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Abstract
Purpose of Review  Autologous haematopoietic stem cell transplantation (AHSCT) is increasingly considered a treatment 
option for patients with multiple sclerosis (MS), an autoimmune demyelinating and degenerative disease of the central nerv-
ous system (CNS). AHSCT persistently suppresses inflammation and improves the disease course in large proportions of 
patients with relapsing–remitting (RR) MS. Aim of this article is to review the relevant new knowledge published during 
the last 3 years.
Recent Findings  Laboratory studies reported confirmatory and new insights into the immunological and biomarker effects 
of AHSCT. Retrospective clinical studies confirmed excellent outcomes in RRMS, showing possible superior effectiveness 
over standard therapies and suggesting a possible benefit in early secondary progressive (SP) MS with inflammatory features. 
New data on risks of infertility and secondary autoimmunity were also reported.
Summary  Further evidence on the high effectiveness and acceptable safety of AHSCT strengthens its position as a clinical 
option for aggressive RRMS. Further research is needed to better define its role in treatment-naïve and progressive forms of 
MS, ideally within randomised clinical trials (RCTs).

Keywords  Haematopoietic stem cell transplantation · Multiple sclerosis · Alemtuzumab · Reconstitution · Biomarker

Introduction 

Over the last 10 years, autologous haematopoietic stem cell 
transplantation (AHSCT) has been increasingly adopted 
for the treatment of people with aggressive forms of mul-
tiple sclerosis (MS) [1], an autoimmune demyelinating and 
degenerative disease of the central nervous system (CNS) 
that may lead to irreversible disability [2]. AHSCT involves 
the ablation of the immune system and its reconstitution, 
which appear to restore immune tolerance [3] and induce 
long-term suppression of new focal inflammation (relapses 
and new/enhancing lesions at magnetic resonance imaging 
(MRI)) in most of the treated individuals. Stabilisation, or 

even improvement of the course of MS, is often achieved 
when AHSCT is performed in early relapsing–remitting 
(RR) MS, whereas outcomes are uncertain in progressive 
forms of MS, i.e. primary progressive (PP) and secondary 
progressive (SP) MS, and are poor in advanced stages of any 
form. Based on the results of several uncontrolled studies 
and one randomised clinical trial (RCT) proving its supe-
rior effectiveness compared to selected approved disease-
modifying therapies (DMTs), AHSCT was endorsed as a 
‘clinical option’ for the treatment of RRMS refractory to 
conventional DMTs by the European and the American 
Societies for Blood and Marrow Transplantation [4, 5]. The 
use of intermediate-intensity protocols, namely either the 
lymphoablative cyclophosphamide (Cy) plus anti-thymocyte 
globulin (ATG) or the myeloablative BEAM (carmustine, 
cytarabine, etoposide and melphalan) plus ATG, is currently 
recommended in MS [4].

Several studies of AHSCT in MS have been recently pub-
lished, adding valuable information to the current knowledge 
on its mechanisms of action, effectiveness and safety. Aim 
of the present review is to highlight and discuss the main 
novelties introduced in this field over the last 3 years.
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Materials and Methods

The PubMed database was searched using the MeSH terms 
‘hematopoietic stem cell transplantation’ and ‘multiple scle-
rosis’, filtering for studies on humans published in the period 
January 1st, 2020–May 15th, 2023. After the exclusion of 
reviews, meta-analyses and manuscripts written in non-
English language, 37 studies were included (Tables 1 and 2).

Mechanism of Action and Biomarkers

Immune Reconstitution 

The pathogenesis of MS has been attributed to autoreac-
tive T cells that after becoming activated in peripheral 
lymphoid organs (e.g. lymph nodes) migrate to the CNS 
where they cause inflammation [6]. In this section, we 
update previous review articles covering immune recon-
stitution in patients with MS after HSCT [3, 7].

T cell immune reconstitution was recently investi-
gated up to month 24 after treatment in 27 MS patients 
receiving AHSCT with the BEAM-ATG regimen and 
anti-CD20 treatment before AHSCT (78%), including 
as controls healthy people (HC) and 2 untreated RRMS 
and PPMS, matched for age and sex [8]. CD4 + T cells 
recovered slowly compared to CD8 + T cells, with a 
reduction in the CD4/CD8 ratio for almost 24 months. An 
increase of CD127low CD25 + Foxp3 + regulatory T cells 
(Treg) expressing CD39 was observed from 1 to 3 months 
after AHSCT, although the absolute number of Treg was 
always decreased after AHSCT. CD4 + T cells increased 
the expression of programmed cell death protein 1 (PD1) 
and major histocompatibility complex II cell surface 
receptor (HLA)-DR, a marker associated to T cell activa-
tion, up to 24 months after AHSCT. In the CD4 + T cell 
compartment, the frequency of naïve and central memory 
(CM) cells decreased, whereas effector memory (EM) 
increased up to 24 months after AHSCT compared to base-
line. Within naïve CD4 + T cells, recent thymic emigrant 
(RTE) decreased significantly at 3 months but increased at 
12 months after AHSCT. Double positive CD4 + /CD8 + T 
cells reduced until 6 months supporting the notion that 
thymus reactivation requires months to years. Early after 
AHSCT, senescent and exhausted antigen-experienced EM 
expanded, whereas naïve, CM and terminally differentiated 
effector memory cells re-expressing CD45RA (TEMRA) 
reconstituted slowly. Similar processes were observed in 
CD8 + T cells. Adopting T cell receptor beta (TCRβ) chain 
sequencing and TCR clonotyping, expanded EM cells in 
early AHSCT were found to be derived from memory T 

cells surviving to the conditioning regimen. Those EM 
cells proliferated less than new EM CD4 + T cells and 
showed a non-proinflammatory phenotype. In line with 
previous reports, reactivity towards myelin oligodendro-
cyte glycoprotein (MOG), myelin basic protein (MBP) and 
proteolipid protein (PLP) was stable late after AHSCT, 
whereas it was increased against Epstein-Barr nuclear anti-
gen (EBNA) 1, mostly in patients with Epstein-Barr virus 
(EBV) reactivation.

Natural killer (NK) and B cells recovered faster than 
CD3 + T cells. Three flow cytometry panels were used to 
investigate NK and innate-like T cell immune reconstitu-
tion dynamics [9]. A significant increase of CD56bright NK 
cells with immunoregulatory functions was observed at 
1 month post AHSCT up to 2 years, whereas CD56dim with 
cytotoxic function increased at 1 month then declined with 
slow recovery over 2 years. Mucosal-associated invariant 
T (MAIT) cells, γδT cells and NK(-like) T cells decreased 
after AHSCT and remained depleted for at least 1 year. 
The expression of several tissue-homing receptors was 
investigated on innate-like T cells to examine the capacity 
of those cells to enter specific tissues. Lower percentages 
of innate-like T cells expressed CD161 at pre- and post-
AHSCT. CCR6 was reduced on CD8 + T cells after AHSCT. 
CD8 + CCR6 + T cells decreased for at least 2 years post 
AHSCT, while CD4 + CCR6 + T cells reduced transiently 
to recovering later. After AHSCT, a slight decrease in the 
percentage of CD56bright NK cells CD161 was observed 
at 1 year, whereas CD56dim NK cells showed a significant 
decrease in CD161 expression at 1 month. The absolute 
number of Vd2 γδ T cells decreased after AHSCT.

In another recent study, longitudinal multidimensional 
cytometry and immunoglobulin heavy chain (IgH) reper-
toire sequencing were used to investigate the B cell immune 
reconstitution in 20 MS patients receiving AHSCT with 
BEAM-ATG regimen and anti-CD20 treatment before and 1, 
3, 6 and 12 months after AHSCT and compared to HC [10•]. 
B-lymphocyte number recovered at 3 months and remained 
increased at 1 year post AHSCT. Transitional immature B 
cells represented the largest B cell population at 1 month 
after AHSCT, the percentage decreasing over the follow-
ing months. Mature naïve B cells rose after 3 months and 
remained elevated over the study period. Within the memory 
compartment, switched memory B cells were higher com-
pared to HC at pre- and at 1 month post AHSCT reduc-
ing HC levels at 3 months post AHSCT. The proportion of 
switched plasma cells did not change over the study period. 
The IGHJ genes closer to the recombination site (IGHJ1, 
2 and 3) were overexpressed in the repertoire of B cells 
reconstituted early post-transplant, whereas B cells using 
IGHJ5 and IGHJ6 (located farther from the recombination 
site) reconstituted later. IGHV genes closer to recombination 
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sites were overexpressed on early naïve repertoire but not in 
early reconstituted antigen-experienced repertoire. Mutation 
analyses on the Ig repertoire showed an elevated number 
of mutations on all switched isotypes until 3 months post 
AHSCT followed by a decline and increase at 12 months, 
supporting the persistence of antigen-experienced memory 
populations. Shannon diversity index showed a signifi-
cant reduction in diversity in all memory repertoires and 
at all time points after AHSCT. Repopulation of naïve and 
unswitched memory B subsets was significantly delayed in 
patients showing early cytomegalovirus (CMV) reactivation 
and remained below the level of patients without CMV reac-
tivation throughout follow-up. In those patients, sequence 
cluster overlap was observed between pre- and post-AHSCT 
suggesting the expansion of persistent memory B cell clones. 
It is not clear whether these clusters contain CMV-specific 
clones.

Overall, these studies expand the pre-existing knowledge 
on adaptive and some innate cell population reconstitution 
after AHSCT with BEAM-ATG and Cy-ATG conditioning, 
suggesting that some mechanisms of immune reconstitution 
after AHSCT are shared by these conditioning protocols. 
Consistent with previous reports, they demonstrate a sub-
stantial degree of renewal of adaptive immunity, consistent 
with the notion of ‘immune resetting’, although evidence 
of association of the observed immunological changes with 

clinical efficacy is limited, partly due to the overall high 
efficacy of the treatment strategy. A summary of the dynam-
ics of ablation and reconstitution of relevant lymphocyte 
subpopulations during and up to 24 months after AHSCT, 
as reported in the two studies reviewed here, is presented 
in Fig. 1.

Biomarkers 

Few and heterogenous studies examined neuroimaging and 
soluble biomarkers of neuroinflammation and neurodegen-
eration in blood and cerebrospinal fluid (CSF) after the treat-
ment (Table 2).

Neurofilaments and Glial Fibrillary Acidic Protein

Recent reports showed that CSF neurofilament light chains 
(NfLs) (validated biomarker for MS activity) [11, 12] gradu-
ally decrease after AHSCT [13••, 14] despite an initial non-
significant increase [15]. Conversely, CSF glial fibrillary 
acidic protein (GFAP; released during astrocyte activation 
and astrogliosis following inflammation and neurodegenera-
tion) [16] remained high after AHSCT [17]. At baseline, 
67–72% of patients had pathological values of NfL [13••, 
17]; the median value of NfL steadily decreased over time, 
and almost all patients had normal values at 4 and 5 years 
after AHSCT [13••, 17].

Serum NfL (sNfL) and GFAP increased between 1 and 
6 months after AHSCT likely due to chemotherapy-related 
neurotoxicity and gradually decreased to levels lower or 
comparable to pre-treatment in the long term [14, 15, 18]. 
SNfL increase was observed in patients treated with both 
high- and moderate-intensity conditioning regimens [14, 15, 
18], and a correlation between sNfL and the total busulfan 
dose was suggested [14]. Moreover, sNfL increase correlated 
with transient worsening of post-treatment Expanded Dis-
ability Status Scale (EDSS) score and MRI brain volume 
loss (BVL) and was associated with cognitive deterioration, 
which might explain the transient ‘chemo fog’ often reported 
after AHSCT [14]. Disease forms did not affect sNfL 
decrease in the long term, and sNfL levels either at baseline 
or follow-up did not correlate with disability accrual or nor-
malisation of the MRI rate of BVL [18].

Myelin Basic Protein, Oligoclonal Bands and IgG and IgM 
Index

Other CSF biomarkers of neuroinflammation were reduced 
after AHSCT such as MBP—a marker of demyelination—
that was abnormal in 63% of patients at baseline [17]. Pro-
tein levels decreased up to normal levels in 88% of patients 
at 5 years post AHSCT [17].

Fig. 1   Immune reconstitution after HSCT. A T cell dynamics. T cell 
numbers reconstituted slowly and remained under the baseline dur-
ing follow-up. Different stages of T cell differentiation were defined 
by CCR7 and CD45RA expression. Naive (N) T cells recovered 
slowly by thymus-dependent reconstitution only after 6 months post 
HSCT. Effector memory (EM) T cells increased rapidly after HSCT 
stimulated by lymphopenia-induced proliferation (LIP) and antigen 
responses and remained above the baseline during the period study. 
Most of the EM differentiated from central memory (CM) T cells 
resistant to high-dose chemotherapy treatment. The persistent EM 
proliferated less than newly emerging T cells and differentiated in 
terminally differentiated memory cells (EMRA) with senescent and 
exhausted phenotype (S) (CD57 + , CD27 − , CD28 − , PD1 +) with 
reduced proinflammatory potential. Naïve T cells eventually differ-
entiated in EM and CM with new TCR repertoire. B B cell dynam-
ics. B cells were depleted by anti-CD20 treatment before HSCT. The 
subsets of B cells were defined by the expression of CD24, CD24 
and CD38. Substantial proportion of early B cells post-HSCT was 
plasma cells (PCs). Transitional B cells (T) increased at 1  months 
after HSCT and decreased in the following months, while mature 
B cells rose and remained higher during the period study. Memory 
B cells generated slowly and remained below the baseline at 1-year 
follow-up. C Dynamics of NK and innate-like T cells including �� T 
cells, mucosal-associated invariant T (MAIT) and NK(-like) T cells. 
NK and innate-like T cell subsets were identified by the expression of 
CD56, CD3 �� / ��/Va7.2 TCR, CD161 and IL18R. NK cells include 
2 subsets CD56bright with immunoregulatory functions and CD56dim 
with high cytotoxic functions. CD56bright cells increased after HSCT, 
while CD56dim increased after 1  month and declined to recovery 
slowly during the 2-year follow-up. MAIT, �� T and NK(-like) T cells 
decreased after HSCT and remained below the baseline

◂
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Similarly, a gradual decrease in IgG production occurred 
over time, and patients with positive IgG oligoclonal bands 
(OCB) decreased from 98 to 74% at the last follow-up 
[13••]. Proportion of patients with normal IgG index sig-
nificantly increased from 30 to 54% after AHSCT and those 
with normal IgM index from 21 to 58% [13••].

Cytokines and Chemokines

AHSCT is expected to shift the MS cytokines and 
chemokine inflammatory profile towards a non-inflam-
matory profile [19, 20]. Wiberg et al. showed that several 
serum proteins expressed by blood cells decreased shortly 
after the conditioning in patients treated with Cy-ATG; pro-
tein levels came back to normal at 3 months from AHSCT 
[19]. Other serum proteins expressed in various tissues (i.e. 
CXCL9, CX3CL1, MCP-1 and CXCL10 with chemotactic 
effects for T cells and monocytes or proteins involved in 
cell differentiation and growth) dropped after mobilisation, 
increased during the conditioning and gradually reached 
normal levels within 3 months from HSC reinfusion [19]. 
Ruder et al. showed that CSF levels of CXCL9, 10 and 13 
did not significantly change after AHSCT despite CXCL9 
and 10 increased 24 months after the treatment possibly 
due to early viral reactivation or other treatment-related 
infections [15]. Serum CXCL10 significantly increased 
1 month after AHSCT and normalised at 3 months in the 
overall cohort and, more remarkably, in those with CMV 
reactivation compared with those with EBV reactivation. 
In addition, CXCL10 increase was associated to changes in 
T helper phenotypes of CD4 + EM T cells—there was an 
increase in Th1 and a decrease in Th2 [15]. Another study 
including patients treated with a low-intensity regimen 
showed a significant decrease of serum IL-21 and IL-22 
released by NK, Th1 and Th17 and an increase of CCL2 
and CCL4 with an unclear role in MS 14 days after AHSCT 
compared with 14 days prior to the treatment [20].

Brain Atrophy

Recent studies showed an increased rate of BVL, ranging 
between − 1.15 and − 2.18 within 12 months after HSCT 
in patients treated with BEAM-ATG or Bu-Cy [14, 18, 
21]. BVL rate subsequently normalised and since month 
24 after AHSCT became like normal ageing values. This 
initial ‘pseudoatrophy’ might be due to the neurotoxicity 
of chemotherapies or the resolution of neuroinflammation. 
Twelve-month BVL of grey and white matter was higher in 
patients with enhancing lesions before AHSCT, while white 
matter BVL was also higher in those with a higher number 
of T1-weighted lesions before AHSCT (i.e. amount of tissue 
irreversibly injured before treatment). White matter BVL, 

thus, seems to be related to pre-existing tissue damage [21]. 
In the long term, BVL rates were similar among subgroups 
[21] and among those with RRMS and SPMS [18].

Efficacy

Cohort Studies 

Four studies reported AHSCT outcomes in large real-life 
cohorts, each including > 100 MS patients, 507 as the larg-
est [22••]; the protocols predominantly used were Cy-ATG 
[22••, 23, 24] or BEAM-ATG [25] (Table 1). One study 
focused on early RRMS (including 11.5% treatment-naïve) 
[23], one on RRMS and early SPMS [22••], and the remain-
ing two included all the MS phenotypes, with a minor pro-
portion of PPMS cases [24, 25].

All these studies confirmed the high effectiveness of 
AHSCT in RRMS: relapse-free survival (RFS) was approxi-
mately 80% at year 5 across all cohorts, whereas progres-
sion-free survival (PFS) ranged from 63% [24] to 95% at 
year 4 [22••] and 85.5% at year 5 [25]. Such variability in 
PFS could be attributable, at least in part, to (i) different 
baseline characteristics and (ii) the possible inclusion of 
variable proportions of cases with early SPMS, due to the 
known uncertainty and delay in diagnosing the transition 
from RRMS to SPMS in real life [26]. A significant improve-
ment in median EDSS score was reported after AHSCT [24, 
25]; it was substantial (mean 1.7 EDSS point) and sustained 
up to year 5 in one study, where it was observed to persist 
at least 2 years from transplant and irrespective of baseline 
score and type of lymphoablative regimen used [22••]. No 
evidence of disease activity (NEDA)-3 survival ranged from 
48% at year 4 [24] to 62% at year 5 [25] and 81% at a median 
follow-up of 39.5 months [23]. The effectiveness of AHSCT 
in RRMS was sustained for up to 10 years, with RFS, PFS 
and NEDA-3 of 63.5%, 71% and 40.5%, respectively [25]. 
Interestingly, the use of BEAM-ATG compared to other 
conditioning regimens (lymphoablative in most cases) was 
independently associated with a lower risk of relapses and 
MRI inflammatory activity in both RRMS and progressive 
MS. On the other hand, protocol intensity seemed not to 
influence PFS in either form [25], suggesting that pathoge-
netic mechanisms underlying disease progression may not 
be differentially affected.

PFS in progressive MS was generally lower than in RRMS, 
ranging from 66% at year 4 [22••] to 71% at year 5 [25], except 
for one study, where PFS was similar, but EDSS change after 
transplant differed between the two groups, in favour of RRMS 
[24]. Nonetheless, a marginal benefit of AHSCT was suggested 
in cases with recent clinical or MRI inflammatory disease 
activity [22••, 25]. Compared to inactive cases, a sustained 
EDSS improvement for 3 years after transplant was reported in 
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MRI-active (recent gadolinium-enhancing lesions) ‘newly diag-
nosed SPMS’ patients, defined as patients referred as RRMS 
but who, upon examination, indicated a gradual change in base-
line neurologic disability starting within 2 years and independ-
ent of relapse activity [22••].

Similar outcomes were observed in monocentric stud-
ies including up to 30 RRMS [27, 28]. A substantial sta-
bilisation in cognitive functions was reported in 13 RRMS 
patients treated with Cy-ATG protocol, with a transient 
improvement at month 12 in information processing speed 
and verbal learning, followed by stabilisation at month 24 
compared to baseline [27]. A significant reduction in fatigue 
score and improvement in some domains (physical function-
ing, vitality and pain) of the short-form 36 health survey 
questionnaire were also described [29].

Progressive MS: Retrospective Matched Studies 

Two retrospective studies compared SPMS patients treated 
with AHSCT with matched controls, including patients with a 
relatively short duration of the progressive phase (on average 2 
[30] to 3 years [31]) and inflammatory features in most cases, 
although with moderate to severe disability (baseline EDSS: 6).

A multicentric study included 79 SPMS patients treated 
with AHSCT (81% BEAM-ATG protocol) and 1975 SPMS 
who had started treatment with DMTs (siponimod, cladrib-
ine and anti-CD20 monoclonal antibodies excluded) after the 
diagnosis of SPMS, selected from the Italian MS register using 
propensity score [30]. AHSCT was superior to DMTs on the 
outcomes: PFS (at year 5: 62% and 46%, respectively; hazard 
ratio (HR) 0.50), mean EDSS change over 10 years (− 0.013 
and + 0.157 EDSS points/year, respectively), prevalence of dis-
ability improvement (at year 5: 19% and 4%, respectively) and 
reduction of ARR (over the entire follow-up: 0.020 and 0.45, 
respectively). The mean yearly EDSS accumulation was lower 
in AHSCT-treated patients compared to controls treated with 
either interferon beta-1b or mitoxantrone, DMTs approved in 
Italy for the treatment of SPMS (sensitivity analyses).

One monocentric study compared 31 AHSCT-treated 
SPMS patients (BEAM-ATG protocol) with 62 propensity-
score-matched SPMS controls treated with pulses of Cy 
[31]. Complete suppression of relapse activity was observed 
in the AHSCT group only (RFS at year 5: 100% vs. 52%), 
even though Cy also reduced ARR significantly compared 
to pre-treatment (from 0.46 to 0.20). Rates of PFS were 
similar between groups (at year 5: 45% AHSCT vs. 48% 
Cy). Nonetheless, when evaluating the disability trajectory 
after the first episode of EDSS worsening, AHSCT-treated 
patients tended to have a lower risk of maintaining a pro-
gressive disease course (HR = 0.65) and achieving long-
term severe disability compared to controls (6% vs. 18%), 
although the difference was not significant.

Treatment‑Naïve MS

One retrospective multicentric study reported the use of 
AHSCT as a first-line treatment in 20 aggressive MS patients 
with multiple clinical and radiological features suggestive 
of poor prognosis [32]. The treatment was performed early 
in the disease course, with a median interval between MS 
diagnosis and AHSCT of only 5 (range 1–20) months, and 
different transplant protocols were utilised (Table 1). Over 
a median follow-up of 30 (range 12–118) months, none of 
the patients experienced confirmed disability progression or 
relapses or new MRI activity after re-baselining at month 
6. Furthermore, disability improved in 95% of the cases, 
with a median reduction of 2.25 (range 0–6.5) EDSS points, 
although this may be affected by the recent accrual of dis-
ability at baseline. As for safety, no grade 4 toxicities or 
transplant-related mortality (TRM) was reported; secondary 
autoimmune thyroiditis was observed in four patients (20%).

Comparative Studies with High‑Efficacy DMTs

Prospective comparisons between AHSCT and high-effi-
cacy DMTs are currently lacking, as natalizumab only was 
included in the comparator arm of the MIST trial, and the 
number of treated cases was small [33].

Three retrospective cohort studies compared the use of 
AHSCT and alemtuzumab on RRMS [34•, 35] or RRMS and 
progressive MS patients [36•]. The sample size ranged from 40 
[36•] to 144 patients [34•], and the AHSCT protocol used was 
either Cy-ATG [34•] or BEAM-ATG [35, 36•]. Due to possible 
selection biases intrinsic to the retrospective and uncontrolled 
design, baseline characteristics differed between groups, being 
that AHSCT-treated patients were generally younger (or with 
shorter disease duration), more disabled and inflammatory-
active compared to alemtuzumab-treated patients; the post-
treatment follow-up was also longer (up to more than two-fold) 
after AHSCT than alemtuzumab [35, 36•], except in [34•]. As 
these patient population differences were generally disadvanta-
geous for AHSCT, the observed results may plausibly represent 
the lower boundary for the true effect of transplant.

NEDA-3 status was consistently and significantly higher 
after AHSCT than alemtuzumab in all the studies, ranging from 
88% vs. 37% at year 3 [34•] to 62% vs. 40% at the end of the 
observation period (median 59 and 28 months in the AHSCT 
and alemtuzumab groups, respectively; p = 0.001) [36•]. When 
analysing individual components of NEDA, AHSCT was supe-
rior to alemtuzumab on relapses and new MRI activity, with 
a similar effect on disability progression in two studies [35, 
36•], whereas it was superior also on PFSin the study with 
similar follow-up duration between groups [34•]. Disease activ-
ity in AHSCT-treated patients was determined exclusively by 
EDSS worsening in one study, where it was primarily observed 
in cases with progressive disease: notably, SPMS was included 
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in both the AHSCT (4/19) and the alemtuzumab groups (5/21), 
but PPMS (3/19) were in the AHSCT group only [36•]. Inter-
estingly, applying a rebaseline at 1 year after treatment initia-
tion, AHSCT was still substantially and significantly superior 
to alemtuzumab on NEDA-3 survival, RFS and PFS, whereas 
MRI activity-free survival was similar between the groups [34]. 
In another study with MRI rebaseline at 1 year, AHSCT was 
still superior to alemtuzumabin this outcome [35].

Compared to alemtuzumab, AHSCT was associated with a 
higher probability of sustained improvement in EDSS [34•, 35, 
36•] and cognitive outcomes [36•], with improved cognitive 
functions without any worsening in the short term (3-month 
assessment) after AHSCT, opposite to cases treated with alem-
tuzumab who deteriorated at follow-up in all the tested domains.

The comparative effectiveness of AHSCT vs. fingolimod, 
natalizumab and ocrelizumab in RRMS was explored in 167 
AHSCT-treated patients who were propensity score matched 
to controls exposed to one of these DMTs, selected from the 
MSBase Registry [37]. Over 5 years, AHSCT was associated 
with a lower risk of relapses and a higher chance of disability 
improvement compared with fingolimod and natalizumab, 
with a similar effect on disability worsening. Over 3 years, 
the effect on relapses and disability outcomes was similar 
between AHSCT and ocrelizumab, but the follow-up for 
the latter was of mean 1.5 years only. Besides the shorter 
follow-up for the ocrelizumab group, limitations of the study 
included the use of different AHSCT protocols, possible 
residual heterogeneity in patient populations, lack of data on 
MRI activity and potential ascertainment bias due to different 
follow-up schedules between the AHSCT and DMT groups.

Costs 

An exploratory study estimated the relative effectiveness of 
AHSCT versus natalizumab in RRMS using a matching-
adjusted indirect comparison informed by data from (i) a cohort 
of patients treated with AHSCT within European transplant cen-
tres and (ii) outcome data relating to the intervention arm of the 
AFFIRM trial of natalizumab [38]. The HR for sustained EDSS 
progression for AHSCT versus natalizumab was estimated to 
be 0.11 (95% confidence interval 0.02, 0.76), suggesting that 
AHSCT may be highly clinically effective for the treatment of 
RRMS and that it may represent a cost-effective use of health 
care resources, given its once-only nature compared to the sub-
stantial lifetime costs of continuous treatment using DMTs.

Two studies analysed the costs of AHSCT in two different 
healthcare systems [39, 40]. In the US study, mean total costs 
of AHSCT were $85,184, whereas DMT costs from the lit-
erature ranged from $80,000 to $100,000 per year per patient 
[39]. As studies of AHSCT reported greater improvement in 
efficacy outcomes compared to those of DMTs, the authors 
concluded that AHSCT may be a ‘win–win’ in terms of both 
cost and clinical efficacy, possibly capable of generating cost 

savings and additional health gains for well-selected RRMS 
patients compared with standard DMTs. In the Polish study, 
costs of AHSCT were estimated at around €12,000 [40]. 
When analysing costs covered by the National Health Fund for 
the 105 patients treated with AHSCT over the study period, 
mean treatment-related costs per patient-year before and after 
the transplantation were €4315 and €1189, respectively. Even 
if the latter rose to a mean value of €6295 when including the 
costs of AHSCT, the transplant induced a reduction of all 
treatment costs by 82% and payed off its costs in 3.9 years.

Safety 

Treatment Sequencing

Treatment sequencing with AHSCT may be challenging after 
discontinuation of DMTs with long-standing effects on the 
immune system, as it requires the identification of adequate 
wash-out periods that allow a safe transition to AHSCT [4], 
minimising in the meantime the risks for disease reactivation, 
especially after the withdrawal of lymphocyte-sequestering 
DMTs [41]. In this respect, no safety issues were recently 
reported in 26 patients who received alemtuzumab, rituximab 
or cladribine in the last 6 months before Cy-based AHSCT 
compared to the 78 cases who had received standard DMTs 
or no treatment, with similar times to engraftment and risk of 
neutropenic fever and secondary autoimmunity [23]. These 
observations suggest that performing AHSCT within 6 months 
from such DMTs is safe, although the number of patients 
receiving each DMT was small, and the wash-out duration was 
not reported for every treatment. A careful and comprehensive 
evaluation of the individual risk profile is therefore required 
when adopting short wash-out periods.

Secondary Autoimmunity

Risks for secondary autoimmunity after treatment with dif-
ferent conditioning regimens were recently reviewed in [42], 
where it was high with busulfan-based (18%) and low-moder-
ate with non-myeloablative regimens (7.7%), except for those 
containing alemtuzumab, being higher (14%). Pooled rates 
of secondary autoimmunity were below 1% after BEAM-
AHSCT [42], but this was plausibly due to under-reporting: 
more recently, a similar risk was described between BEAM-
ATG and Cy-ATG, with an almost six-fold increase in autoim-
mune thyroiditis in 139 patients who received AHSCT with 
either of these two regimens (incidence rate (IR) per 1000 
person-years 34) compared to a matched population of MS 
patients who received non-induction therapies (IR 5.3) [43•].

In recent cohort studies, the incidence of secondary 
autoimmunity ranged from 6% [24] to 17% [28]. The use of 
alemtuzumab in the conditioning regimen was associated 
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with a higher risk for idiopathic thrombocytopenic purpura 
compared to the use of ATG (alone or in combination with 
intravenous immunoglobulins or rituximab) in one study 
(11.5% vs. 2–3%, respectively), whereas the risk for thy-
roiditis was similar (roughly 10%) [22••]. In retrospective 
comparative studies, a two- to three-fold higher risk for 
secondary autoimmunity was observed in alemtuzumab-
treated compared to AHSCT-treated patients [34•, 3543•].

Impairment of Gonadal Function and Fertility 

Recent studies expanded the knowledge on the impact of 
AHSCT on gonadal function and fertility, which was previ-
ously mainly derived from studies on haematological patients 
[44, 45]. In females undergoing AHSCT for MS, persistent 
amenorrhea ranged from 30% with mixed conditioning regi-
mens (BEAM-ATG or Cy-ATG) [46] to 43% with Cy-ATG 
protocol [28]. Older age at AHSCT and prior use of Cy were 
predictors of persistent amenorrhea in one study, where no 
differences were detected between BEAM-ATG and Cy-ATG 
regimens, although the sample size was small [46].

Anti-mullerian hormone (AMH) concentration, a marker 
of ovarian reserve, was largely decreased compared to base-
line in females transplanted with Cy-ATG protocol [47]. 
Nonetheless, mense resumption [46] and spontaneous preg-
nancies [47] were observed in women with post-treatment 
AMH levels lower than those expected for age.

Successful spontaneous pregnancies/conceptions without 
newborn complications were reported in a few females and 
males after either BEAM-ATG [46, 48] or Cy-ATG proto-
cols [28, 46, 47], even in females showing amenorrhea or 
oligomenorrhea [48]. Successful pregnancies were reported 
in three of four women who tried to conceive after transplant 
in one study [46], but the actual pregnancy rate after AHSCT 
in MS cannot be estimated due to the lack of systematic 
assessment of desire for pregnancy.

Hormonal replacement therapy is usually recommended 
after AHSCT in women with premature ovarian failure; to our 
knowledge, no recommendations are currently available on the 
use of contraception after AHSCT in the autoimmune setting.

Transplant‑Related Mortality

TRM ranged from 0.19% [22••] to 2.5% [24] in cohort stud-
ies, and it was close to, or equal to, 0% in most recent studies 
[23, 27, 31, 32, 34•, although its reliable estimation should 
be performed in wide patient cohorts or registry studies only.

In the population-based cohort study from Sweden, the 
IR of mortality after AHSCT was 1.7 (95% CI 0.0–9.6) per 
1000 person-years (1 suicide) compared with 8.6 (2 suicides, 
1 heart attack, 1 CMV reactivation) and 0.7 in the alemtu-
zumab group and reference population, respectively [43•].

Limitations of Current Studies 
and Upcoming RCTs for AHSCT

Comparisons between studies are limited by heterogeneity in 
study design, AHSCT protocol, inclusion criteria and defini-
tion of treatment failure. Even if comparative studies on the 
effectiveness of different AHSCT protocols are lacking, it 
is plausible that the use of high-intensity regimens may be 
more effective than lower-intensity regimens in suppress-
ing new inflammatory activity, and this question should 
be addressed in future studies. Besides the protocol used, 
patient selection is a key determinant of both efficacy and 
safety outcomes after AHSCT: as an example, the inclusion 
of different proportions of early active RRMS vs. late-stage 
progressive MS patients affects PFS, which is highest in 
early RRMS. Indirect comparisons may be further limited 
by heterogeneity in the definition of treatment failure, such 
as the use of different cut-offs for disability progression.

Heterogeneity may also be observed across upcoming 
RCTs, mainly related to the AHSCT protocol used, eligi-
bility criteria and DMTs administered in the comparator 
arm; while harmonisation could reduce the variables, some 
heterogeneity (e.g. different conditioning protocol intensity) 
could provide valuable complementary information.

Conclusions 

Recently published studies expanded the knowledge on 
several aspects concerning AHSCT in MS, providing con-
firmatory evidence on known mechanisms of action, as 
well as new insights towards the identification of novel 
biomarkers of treatment response. Large cohort studies 
confirmed optimal outcomes in RRMS, and retrospective 
comparative studies showed possible superior effective-
ness over alemtuzumab. A marginal benefit was suggested 
in progressive disease, especially in early SPMS with 
inflammatory features, but the potential role of AHSCT 
in this form is yet to be defined. New data on the impact 
of AHSCT on fertility and secondary autoimmunity were 
also provided.

In conclusion, recent evidence reinforces the role of 
AHSCT as a clinical option in aggressive RRMS, on grounds 
of high effectiveness and acceptable safety profiles. Further 
research is needed to better define its role in treatment-naïve 
and progressive MS, preferably in the context of RCTs.
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