards and the hanging wall northwards. The results are very close to those derived from GPS 
measurements, with a mean discrepancy of less than 10 cm (see Figure 7). However, the displacement 
in the azimuth direction is difficult to highlight by the DInSAR method as it is almost perpendicular to 
the LOS direction. The recently developed sub-aperture InSAR method can potential help to determine 
the displacements in azimuth direction [23-24], however it will not be discussed here as it beyonds the 
scope of this research. The location of the Chelungpu fault can be easily identified in the displacement 
maps as the displacements on the two sides of the fault are largely in the opposite directions. The 
azimuth displacements in the hanging all are well over 0.5m, indicating that large-scale displacements 
have happened to the hanging wall of the fault. 

The ground displacements in the range direction shown in Figure 6B indicates that the earthquake 
caused displacements varying from about -0.5 m to 1.0 m in this direction. However, only the 
displacements in the footwall of the fault, i.e., about 30 cm, have been measured in this direction by 
the DInSAR method (see Figure 2, and [3-5]). The displacements in the hanging wall of the fault, i.e., 
~50 cm, have never been measured with the DInSAR method as the severe decorrelation effect 
rendered the DInSAR method unusable in the area. Therefore, it is clear that the amplitude image 
matching method in this case offers much better information on the co-seismic ground displacements 
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although in general the accuracy of the method is not as high as the DInSAR method due to the very 
low resolution of the ERS SAR images [18].  

Figure 7. Comparisons between the displacements observed with GPS and from the 
method of amplitude image matching in azimuth (up) and range directions (low). The GPS 
stations used for the comparison are listed in Figure 4. The RMS values of the differences 
between the results are 6.9 cm and 5.7 cm, respectively, in the two directions. 

 
 

 
 
Fifteen additional GPS stations in the area are used to validate the results (See Figure 4). The up, 

northern and eastern components of the co-seismic displacements measured at the GPS stations are 
converted into the azimuth and range displacements and compared with those extracted from Figure 6. 
It can be seen from Figure 7 that the results from the two methods agree well with each other with the 
RMS values of the differences between the results being 6.9 cm and 5.7 cm in the azimuth and the 
range directions respectively. 

4. Conclusions 

A complete two-dimensional co-seismic ground deformation filed associated with the 1999 Chi-Chi 
earthquake in Taiwan has been generated from two descending ERS-2 SAR images with the SAR 



Sensors 2008, 8                            
 

 

6493

amplitude image matching method. DInSAR approach has not worked well in the area due to the 
severe decorrelation effect in the heavily vegetated mountainous regions. In addition, the DInSAR 
method has not been able to provide information on the displacements that perpendicular to the radar 
LOS direction, although the direction is important in this study as the Chelungpu fault trace is in the 
direction. The SAR amplitude image matching method on the other hand has worked very well in the 
study area. With the assistance of 10 GPS stations in the area, the co-seismic surface displacements in 
both the azimuth and range directions have been extracted successfully. Comparisons with the 
displacements observed at other 15 GPS stations have shown that the RMS values of the differences 
between the two types of results are 6.9 cm and 5.7 cm in the azimuth and range directions 
respectively. It is unfortunate that there are no suitable ascending ERS SAR images. Otherwise a 3D 
surface displacement field may be determined with the method and the least squares approaches [21].  
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