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A B S T R A C T

Background: In neurophysiological data, latency refers to a global shift of spikes from one spike train to the
next, either caused by response onset fluctuations or by finite propagation speed. Such systematic shifts in
spike timing lead to a spurious decrease in synchrony which needs to be corrected.
New Method: We propose a new algorithm of multivariate latency correction suitable for sparse data for
which the relevant information is not primarily in the rate but in the timing of each individual spike. The
algorithm is designed to correct systematic delays while maintaining all other kinds of noisy disturbances. It
consists of two steps, spike matching and distance minimization between the matched spikes using simulated
annealing.
Results: We show its effectiveness on simulated and real data: cortical propagation patterns recorded via
calcium imaging from mice before and after stroke. Using simulations of these data we also establish criteria
that can be evaluated beforehand in order to anticipate whether our algorithm is likely to yield a considerable
improvement for a given dataset.
Comparison with Existing Method(s): Existing methods of latency correction rely on adjusting peaks in rate
profiles, an approach that is not feasible for spike trains with low firing in which the timing of individual
spikes contains essential information.
Conclusions: For any given dataset the criterion for applicability of the algorithm can be evaluated quickly
and in case of a positive outcome the latency correction can be applied easily since the source codes of the
algorithm are publicly available.
1. Introduction

Measuring the degree of synchrony within a set of spike trains is a
common task in two major scenarios.

In the first scenario spike trains are recorded in successive time
windows from only one neuron. In order to allow for a meaningful
alignment of these time windows there has to be a common temporal
reference point which is typically some kind of external trigger event
such as the onset of a stimulus. If the stimulus is always the same, the is-
sue under consideration is the reliability of individual neurons (Mainen
and Sejnowski, 1995; Tiesinga et al., 2008), while different stimuli
are used to find the features of the response that provide the optimal
discrimination within the context of neuronal coding (Victor, 2005;
Quian Quiroga and Panzeri, 2013).
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E-mail address: thomas.kreuz@cnr.it (T. Kreuz).

In the second scenario spike trains are recorded simultaneously from
a population of neurons (Gerstein and Kirkland, 2001; Brown et al.,
2004). In this scenario spikes emitted at the same time are truly ‘syn-
chronous’ (Greek: ‘occurring at the same time’). Typical applications
for such data are the multi-channel recordings of various neuronal
circuits of the brain (Tiesinga et al., 2008; Shlens et al., 2008) and the
analysis of spiking activity propagation in neuronal networks (Buzsaki
and Draghun, 2004; Kumar et al., 2010). The real data example used
in this study also belongs to this scenario, global activation patterns
recorded via wide-field calcium imaging in the cortex of mice before
and after stroke (Allegra Mascaro et al., 2019; Cecchini et al., 2021).

Generally speaking, latency is the temporal delay of some physical
change in the system being observed. In neuroscience latencies have
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biological reasons and carry a lot of valuable information in themselves
that are typically analyzed in a first step using measures of directional-
ity (Kreuz et al., 2017; Cecchini et al., 2021). Once all the information
contained in the latencies has been extracted, it is worth investigating
also the synchrony of the underlying dynamics. In this context of
synchrony estimation latency in the data is not a primary source of
information but rather a hindrance that first has to be removed in order
to find the true value of synchrony.

Latency and its correction are relevant in both of the scenarios
introduced above. In the first ‘successive single neuron recordings’
scenario latency translates into the time lag between the stimulus
and the response. Due to various sources of noise (Lee et al., 2020;
Uzuntarla et al., 2012) this lag may vary from trial to trial (Lee et al.,
2016). These variations in onset latency can then lead to a ‘‘spurious"
underestimation of synchrony (Ermentrout et al., 2008; Zirkle and
Rubchinsky, 2021). In order to account for this, a multivariate latency
correction has to be performed in which the various trials are realigned
before the ‘‘true" synchrony is calculated.

In the second ‘simultaneous population recordings’ scenario dealt
with here, latency becomes important whenever there is a spatial
propagation of activity from one location to another (Kreuz et al.,
2017; Cecchini et al., 2021). The question of interest when analyzing
synchrony becomes whether and how much the activity changes during
the course of the propagation. Again, in order to answer this, the
recordings from different locations have to be compared only after the
latency caused by the finite propagation speed has been accounted for.

Methods of latency correction proposed in the literature mostly deal
with the first scenario and use rate-based estimates of latency. Typically
they rely on dynamic rate profiles for each trial that are obtained
by convolving the individual spike trains with either a static or a
dynamic kernel (Nawrot et al., 2003; Schneider and Nikolić, 2006). The
resulting peaks are then realigned, e.g. by maximizing the total pairwise
correlation (Nawrot et al., 2003). This is done under the underlying
assumptions that the rate is the most important feature of the response,
that the number and density of spikes is high enough to estimate it
reliably and, crucially, that the timing of the individual spikes can be
neglected. These assumptions hold for a wide variety of real data (Wal-
ter and Khodakhah, 2009; Enoka and Duchateau, 2017) but there are
also many datasets in which this is not the case (van Rullen and Thorpe,
2001; Harvey et al., 2013; Fukushima et al., 2015) and for which
so far no reliable and feasible method of latency correction has been
proposed.

Therefore, here we would like to address the complementary prob-
lem of latency correction in data in which there are not that many
spikes and where the relevant information is not primarily in the rate
but in the timing of each individual spike. In doing so, we follow two
specific objectives: First we would like to propose a latency correction
algorithm that works not only with rather clean simulated data but
functions also with experimental data that typically contain distur-
bances such as unreliability (missing spikes), jitter (noisy spike shifts),
and background noise (extra spikes). The algorithm consists of two
parts, matching pairs of spikes over all the spike trains followed by
an optimization procedure (simulated annealing) that minimizes the
distances between the matched spikes. The second objective is to define
the limits for which the algorithm works well, e.g. to specify whether
there are any conditions the dataset needs to fulfill in order to be a
good candidate for the application of this method.

The remainder of the article is organized as follows:
In Section 2 we describe the wide-field calcium imaging datasets

that we use to illustrate the effectiveness of the algorithm at work.
In the Methods (Section 3) we first describe the two basic steps of
our latency correction algorithm, matching pairs of spikes and min-
imizing their average distance via simulated annealing (Section 3.1).
Then we define the two quantities SPIKE-Synchronization and Synfire
Indicator (based on the measure SPIKE-order) from which we will later
2

derive a well-defined criterion for the improvability of a given dataset
(Section 3.2). The Results (Section 4) consist of three subsections
detailing applications of the new approach to artificially generated
datasets (Section 4.1), to neurophysiological datasets (Section 4.2) and
to simulations of these experimental data (Section 4.3). Conclusions are
drawn in Section 5.

2. Data

Here we provide a short overview of the experimental paradigm,
the basic recording setup and the data processing that was performed in
order to arrive at the rasterplots that were then analyzed in Section 4.3.
More details can be found in Allegra Mascaro et al. (2019) and Cecchini
et al. (2021).

The datasets consist of cortical activity obtained by 12 × 21 pixel
wide-field calcium imaging in mice before and after the induction of a
focal stroke via a photothrombotic lesion in the primary motor cortex.
The purpose of the recordings was to investigate changing propagation
patterns during motor recovery from the functional deficits caused by
the stroke. This motor recovery was aided by the M-platform (Spalletti
et al., 2014, 2017), a robotic system that performs passively actuated
contralesional forelimb extension on a slide to trigger active retraction
movements that were subsequently rewarded (up to 15 cycles per
recording session).

In this article we analyze a total of 260 recordings (mean duration
17s, range 68 to 400s) from 14 mice which were divided into three
roups according to their rehabilitation paradigm: Control, Robot and
ombined. The healthy Controls (3 mice) had no stroke induced but
nderwent four weeks of motor training. The Robot group (5 mice)
erformed the same physical rehabilitation for four weeks starting five
ays after the stroke induction. The Combined group (6 mice) underwent
otor training together with a transient pharmacological inactivation

f the controlesional hemisphere.
Each recording session resulted in continuous calcium traces from

etween 173 and 252 pixels (mean number 238) that were then trans-
ormed via a straightforward detection of upwards threshold crossings
nto the spike trains that together form the rasterplots that are analyzed
ere. These rasterplots display the global activity propagation events in
he cortex that typically correspond to attempted or completed forelimb
ull events.

The data that we obtained had already undergone some filtering of
ackground noise. Before applying our multivariate latency correction
e sort spike trains from leader to follower by means of the SPIKE-order
pproach (Kreuz et al., 2017; Cecchini et al., 2021).

All experimental procedures were performed in accordance with
irective 2010/63/EU on the protection of animals used for scientific
urposes and approved by the Italian Minister of Health, authorization
.183/2016-PR.

. Methods

In this Section we describe our approach to multivariate latency
orrection. The starting point is a set of 𝑁 spike trains each composed
f sequences of spike times 𝑡(𝑛)𝑖 , 𝑖 = 1,… ,𝑀𝑛, 𝑛 = 1,… , 𝑁 recorded over
certain period of time [0, 𝑇 ] (with 𝑀𝑛 denoting the numbers of spikes

in spike train 𝑛).
Since a delay correction for a set of spike trains without any delays

is obviously not very reasonable we assume that the set contains spike
trains exhibiting a systematic delay between them (later we will define
a criterion that tells us if and to what extent this is actually the
case). In our preferred ‘simultaneous population recordings’ scenario
this corresponds to a consistent propagation of activity from leading to
following spike trains. The simplest example, a perfect synfire chain, is
shown in the rasterplot of Fig. 1A. Choosing an arbitrary spike train as
reference (here we will always use the first), the task is to find for each
of the other 𝑁 − 1 spike trains the delay correction that maximizes the

similarity (or minimizes the dissimilarity) between all the spike trains.
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Fig. 1. Illustration of a set of artificially created spike trains exhibiting a consistent propagation activity, in this case a perfect regularly spaced synfire chain. Subplot A is before
and subplot B is after the multivariate latency correction. The arrows in B indicate for each spike train the shift performed during the latency correction. Spike colors code the
asymmetric SPIKE-order 𝐷 (see Section 3.2) on a scale from 1 (red, first leader) to −1 (blue, last follower). On the right we show the spike time difference matrices. For this
simple example the corrected spike trains are identical and accordingly the spike time difference matrix turns from its perfectly ordered ascension away from the diagonal to zero
everywhere.
An example of such a solution, in this simple case perfect identity, is
shown in Fig. 1B.

Of course in real data any propagation pattern will typically be con-
taminated by unreliability, jitter, and background noise. And our task is
complicated by two more problems: First, since time is continuous the
number of possible solutions to this optimization problem is infinite.
Second, in the approaches based on the rate coding assumption (Nawrot
et al., 2003; Schneider and Nikolić, 2006) the individual spike trains are
transformed into rate functions with one well-defined maximum each
and these maxima can then easily be aligned, but for the kind of sparse
data under consideration here calculating rate functions and identifying
maxima is so difficult that such a reductive approach is not feasible.

Instead, our algorithm looks at the temporal relationship between
individual spikes and uses an iterative heuristic approach (simulated
annealing) to search within the vast space of possible solutions for the
optimal one. Since for reasons of computational cost and feasibility we
cannot calculate in each iteration the overall synchrony among all the
spike trains, we use a definition of synchrony based on the measure
SPIKE-synchronization that is straightforward to calculate and very
easy and efficient to update.

3.1. Spike matching and simulated annealing

Searching for systematic delays in a spike train set requires a
way to determine which spikes should be compared against each
other. Under the assumption of sparse data with rather well-defined
global events we employ the adaptive coincidence criterion origi-
nally introduced for the bivariate measure event synchronization (Quian
Quiroga et al., 2002) and then also used for both the symmetric
SPIKE-Synchronization (Kreuz et al., 2015) and the asymmetric SPIKE-
order (Kreuz et al., 2017).

This coincidence detection is scale- and parameter-free since the
maximum time lag 𝜏(𝑛,𝑚)𝑖𝑗 up to which two spikes 𝑡(𝑛)𝑖 and 𝑡(𝑚)𝑗 of spike
trains 𝑛, 𝑚 = 1,… , 𝑁 are considered to be synchronous is adapted to
the local firing rates according to

𝜏(𝑛,𝑚)𝑖𝑗 = min{𝑡(𝑛)𝑖+1 − 𝑡(𝑛)𝑖 , 𝑡(𝑛)𝑖 − 𝑡(𝑛)𝑖−1,
(𝑚) (𝑚) (𝑚) (𝑚) (1)
3

𝑡𝑗+1 − 𝑡𝑗 , 𝑡𝑗 − 𝑡𝑗−1}∕2.
For some applications it might be appropriate here to also intro-
duce a maximum coincidence window 𝜏𝑚𝑎𝑥 (Kreuz et al., 2017) as a
parameter thereby combining the time-scale independent coincident
detection with a time-scale dependent upper limit. This way additional
knowledge about the data (such as typical signal propagation speed)
can be taken into account in order to guarantee that two coincident
spikes are really part of the same meaningful event.

Following the derivation of SPIKE-synchronization (Kreuz et al.,
2015), we then apply the coincidence criterion by defining for each
spike 𝑖 of any spike train 𝑛 and for each other spike train 𝑚 a coinci-
dence indicator

𝐶 (𝑛,𝑚)
𝑖 =

{

1 if min𝑗 (|𝑡
(𝑛)
𝑖 − 𝑡(𝑚)𝑗 |) < 𝜏(𝑛,𝑚)𝑖𝑗

0 otherwise,
(2)

which is either one or zero depending on whether this spike is part of
a coincidence with a spike of spike train 𝑚 or not. This results in an
unambiguous spike matching since any spike can at most be coincident
with one spike (the nearest one) in the other spike train.

Subsequently, for each spike of every spike train a normalized
coincidence counter

𝐶 (𝑛)
𝑖 = 1

𝑁 − 1
∑

𝑚≠𝑛
𝐶 (𝑛,𝑚)
𝑖 (3)

is obtained by averaging over all 𝑁−1 bivariate coincidence indicators
involving the spike train 𝑛.

In order to obtain a single multivariate SPIKE-Synchronization pro-
file we pool the coincidence counters of all the spikes of every spike
train:

{𝐶(𝑡𝑘)} =
⋃

𝑛
{𝐶 (𝑛(𝑘))

𝑖(𝑘) }, (4)

where we map the spike train indices 𝑛 and the spike indices 𝑖 into a
global spike index 𝑘 denoted by the mapping 𝑖(𝑘) and 𝑛(𝑘).

With 𝑀 =
∑

𝑛 𝑀𝑛 denoting the total number of spikes in the pooled
spike train, the average of this profile

𝐶 =

{

1
𝑀

∑𝑀
𝑘=1 𝐶(𝑡𝑘) if 𝑀 > 0

(5)

1 otherwise
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yields SPIKE-Synchronization, the overall fraction of coincidences. It
reaches one if and only if each spike in every spike train has one
matching spike in all the other spike trains (or if there are no spikes at
all), and it attains the value zero if and only if there are no coincidences
in any of the spike trains.

For SPIKE-synchronization the only information used is binary:
match or no match. Here, for the purpose of latency correction, we go
one crucial step further and calculate for each pair of matched spikes
the difference between the respective spike times. To do so, for each
matched spike in spike train 𝑛 (all spikes for which 𝐶 (𝑛,𝑚)

𝑖 = 1, cf.
Eq. (2)) we first identify the matching spike in spike train 𝑚 as

𝑗′ = argmin
𝑗
(|𝑡(𝑛)𝑖 − 𝑡(𝑚)𝑗 |) (6)

and then calculate their distance as

𝛿(𝑛,𝑚)𝑖 = |𝑡(𝑛)𝑖 − 𝑡(𝑚)𝑗′ |. (7)

Finally, we obtain the average spike time differences for this spike train
pair

𝛿(𝑛,𝑚) = 1
∑

𝑖 𝐶
(𝑛,𝑚)
𝑖

∑

𝑖
𝐶 (𝑛,𝑚)
𝑖 𝛿(𝑛,𝑚)𝑖 (8)

hich serves as our best estimate of the latency between these two
pike trains. Repeating this procedure for all pairs of spike trains we
btain the symmetric spike time difference matrix 𝛥. The aim of our
ultivariate latency correction algorithm is to minimize the mean value

f this matrix (or since the matrix is symmetric, the mean value of the
pper right tridiagonal part of the matrix 𝛥<, i.e., all values for which
< 𝑚).

In Fig. 1 on the right we show the spike time difference matrix
or a perfect synfire chain, before and after the latency correction. In
he initial synfire chain, the further apart two spike trains the larger
heir spike time differences. Accordingly, the values in the spike time
ifference matrix increase with the distance from the diagonal (which
y definition is always zero). In this case the latency correction is very
traightforward: a simple shift correction using either the values from
he first row (with the first spike train as reference) or the values
rom the first upper diagonal (the difference between neighboring spike
rains) does the trick. In this particular example the shift not only sets
he matrix elements that were used in the calculation to zero but also
ll the other elements of the matrix, as can be seen on the lower right
f Fig. 1. Whenever this is the case, the problem is solved and we stop
mmediately.

However, datasets in real life are not as clean and we encounter
disturbances’ such as incomplete global events, jitter, and background
oise. Such a more realistic example is shown in Fig. 2. Going further,
atasets can contain different duration of global events and different
ntervals between subsequent spikes (non-monotonous propagation),
ntil in the end we arrive at spike trains sets without any clear prop-
gation structure. For the perfect synfire chain of Fig. 1 it is enough
o consider 𝑁 − 1 entries of the matrix and ignore the others, but
nder more realistic conditions the solution obtained this way becomes
uboptimal and a more general and sophisticated approach is needed.

For this we propose simulated annealing (Dowsland and Thompson,
012), an heuristic approach that uses an iterative directed random
alk to find the optimum (here minimum) of a cost function within

he vast search space.
Starting from the initial cost value before the latency correction

start cost), all iterations which decrease the cost function are accepted
hile the likelihood of accepting iterations which increase the cost

unction is getting lower and lower according to a slow cooling scheme
hich ensures a certain degree of convergence. However, since this
robability remains always positive, simulated annealing, in contrast
o a steepest descent (or ‘greedy’) algorithm, has the ability to recover
rom local (but non-global) minima. Iterations last until the cost no
onger changes or until a predefined end temperature is reached. As
4

nd cost after the latency correction we use the minimum cost obtained
over the course of the simulated annealing.

In multivariate latency correction the search space is composed
of all possible shifts of the spike trains relative to each other and in
principle this space is infinitely large. The cost function to be minimized
is the average value of the upper right tridiagonal part of the spike
time difference matrix (which thus takes into account all elements of
the matrix):

𝑐 = ⟨𝛥<⟩. (9)

Within each iteration a randomly selected spike train is shifted by
a randomly selected time interval. As a special trick, to facilitate
convergence the shift values are drawn from a Gaussian distribution
that gets narrower the closer we get to the optimal solution: at each
iteration its standard deviation is set to the current cost value. The
typical course of the cost function during the simulated annealing is
shown for the more realistic example of Fig. 2.

3.2. SPIKE-order and the synfire indicator

In this Section we introduce the concepts and the quantities needed
to later define a quantitative criterion for the suitability of datasets for
our multivariate latency correction algorithm.

SPIKE-Synchronization is invariant to which of the two spikes
within a coincidence pair is leading and which is following. To take
the temporal order of the spikes into account we developed the SPIKE-
Order approach (Kreuz et al., 2017) which allows to sort the spike
trains from leader to follower and to evaluate the consistency of the
preferred order via the Synfire Indicator.

Following Kreuz et al. (2017), we first define the bivariate anti-
symmetric SPIKE-Order indicator

𝐷(𝑛,𝑚)
𝑖 = 𝐶 (𝑛,𝑚)

𝑖 ⋅ sign(𝑡(𝑚)𝑗′ − 𝑡(𝑛)𝑖 )
(𝑚,𝑛)
𝑗′ = 𝐶 (𝑚,𝑛)

𝑗′ ⋅ sign(𝑡(𝑛)𝑖 − 𝑡(𝑚)𝑗′ ) = −𝐷(𝑛,𝑚)
𝑖 , (10)

hich assigns to each spike 𝑖 either a 1 or a −1 depending on whether
he respective spike is leading or following the coincident spike 𝑗′ in
he other spike train (cf. Eq. (6)).

SPIKE-Order distinguishes leading and following spikes, and is thus
sed to colorcode the individual spikes on a leader-to-follower scale
see, e.g., the rasterplots in Fig. 1). It can also be employed to sort the
pike trains by means of the cumulative and anti-symmetric SPIKE-Order
atrix
(𝑛,𝑚) =

∑

𝑖
𝐷(𝑛,𝑚)

𝑖 (11)

hich quantifies the temporal relationship between spike trains 𝑛 and
. If 𝐷(𝑛,𝑚) > 0 spike train 𝑛 is leading 𝑚, while 𝐷(𝑛,𝑚) < 0 means
is the leading spike train. For a spike train order in line with the

ynfire property (i.e., exhibiting consistent repetitions of the same
lobal propagation pattern), we thus expect 𝐷(𝑛,𝑚) > 0 for 𝑛 < 𝑚.
herefore, the overall SPIKE-Order can be constructed as

< =
∑

𝑛<𝑚
𝐷(𝑛,𝑚), (12)

.e. the sum over the upper right tridiagonal part of the matrix 𝐷(𝑛,𝑚).
Finally, normalizing by the total number of possible coincidences

ields the Synfire Indicator:

=
2𝐷<

(𝑁 − 1)𝑀
. (13)

This measure quantifies to what degree coinciding spike pairs with
correct order prevail over coinciding spike pairs with incorrect order,
or, in other words, to what extent the spike trains in their current
order resemble a consistent synfire pattern. Accordingly, maximizing
the Synfire Indicator 𝐹 as a function of the spike train order 𝜑(𝑛) finds
𝜑
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Fig. 2. Similar to Fig. 1 but this time we show a more realistic dataset superimposed with some unreliability, jitter, and background noise. Clearly the latency corrected spike
trains in rasterplot B exhibit a much larger degree of synchrony than the ones in rasterplot A. Notice that all three of the aforementioned sources of noise are still present after
the correction. On the right, the values of the spike time difference matrix decrease considerably. In subplot C we also display the cost function over the course of the simulated
annealing. It consists of the usual two parts, a short initial increase from the start cost (marked by a black circle) and a decrease that slowly convergences towards the end cost
(defined as the minimum value of the cost function and here marked by a blue circle).
Fig. 3. Simulated data with varying mixing parameter 𝑥: From a perfect synfire chain (subplot A, 𝑥 = 0) via the halfway case (subplot B, 𝑥 = 0.5) to a pure Poisson process
(subplot C, 𝑥 = 1). For each example, we state the values of the SPIKE-synchronization 𝐶 and the Synfire Indicator 𝐹 . Note how the spike time difference matrices get more and
more irregular. While the trend underlying the perfect regularity from A (monotonous increase as one moves away from the diagonal) is still perceptible in B, in C there is no
apparent order anymore.
the sorting of the spike trains from leader to follower such that the
sorted set 𝜑𝑠 comes as close as possible to a perfect synfire pattern:

𝜑 ∶ 𝐹 = max{𝐹 } = 𝐹 . (14)
5

𝑠 𝜑𝑠 𝜑 𝜑 𝑠
Whereas the Synfire Indicator 𝐹𝜑 for any spike train order 𝜑 is nor-
malized between −1 and 1, the optimized Synfire Indicator 𝐹𝑠 can only
attain values between 0 and 1. But from Eq. (10) if follows that since the
order is only evaluated among those spikes that match, the actual upper
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bound for any given dataset is the value of SPIKE-synchronization 𝐶
(Eq. (5)). A perfect synfire pattern results in 𝐹𝑠 = 1, while sufficiently
ong Poisson spike trains without any synfire structure yield 𝐹𝑠 ≳ 0.

In this article, for both the simulated and the real datasets before
the multivariate latency correction we first sort the spike trains from
leader to follower. The optimization procedure that we use to find the
best spike train order is again based on simulated annealing (details can
be found in Kreuz et al., 2017). While this sorting is not necessary for
the correction itself, it renders the resulting rasterplots more intuitive
and easier to read. For simplicity we refer to the Synfire Indicator of
the sorted spike trains as 𝐹 .

As we will show in Section 4.3, the Synfire Indicator 𝐹 serves as
main criterion for the suitability of our algorithm that can be evaluated
for a given dataset before the multivariate latency correction is actually
applied. On the other hand, once we have performed the correction
we would also like to quantify how successful it actually has been. As
measure of its performance we use the relative cost improvement (in
percent) defined as

𝐼 =
𝑐𝑠𝑡𝑎𝑟𝑡 − 𝑐𝑒𝑛𝑑

𝑐𝑠𝑡𝑎𝑟𝑡
∗ 100, (15)

the normalized change in cost (i.e. the mean spike time difference,
see Eq. (9)) between before (𝑐𝑠𝑡𝑎𝑟𝑡) and after (𝑐𝑒𝑛𝑑) the correction. For
comparison purposes we also define the shift cost 𝑐𝑠ℎ𝑖𝑓 𝑡 as the cost that
is obtained after shifting the spike trains according to the delays in
the first row of the spike time difference matrix (without performing
simulated annealing and while ignoring all other entries of that matrix).
As we have seen in Fig. 1, for a perfect synfire chain this value is zero.

4. Results

First, in Section 4.1 we investigate the performance of our new
method for multivariate latency correction in a controlled setting using
simulated data that cover the whole range from a perfect synfire chain
to pure Poisson spike trains. Then we apply the algorithm to neurophys-
iological datasets, cortical propagation patterns recorded via wide-field
calcium imaging from mice before and after stroke (Section 4.2). Fi-
nally, in Section 4.3 we perform simulations of these experimental data
which allow us to extend the parameter range and derive a criterion
which determines whether a given dataset is a suitable candidate for
our algorithm.

4.1. Simulated data

Before applying our method to the experimental datasets described
in Section 2 we test it on controlled data with known ground truth. To
this aim, we introduce a mixing parameter 𝑥, that is used to interpolate
between the two extremes of perfect synfire chain (𝑥 = 0) and pure
Poisson spike trains (𝑥 = 1). This mixing parameter is increased from 0
to 1 in steps of 0.05 and for every one of these 21 values we generate
𝑁 = 10 spike trains. For each of these spike trains we select a fraction
𝑥 of spikes from a perfect synfire chain (with 𝑀𝑛 = 9 spikes) and a
fraction 1 − 𝑥 from a pure Poisson spike train (with an expectation
value of ⟨𝑀𝑛⟩ = 9 spikes). This way each spike train becomes a
superposition of a synfire chain and a Poisson spike train with the
relative contribution determined by the mixing parameter. In Fig. 3
we show the two extremes and in between the halfway case. For each
example we also report the values of the SPIKE-synchronization 𝐶 (cf.
Section 3.1) and the Synfire Indicator 𝐹 (Section 3.2).

Fig. 4A reports 𝐶 and 𝐹 in dependence of the mixing parameter.
Both values decrease with increasing mixing parameter. For the perfect
synfire chain (𝑥 = 0) they start with their maximum value of one,
whereas for pure Poisson spike trains (𝑥 = 1) they reach their lowest
value which due to remaining random coincidences and persistent ran-
dom order, respectively, gets quite close to but does not reach zero. As
already mentioned in Section 3.2, by definition SPIKE-synchronization
𝐶 is an upper limit for the Synfire Indicator 𝐹 .
6

Fig. 4. Simulated data: SPIKE-Synchronization 𝐶 and Synfire Indicator 𝐹 (subplot A),
tart, shift and end costs (subplot B), as well as relative cost improvement in percent
subplot C) versus the mixing parameter 𝑥. Shaded areas indicate the standard error of
he mean (which in some cases is hardly visible). In A both SPIKE-Synchronization and
he Synfire Indicator decrease rather monotonously with 𝑥. At the same time, 𝐶 acts as
pper bound for 𝐹 . In B around a mixing value of 𝑥 = 0.5 the end cost is not that much
ower than the start cost anymore, and accordingly in C the cost improvement starts
o level off towards a rather low value below 10%. All graphs show averages over 100
ndependent realizations for each mixing value. While the main synfire chain always
emains the same (like the one shown in Fig. 3A), for 𝑥 > 0 the stochastic parts vary
or each realization: different synfire spikes are omitted and different Poisson spikes
re added.

In Fig. 4B we display the behavior of the three relevant cost values.
he start cost hovers around some intermediate value and seems to be
uite independent of 𝑥. In the case of a perfect synfire chain (𝑥 = 0)
he end cost is actually the shift cost since we refrain from running
he simulated annealing because we have already reached the optimum
alue of zero. However, for all positive values of the mixing parameter
he end cost obtained via simulated annealing outperforms the shift
ost, as a tendency the more so the higher 𝑥. This shows that while the
hift cost is very fast to calculate, in general it gives only suboptimal
esults. Roughly starting from the halfway point (𝑥 = 0.5) it is actually
ven worse than the start cost.

The end cost also consistently improves on the start cost and this
s quantified more directly in Fig. 4C where we show the relative cost
mprovement 𝐼 (Eq. (15)) in dependence of the mixing parameter. The
mprovement is highest for the synfire chain where the correction yields
he perfect result and then it slowly drops off until somewhere between
= 0.5 and 𝑥 = 0.7 it reaches a plateau where the improvement is

till positive but rather low. This cutoff range of the mixing parameter
orresponds to SPIKE-Synchronization values of 𝐶 = 0.28...0.35 and
ynfire Indicator values of 𝐹 = 0.04...0.14 (see Fig. 4A).
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Fig. 5. Example of latency correction in an experimental dataset: The spikes in the rasterplot are the upwards threshold crossings of the 252 calcium traces recorded in vivo
during motor training from a healthy control mouse (mouse 29, day 9). The plot follows the structure from Fig. 2. The order in different global events varies but typically there
is a rather high level of consistency as can be seen by the rainbow-like color patterns of the events that mostly go from red (leading spikes) to blue (following spikes). On this
dataset (SPIKE-synchronization 𝐶 = 0.867, Synfire Indicator 𝐹 = 0.366) the effect of the latency correction can be seen most clearly in the outer corners of the spike time difference
matrix, the intervals between the first leaders and the last followers get reduced considerably. Overall, the resulting cost improvement is 𝐼 = 10.98%.
4.2. Experimental data

After validating our algorithm on controlled data with known
ground truth, we now show its effectiveness in a real life application
to neurophysiological datasets. For this we choose spatiotemporal
propagation activity in the cortex of mice observed with in vivo calcium
imaging before and after the induction of a stroke (Allegra Mascaro
et al., 2019; Cecchini et al., 2021) (see Section 2).

In our previous work (Cecchini et al., 2021) we have analyzed
these datasets and applied three novel indicators (angle, duration and
smoothness) based on asymmetric measures of directionality to the
observed global activation patterns in order to track damage and func-
tional recovery during various rehabilitation paradigms. Here we would
like to follow a complementary approach and look at the similarity
of the activity during the course of the propagation. The aim is to
investigate whether this new type of analysis can help us to distinguish
the three different groups of mice, Control, Robot and Combined. But
first we have to correct for the systematic latency caused by the finite
propagation speed.

Fig. 5A shows a typical dataset (this one from a healthy control
mouse) with a complete set of 12 × 21 = 252 spike trains. This particular
rasterplot exhibits about 25 rather complete global events plus a few
incomplete events and a limited amount of background noise. Since
spike trains are already sorted, the global events mostly observe the
rainbow pattern from red (leading spikes) to blue (following spikes).
Typically, the matched spikes from the very first and the very last
spike trains are furthest apart and, accordingly, the highest values in
the spike time difference matrix are found in the corners away from
the diagonal. On the other hand, the data are quite far from a perfect
synfire chain. Apart from the incompleteness of some of the global
events and the background noise there is also quite a bit of variability
in the order within the events. In fact, because of this the value of
SPIKE-synchronization for this example is 𝐶 = 0.867 while the Synfire
7

Indicator is only 𝐹 = 0.366, both clearly below their maximum value
of 1.

After we run our multivariate latency correction it is in particular
the distances between the first leaders and the last followers (the matrix
elements furthest away from the diagonal) that are greatly reduced
(Fig. 5B). The overall cost value falls from 4.21 to 3.74, a drop that
corresponds to a relative cost improvement of 11%. It takes slightly
more than 750.000 iterations to reach this improvement (Fig. 5C).

Next, we look at the statistics over all 260 datasets. In Figs. 6A
and 6B we plot the end cost 𝑐𝑒𝑛𝑑 (i.e. the average value of the spike
time difference matrix after the multivariate latency correction) versus
SPIKE-Synchronization 𝐶 and the Synfire Indicator 𝐹 , respectively.
Comparing the different groups, the end cost is lowest (similarity
is highest) for the Combined group followed by the Robot and the
Control group, but there is quite some overlap between the different
distributions. For all three groups separately, and combined, there is
a tendency that the cost is lower for higher values of both SPIKE-
Synchronization and the Synfire Indicator (overall, the least square fits
show linear correlations of 𝑅 = −0.594 for 𝐶 and 𝑅 = −0.501 for 𝐹 ).

Fig. 6C marks the transition from the description of the data to
the characterization of the performance of our algorithm. The end
cost quantifies the corrected similarity of the datasets and is thus
the main value that we are interested in from a data point of view.
On the other hand, the relative cost improvement characterizes the
relative effect of the method in correcting the latency for a given set of
data. Fig. 6C relates these two quantities and indicates that they are
slightly anticorrelated with a correlation coefficient of 𝑅 = −0.307. This
anticorrelation can be expected from the definition of the relative cost
improvement in Eq. (15) where the end cost enters as a subtrahend.
The fact that the absolute correlation value is not higher is due to the
influence of the start cost which then determines the relative change.

In order to analyze the performance of the algorithm in more detail,
in Fig. 7A we compare the cost after the latency correction versus the
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Fig. 6. Statistics for experimental data: End cost versus SPIKE-Synchronization (subplot A), the Synfire Indicator (subplot B) and the relative cost improvement (subplot C) for all
260 datasets. Colors indicate groups, symbols distinguish mice, and the larger the marker, the later the day of the recording. For each group we also added the center of mass
indicated by a larger marker with a black center. The thick black lines represent a linear fit for all datasets together, independent of the group. The short black lines indicate
the values for the example dataset shown in Fig. 5. The end cost is anticorrelated with both SPIKE-Synchronization and the Synfire Indicator as well as with the relative cost
improvement.
cost before the latency correction, again for all 260 datasets. For a
correction that would just result in a percentual offset, all values would
lie on a diagonal parallel to the main diagonal. As can be seen from the
many off-diagonal values and the occasional larger outlier this is clearly
not the case. We also find that the points being furthest away from the
8

diagonal are concentrated in an intermediate range suggesting that the
algorithm works best in cases with intermediate synchrony.

Figs. 7B and 7C display the relative cost improvement in depen-
dence of SPIKE-Synchronization and the Synfire Indicator, respectively.
Here it is much more difficult to separate the three different groups
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Fig. 7. Performance of algorithm on experimental data: End cost versus start cost (subplot A) as well as relative cost improvement versus SPIKE-Synchronization (subplot B) and
versus the Synfire Indicator (subplot C) for all 260 datasets. Layout as in Fig. 6. In A the diagonal (corresponding to unchanged costs) is marked by a dashed black line. The effect
of the latency correction on the costs is most pronounced in the middle range. The relative cost improvement is much less correlated with SPIKE-Synchronization (B) than with
the Synfire Indicator (C).
than in Fig. 6 which demonstrates that the algorithm performs for all
three groups equally well.

When we look at the dependence of the relative cost improvement
on the SPIKE-synchronization 𝐶 we find a rather modest linear corre-
lation of 𝑅 = 0.319. However, the most pronounced linear correlation
over all the datasets is obtained for the Synfire Indicator: the larger
𝐹 the bigger the relative cost improvement and here we obtain an
9

astonishing 𝑅 = 0.822. Thus, the primary influence on the perfor-
mance of the algorithm is the Synfire Indicator, while the role of
SPIKE-synchronization merits further investigation.

4.3. Simulations of experimental data

As a last step, we simulate the experimental data analyzed in
the previous Section 4.2. With this we have two major objectives
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Fig. 8. Simulations of experimental data: 3D-plots show the dependence of the Synfire Indicator 𝐹 (subplot A), SPIKE-Synchronization 𝐶 (subplot B) and the Cost improvement 𝐼
(subplot C) on the event completeness 𝑃 and the shuffle parameter 𝑆. Colored lines in A depict the crossings of the Synfire Indicator plane with horizontal planes corresponding
to constant 𝐹 -values, while in B and C they mark the values of 𝐶 and 𝐼 , respectively, obtained for these parameter combinations of 𝑃 and 𝑆. In all three plots a thick black line
marks the values obtained for SPIKE-synchronization 𝐶 equal to one. Subplot D depicts the values of event completeness and shuffle that yield the constant values of 𝐹 in subplot
A and the maximum value of 𝐶 in subplot B. Finally, we show the cost improvement 𝐼 versus SPIKE-synchronization 𝐶 for different values of 𝐹 (subplot E) and versus the Synfire
Indicator 𝐹 for 𝐶 = 1 (subplot F). High values of the SPIKE-synchronization and, to an even larger extent, the Synfire Indicator are crucial for an impactful latency correction.
in mind: (i) to extend the parameter range covered by the exper-
imental data and (ii) to control the simulations such that we can
isolate the influence of the two most important characterizing quanti-
ties SPIKE-synchronization and Synfire Indicator in a more systematic
way, something which cannot be done with the random and arbitrary
distributions of the real data.

As we have seen in Fig. 5, a typical dataset consists of a number of
rather complete global events (with a more or less consistent order),
a few quite incomplete events and some noisy background spikes.
We simulate all of these in a very controlled manner by setting the
following parameters: the number of spike trains 𝑁 , the number of
global events 𝐸, the average relative completeness of these events
𝑃 and the relative amount of background spikes 𝐵 (in units of the
number of spikes in the events if all of these events were complete).
Note that both 𝑃 and 𝐵 are related to the mixing parameter 𝑥 from
Section 4.1 (𝑃 = 1 − 𝑥 and 𝐵 = 𝑥) but here these two variables
can be chosen independently and we are able to investigate parameter
10
values beyond the ones covered in Section 4.1 (for example 𝐵 > 1)
or beyond the values found in our experimental data of Section 4.2.
Our last parameter, the shuffle 𝑆, controls the consistency of the spike
order within the global events. It denotes the relative fraction of spikes
in each event that are shuffled. For 𝑆 = 0 nothing changes and a synfire
chain remains a synfire chain, for 𝑆 = 0.5 a randomly selected half of
the spikes of each event are shuffled, while for 𝑆 = 1 the shuffle is
performed among all the spike trains present in each event and any
initial consistency in order is completely destroyed.

With these parameters we can look more directly at the influence
of SPIKE-synchronization 𝐶 (see Section 3.1) and the Synfire Indicator
𝐹 (Section 3.2) on the cost improvement and we do so in a way that
the results on the one quantity are not disturbed or mediated by the
other. The problem we have to overcome is that, while both the average
completeness of events 𝑃 and the relative amount of background spikes
𝐵 are parameters that can be controlled easily, neither 𝐶 nor 𝐹 can
be set directly. Fortunately, we can control the SPIKE-synchronization
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Fig. 9. Four arrangements of two spike trains with just two spikes each. In all four cases the upper plot shows two pairs of matching spikes (𝐶 = 1). Subplot A: Perfect synfire
chain (𝐹 = 1). Subplot B: The two pairs exhibit opposite orders (𝐹 = 0). Subplot C: Consistent order, but variation in propagation velocity leading to different distances between
the matched spikes. Subplot D: Opposite order and different propagation velocities. In the lower plots we show the cost value versus a potential ‘shift’ of the second spike train
with respect to the first. The start cost is the value at shift zero (marked by a green x), while the optimized end cost is the minimum value of this ‘cost function’ (marked in
red). While the value of the Synfire Indicator has a decisive influence on the success of the latency correction, the change in propagation velocity results in an offset in cost that
persists and can thus be measured even after the latency correction.
𝐶 indirectly via 𝑃 and 𝐵 (starting from a perfect synfire chain both
decreasing 𝑃 and increasing 𝐵 lead to smaller 𝐶). For simplicity, we
here set 𝐵 to zero (no background noise), which maximizes the range
of 𝐶 and 𝐹 values that we can cover. But we did confirm (results not
shown) that for higher values of 𝐵 (including values larger than one)
the results remain the same, the only difference is that for larger 𝐵 we
are less able to reach the higher ranges of 𝐶 and 𝐹 .

So our two controlling parameters are the event completeness 𝑃
and the shuffle 𝑆 and on the left hand side of Fig. 8 we display three
3D-plots that show the dependence on these parameters of the Synfire
Indicator 𝐹 , SPIKE-synchronization 𝐶, and the cost improvement 𝐼 ,
respectively (again all plots are averages over 100 realizations). First,
we note that the event completeness has an effect on both the Synfire
Indicator and SPIKE-synchronization (the influence on 𝐹 is mediated
via its upper limit 𝐶). The shuffle controls only the Synfire Indicator,
whereas, as expected, SPIKE-synchronization is invariant to 𝑆. So a
maximum value of 𝑃 leads immediately to a maximum of 𝐶, while 𝐹
is maximal if and only if events are both complete and consistently
ordered (no shuffle). The same holds true for the cost improvement
but while the decreases for 𝐹 and 𝐶 are (seemingly) linear, for 𝐼 the
dependency on both 𝑃 and 𝑆 is non-linear.

Next, we use these 3D-plots to isolate the dependence of the cost
improvement on SPIKE-synchronization and on the Synfire indicator.
For 𝐶 we avoid mediation through 𝐹 by keeping 𝐹 constant. Thus we
first identify in Fig. 8A the crossing of the ‘Synfire Indicator vs. event
completeness and shuffle’ plane with 11 different horizontal planes
corresponding to constant 𝐹 -values from 0 to 1 (in steps of 0.1). The
projections onto the event completeness 𝑃 - shuffle 𝑆 - plane are shown
in Fig. 8D and with these parameter combinations we can look up the
corresponding values of SPIKE-synchronization in Fig. 8B and of the
cost improvement in Fig. 8C. The resulting 𝐼 versus 𝐶 curves are shown
in Fig. 8E. We find that for low values of 𝐹 the cost improvement is very
small and there is hardly any dependence on SPIKE-synchronization.
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In this case the datasets are so noisy that not much can be gained
by applying the latency correction algorithm. On the other hand, for
high values of the Synfire Indicator the cost improvement increases
considerably and so does the dependence on SPIKE-synchronization. It
turns out that for constant 𝐹 the cost improvement actually decreases
with 𝐶, a result which stands markedly in contrast to what we found
in Section 4.2. There 𝐼 increased with 𝐶 which, as we learn here, was
largely mediated by 𝐹 . In fact, once 𝐹 is eliminated as an influencing
factor, the dependency reverses. This new result can be explained as
follows: For larger event completeness (and thus larger 𝐶) more shuffle
is needed to keep 𝐹 constant (see Fig. 8D). The resulting datasets are
more noisy and as before this noise keeps the cost improvement down.
Reducing the Synfire Indicator via shuffle has a stronger effect on 𝐼
than reducing 𝐹 via the event completeness.

At last we turn our attention to the dependence on the Synfire
Indicator 𝐹 . This analysis is more straightforward, we can just use the
event completeness 𝑃 to fix 𝐶 (according to Fig. 8B) and then vary
the shuffle parameter 𝑆 to cover the whole range of 𝐹 . We restrict
ourselves to values of 𝑃 = 1 (thus SPIKE synchronization 𝐶 = 1) and
look up the values of 𝐹 in Fig. 8A and of 𝐼 in Fig. 8C. The result
is displayed in Fig. 8F which shows a very pronounced increase of
the cost improvement with the Synfire Indicator. Lower values of 𝐶
(corresponding to parallel 𝑃 -planes in Figs. 8A-C) yield similar results,
just with a restricted 𝐹 -range which also means that higher values of 𝐼
are no longer reached. The main result is that in all cases a high Synfire
Indicator is essential for the proper functioning of the algorithm.

In our final figure we illustrate this importance of 𝐹 with minimal
examples consisting of just two spike trains with two spikes each. As
a representative of the noisy disturbances that are maintained by the
latency correction, we also include the effect of different event lengths
in our consideration. The upper plots of Fig. 9 show four possible
arrangements of the four spikes. All of these arrangements consist of
two perfectly matched spike pairs (𝐶 = 1), the differences lie in the
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spike order and in the propagation velocity. The order in the two spike
pairs is either consistent (𝐹 = 1, left subplots A and C) or inconsistent
(𝐹 = 0, subplots B and D on the right), while the velocity is either
constant (same interval within the two spike pairs, top subplots A and
B) or varies (the second pair is more apart, subplots C and D at the
bottom).

When we look at the four cost functions in the lower plots of Fig. 9
we see the main difference between the two kind of effects. Comparing
left and right subplots we find that the inconsistency in order which is
reflected in the value 𝐹 = 0 for the synfire indicator results in a collapse
of the cost improvement 𝐼 . There is no systematic latency to correct and
o the end cost equals the start cost. On the other hand, the different
elocities in the two bottom arrangements lead to an offset in cost (in
his case 0.05, compare A with B and C with D) that is not affected by
he latency correction, rather it is present before and after.

Taken together, these different arrangements illustrate the essential
ifference between the systematic delays that we correct with our
lgorithm and other non-systematic disturbances which are exactly the
ind of deviations from synchrony that we wish to quantify once the
orrection has been achieved.

. Conclusions

In the quantification of synchrony, latency is a systematic dis-
urbance that first needs to be eliminated. While there have been
ome rate-based approaches for data with sufficiently large firing
ates (Nawrot et al., 2003; Schneider and Nikolić, 2006), the problem
f latency in sparse neuronal spike trains where the timing of individual
pikes matters remained elusive. In the present study we address this
ssue and propose a latency correction algorithm that corrects any sys-
ematic delays but to maintains all other kinds of noisy disturbances in
he data. It consists of two basic steps, spike matching and minimization
f the distances between the matched spikes using simulated annealing.

The algorithm receives as input a set of spike trains (as typically
hown in a rasterplot) and delivers three main outputs: the end cost,
he shifts performed in order to get there, and the relative cost im-
rovement. The end cost (the minimal cost over the course of the
imulated annealing) quantifies how well the spike trains in the dataset
nder investigation can be aligned. The shifts (marked by arrows in
igs. 1 and 2) provide information about the latencies that were present
nitially. Finally, the relative cost improvement is a measure of the
ffect the algorithm has had in correcting the latency for this specific
ataset.

We validate the algorithm on controlled data simulated from scratch
Section 4.1), show its effectiveness in an experimental real life setting
global propagation patterns in the cortex of mice recorded via wide-
ield calcium imaging before and after stroke induction, Section 4.2)
nd use simulations of these experimental data (Section 4.3) to identify
he best conditions for its applicability to experimental datasets. In the
irst part we show that for mixings of a perfect synfire chain with Pois-
on spike trains decreasing the SPIKE-synchronization 𝐶 and the Synfire
ndicator 𝐹 makes the cost improvement level off. On the real data
e observe that the cost improvement is strongly positively correlated
ith the Synfire Indicator (and with SPIKE-synchronization as well, but
uch less). Finally, in the more systematic simulations of these real
ata we find again a pronounced increase of the cost improvement
ith the Synfire Indicator. On the other hand, for constant Synfire

ndicators the cost improvement actually slightly decreases with SPIKE-
ynchronization (because more shuffle is needed to keep the Synfire
ndicator constant and this noise limits the cost improvement).

Overall, we have accumulated evidence that the algorithm functions
est for sparse data with well defined global events (as manifested
y high values of 𝐶) and a consistent order within these events (cor-
esponding to elevated values of 𝐹 ). But in particular in Section 4.3
e have seen that these two quantities are not equally important.
learly the one fundamental criterion for a meaningful application of
12
our latency correction algorithm is a high value of the Synfire Indicator 𝐹 .
SPIKE-synchronization 𝐶 is not decisive in itself, but it is still relevant
as a mediator: Without a reasonably high SPIKE-Synchronization there
are not enough coincident spike pairs to estimate the latency within
the spike trains. In addition, as we have mentioned repeatedly, SPIKE-
Synchronization acts as an upper limit to the Synfire Indicator. Thus,
a large value of SPIKE-Synchronization is a necessary condition, but as
the minimum examples on the right hand side of Fig. 9 demonstrate, it
is not a sufficient condition. If the spikes do not exhibit a high degree
of consistency in order (a large 𝐹 ), the algorithm does not have enough
systematic latency to work with. On the other hand, a high value
of Synfire Indicator guarantees that SPIKE-Synchronization is large as
well.

Nevertheless, it is important to stress that the actual value of the
cost improvement also depends crucially on cost offset effects caused
by noisy disturbances. What the algorithm does is correct constant
systematic delays, any other disturbances are left unaffected. Thus the
example for which the algorithm works best is a perfect synfire chain
(as shown in Fig. 3A both 𝐶 and 𝐹 attain their maximum value of one).
This is the only dataset that exhibits constant systematic delays but not
any of the other potential sources of noise such as unreliability (missing
spikes in the global events), jitter (noisy spike shifts), or background
noise (extra spikes). These, together with other disturbances like dif-
ferent durations of global events (variation in propagation velocity) or
changing intervals between subsequent spikes within the global events
(non-monotonic propagation), make the correction more difficult and
accordingly decrease the cost improvement. However, these are also
exactly the deviations from synchrony in the dataset that we would
like to quantify in the first place. We can easily do so by means
of the cost offset that still remains even after the correction of the
systematic delays has been performed. For an illustration of this point
compare subplots A and C in Fig. 9. These two examples both have
maximum SPIKE-synchronization and Synfire Indicator, but the change
in propagation speed in subplot C causes a cost offset that persists after
the correction. For the algorithm this means a reduction of the cost
improvement, but for our synchrony analysis it is just an indication
of the noisiness in the dataset (and this is independent of whether a
latency correction has been performed or not).

At the other extreme there are clearly some datasets where the
algorithm does not work, in the sense that no significant improvement
can be achieved. The most obvious case are datasets where there is
no significant systematic latency at all, which means there is actually
nothing to correct. One example is when the dataset is already perfectly
synchronous. In this case 𝐶 is one and 𝐹 is zero. In most other such
cases the data are rather disordered with very low values for both 𝐶
and 𝐹 . A prominent example, Poisson spike trains, is shown in Fig. 3C.

Another feature in the data that would create problems for the algo-
rithm are global events that overlap and are thus difficult to entangle.
More specifically, whenever the interval between two successive events
is less than twice the propagation time within an event, according to
the coincidence criterion of Eq. (1) there will be matchings between
spikes from different events. Such mismatches would be indicated by
a decrease in the value of SPIKE-synchronization 𝐶. Fortunately for
us, many repetitive propagation phenomena in neuroscience as well
in other fields (the algorithm is universal and could be applied to
any type of discrete data) exhibit ratios of characteristic time scales
that fulfill the coincidence criterion. For example, the duration of an
epileptic seizure is usually much shorter than the interval between
two successive seizures. Similarly, in meteorological data (an example
outside of neuroscience) the time it takes a storm front to cross a
specific region is typically much smaller than the time to the next
storm.

A final rather general caveat that can be relevant under certain
circumstances is that the latency we are referring to in this study
is the latency from the point of view of the experimenter. However,

sometimes (for example in case the dataset under consideration is
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derived from a neural network) it might be worth considering that
every node in the network will have a different perspective of the same
network activity which will depend on the array of propagation delays
from each neuron to this ‘‘observing" neuron.

We can identify three different areas of future directions. First,
for the algorithm itself we envisage a way to get over some of these
limits mentioned above, in particular the entanglement of overlapping
successive events. The basic idea is to focus on the non-overlapping
parts (the neighboring spike trains) and to restrict the definition of
the cost function on the corresponding diagonals closest to the main
diagonal thus disregarding the matrix elements disturbed by the over-
lap. After this modified latency correction has been carried out the
correct matching of spikes can be performed thereby disentangling
the overlapping events. This avenue has some complications as well
as wider implications and will therefore be pursued in a forthcoming
study.

Second, concerning the underlying aim of estimating synchrony, in-
stead of using just the cost function itself (the average of the spike time
difference matrix) as a measure of spike train synchrony, one could
evaluate before but in particular after the correction more sophisticated
and comprehensive measures of spike train similarity such as the time-
scale independent ISI- (Kreuz et al., 2007) or SPIKE-distances (Kreuz
et al., 2013) or the time-scale dependent Victor-Purpura (Victor and
Purpura, 1996) or van Rossum (van Rossum, 2001) distances.

Finally, the most important point regards the experimental calcium
data in mice before and after stroke that we analyzed. Together with
our previous findings on the lower duration and increased smooth-
ness (Cecchini et al., 2021), the results of Fig. 6 suggest that the
propagation of cortical activation shows a faster, more coherent and
linear pattern in the Combined group. We will follow up on these
results and evaluate the potential of both the end cost value (Fig. 6)
and the cost improvement (Fig. 7) to serve as biomarkers that are
able to uncover neural correlates not only of motor deficits caused by
stroke but also of functional recovery during the various rehabilitation
paradigms. Such insights could pave the way towards more targeted
post-stroke therapies.

The algorithm will be readily applicable for everyone since it will be
implemented in three freely available software packages called SPIKY1

Matlab graphical user interface (Kreuz et al., 2015)), PySpike2 (Python
library (Mulansky and Kreuz, 2016)) and cSPIKE3 (Matlab command
line library with MEX-files). All of these software packages contain
already the three symmetric measures of spike train synchrony, ISI-
distance (Kreuz et al., 2007, 2009), SPIKE-distance (Kreuz et al., 2011,
2013), SPIKE-synchronization (Kreuz et al., 2015) (see Satuvuori et al.,
2017 for generalized versions), the directional SPIKE-order (Kreuz
et al., 2017) as well as source codes designed to find within a larger
neuronal population the most discriminative subpopulation (Satuvuori
et al., 2018).
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