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Abstract. A novel structural damage detection method with a new damage index has been recently
proposed by the authors based on the statistical moments of dynamic responses of shear building
structures subject to white noise ground motion. The statistical moment-based damage detection
(SMBDD) method is theoretically extended in this paper with general application. The generalized
SMBDD method is more versatile and can identify damage locations and damage severities of many types
of building structures under various external excitations. In particular, the incomplete measurements can
be considered by the proposed method without mode shape expansion or model reduction. Various
damage scenarios of two general forms of building structures with incomplete measurements are
investigated in consideration of different excitations. The effects of measurement noise are also
investigated. The damage locations and damage severities are correctly identified even when a high noise
level of 15% and incomplete measurements are considered. The effectiveness and versatility of the
generalized SMBDD method are demonstrated. 

Keywords: building structures; random excitation; statistical moments; incomplete measurements;
damage location; damage severity; measurement noise 

1. Introduction 

Building structures begin to deteriorate once they are built due to harsh environment such as

typhoon, earthquake, corrosion, and others. Vibration-based structural damage detection methods

have thus attracted considerable attention for assessment of functionality and safety of building

structures (Sohn et al. 2003, Xu et al. 2004, Kim et al. 2006, Yan et al. 2007, Zhao and Dewolf

2007). Nevertheless, the damage detection of building structures still remains as a challenging task.

One of the main obstacles is that the current damage detection methods are either insensitive to

local structural damage or sensitive to measurement noise (Salawu 1997, Farrar and Jauregui 1998,

Alvandi and Cremona 2006, Worden et al. 2007). In this regard, the statistical moment-based

damage detection (SMBDD) method has been proposed by the authors (Zhang et al. 2008, Xu et al.
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2009). The feasibility and effectiveness of the proposed method have been numerically and

experimentally demonstrated through a three-story shear building under ground excitations. The

major advantage of the proposed method is that it is not only sensitive to structural damage but also

insensitive to measurement noise. 

However, most building structures are more complicated than shear buildings and the analysis of

the structures is generally conducted using the finite element (FE) method. Further study is

therefore necessary to extend the proposed method for shear building structures to more general

building structures based on the FE method. In addition, the basic equations of the proposed

method derived in the previous studies consider only ground excitations which do not cover more

general cases where the building structures are excited by wind or other types of loadings. It is

thus also necessary to investigate the applicability of the proposed method to non-ground external

excitations. Furthermore, the completeness of response measurements of a shear building was

assumed implicitly in the previous studies. However, for most building structures it is often not

feasible to measure the responses of a structure at all degrees-of-freedom (DOF) of the FE model

and to collect the data to identify vibration modes in such a detail that the FE model possesses

because of a limited number of sensors being placed at accessible locations on the real building

structure. Incomplete measurement is a problem shared with most existing methods for damage

detection and model correlation. The current approach of addressing such a problem is either to

reduce the FE model to the measured degrees of freedom or to expand the measured modal data to

all degrees of freedom included in the FE model (Kim et al. 1995, Ren and Roeck 2002, Li et al.

2008). Unfortunately, both of these approaches cause troubles when performing damage detection.

An observed problem with model reduction is that localized changes in the full model may

become “smeared” throughout the reduced model. The problem observed with mode shape

expansion is that errors introduced in the expansion process lead to false positive indications of

damage. However, neither mode shape expansion nor model reduction is theoretically required by

the SMBDD method because the objective function of model updating is based on the minimizing

the errors between the statistical moments of the measured responses and the corresponding

analytical statistical moments. Therefore, it is worthwhile to extend the SMBDD method from the

necessity of complete measurements of all DOFs to the proper selection of measurements of

incomplete DOFs.

In this regard, the SMBDD method is advanced to be more versatile in the following three

aspects in this paper: (1) the type of building structures, (2) the location of external excitations,

and (3) the number of structural responses measured. The equations of the SMBDD method are

extended to be applicable for many types of building structures under any stationary random

excitation as long as it complies with the Gaussian distribution. Two numerical examples are

presented to demonstrate the feasibility and effectiveness of the generalized SMBDD method.

Various damage scenarios designed for a flexible tower and a frame structure are investigated with

consideration of incomplete measurements. The effect of measurement noise on the quality of

identified results is also investigated for all the concerned damage scenarios by numerically

contaminating the measurement data with white random noises. Numerical analysis results show

that the damage locations and severities of all the damage scenarios can be identified satisfactorily

even though the structural responses used are incomplete and the measurement noise has a high

noise-to-signal ratio of 15%. 
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2. The generalized SMBDD method

The basic principle of the generalized SMBDD method is to identify the stiffness parameters of a

structure before and after damage occurrence through a FE model updating using the statistical

moments of fully or, most probably, partially measured structure responses and then determine

damage locations and damage severities by comparing the structural stiffness parameters identified

at the two stages. A planar FE model of a building structure with N DOFs and Ne elements (see

Fig. 1) is utilized here to illustrate the generalized SMBDD method. There are three DOFs at every

node: the horizontal displacement x, the vertical displacement y and the angular displacement θ.

From a practical viewpoint, the time history of dynamic angular displacement is hard to be

measured. Therefore, only the horizontal displacement or the vertical displacement or both are

assumed to be measurable and utilized to detect damage as long as the total number of measured

displacement responses, denoted as Nm, is larger than or at least equal to the number of unknown

stiffness parameters, Ne. The external excitations are regarded as stationary Gaussian random

processes in this study. Therefore, the structural responses are also stationary Gaussian random

processes in terms of a linear structural system. Denote the kth measured displacement response or

the kth measured relative displacement response as , , where Ns is the

number of sampling points and the subscript “m” means “measured”. The statistical moments of

 can be calculated as follows. 

 

(1)

(2)

(3)

Hence, the actual ith-order statistical moment vector of the measured displacement responses or

relative displacement responses can be directly estimated, denoted as 

(i = 2, 4, 6).

The SMBDD method is proposed on the idea that the actual statistical moments of measured

displacement responses are the functions of stiffness parameters of a building structure and,

r̂mk r̂mk r̂mk1 r̂mk2 … r̂mkNs, , ,[ ]=

r̂mk

M̂2k
1

Ns

----- r̂mki

2

i 1=

N
s

∑
1

Ns

----- r̂mki

i 1=

N
s

∑
⎝ ⎠
⎜ ⎟
⎛ ⎞

2

–=

M̂4k 3 M̂2k( )2=

M̂6k 15 M̂2k( )3=

M̂i M̂i1 M̂i2 … M̂iN
m

, , ,[ ]=

 Fig. 1 Finite element model of a building structure
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therefore, changes in the stiffness parameters will cause detectable changes in the statistical

moments. In this paper, the theoretical relationship between the stiffness parameters of a building

structure and the statistical moments of measured displacement responses are further extended as

follows, making the SMBDD method more general and versatile. The equation of motion in the

matrix form for a building structure can be expressed as 

 

 (4)

where M, C and K are the global mass matrix, damping matrix and stiffness matrix of the structure,

respectively. ,  and  are the acceleration, velocity and displacement response vectors,

respectively. Only part of displacement responses are measurable, that is, ,

where subscript ‘m’ and ‘u’ denote respectively measured and unmeasured quantities. xm(t) =

, , where (N − Nm) is the number of

unmeasured displacement responses.  is the external excitation, .

The Fourier transform of  is denoted as . By adopting the Rayleigh damping

assumption, Eq. (1) can be decoupled through the transformation , where Φ is the mass-

normalized modal matrix of the system. The uncoupled equations of motion of the structure can

then be expressed as

(5)

where , the ith generalized force;  is the jth component of the ith

theoretical mode shape and  is the ith theoretical circular natural frequency. ξi is the ith

modal damping ratio. In most cases, the first two modal damping ratios are estimated form the

measured acceleration responses, while the higher modal damping ratios are derived according to

the Rayleigh damping assumption. Denote the Fourier transform of  as , =

. By using the mode superposition method, the Fourier transform of

the displacement response  can be obtained as

(6)

(7)

The conjugate of , denoted as , is calculated by

 (8)

where  and  are respectively the conjugates of  and .

It should be noted that the relative displacement responses, denoted as ,

can also be utilized to identify structural stiffness parameters by the generalized SMBDD method. If

that is the case, the relative displacement responses can be calculated from the absolute

displacement responses. For example, if ymk is the relative response of the ith absolute displacement

response xmi to the jth absolute displacement response xmj, ymk can be calculated as follows.
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 (9)

where . In fact, when the jth element of P, denoted as Pj, equals

0, ymk represents the ith absolute displacement response. The Fourier transform of ymk can be obtained

by

 (10)

where the number of relative displacement responses measured is assumed to be equal to the

number of absolute displacement responses measured although it can be different. The power

spectral density (PSD) function of the kth relative displacement ( ) or the kth absolute

displacement ( ) ymk can be uniformly expressed as 

(11)

where  is the conjugates of . The variance

of  can be calculated by

(12)

Its statistical moments can be computed by

, , , (13)

The theoretical second-, fourth- and sixth-order statistical moment vectors obtained above can be

expressed as

 

, (14)

Therefore, given the stiffness parameter vector an initial value , the ith-order

statistical moment vector of the associated responses, denoted as Mi (i = 2, 4, 6), can be numerically

computed in the frequency domain. The residual vector between the theoretical statistical moment

vector Mi calculated in terms of an assumed stiffness vector and the actual statistical moment vector

 estimated from the measured building responses can be calculated and written as

(15)

Once the objective function has been established, the system identification of the undamaged or

damaged building structure can be interpreted as a nonlinear least-squares problem: give k an initial

value k0 and minimize  through optimization algorithms. Since it is physically impossible

that the stiffness parameters of the damaged building are larger than those of the corresponding

undamaged building, the constrained optimization method is utilized to identify the stiffness value

of the damaged building. That is, the structural stiffness parameter vector of the damaged building

is identified by the nonlinear least-squares method under the constrained condition that the stiffness
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parameters of the damaged building shall be less than the identified stiffness parameters of the

corresponding undamaged building. The structural damage including damage existence, location and

severity can then be detected by comparing the identified stiffness vector  of the undamaged

building with the identified stiffness vector  of the damaged building. The fourth-order moment

other than the second-order or the sixth-order moment is used in the following investigation which

makes a tradeoff between the sensitivity of an index to structural damage and its stability to random

excitation (Zhang et al. 2008). The procedure of the generalized SMBDD method is presented in

Fig. 2. 

 

 

3. Numerical investigation

As mentioned in the introduction, the main purpose of this paper is to extend the SMBDD method

to be more versatile in the following three aspects: (1) the type of structures, (2) the location of

external excitations, and (3) incomplete measurements. Therefore, the following numerical examples

focus on investigating locations of external excitations, incomplete measurements and measurement

noise effects on the quality of identified results by using a simplified flexible tower structure and a

frame structure, without considering the complexity of real structures.

 

3.1 Damage detection of a flexible tower with incomplete measurements 

3.1.1 Numerical model

The feasibility and effectiveness of the generalized SMBDD method are first explored through a

flexible tower with a total height of H = 80 m (see Fig. 3). The mass density and bending stiffness

are assumed to be constant along the height of the tower;  = 4 × 105 kg/m and EI = 8.18 × 1010

kN.m2, where E is Young’s Modulus and I is the moment of inertia of the tower. In order to
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 Fig. 2 Procedure of the generalized SMBDD method
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comprehensively investigate various damage scenarios of the investigated structures and for the sake

of clarification and less computation effort, the flexible tower is discretized into only five elements

with the element length of 16 m. Two degrees of freedom are considered for every node in the FE

model: the horizontal displacement x and the angular displacement θ. But only the horizontal

displacement responses are measured and utilized to detect structural damage in the following

investigation. As a result, only 5 horizontal displacement responses are supposed to be measured,

while the total number of the DOFs of the numerical model is 10. The ith element stiffness matrix

of the tower model can be expressed as

 

(16)Ke
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 Fig. 3 Configuration and modelling of a flexible tower structure
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where  is the product of the modulus of elasticity and the moment of inertia of the ith

element. hi is the length of the ith element. For the special case of the element with uniformly

distributed mass, the mass matrix of the ith element is

(17)

where  is the mass density (mass per unit height) of the tower. The global stiffness matrix and the

global mass matrix of the entire system in Eq. (4) can be obtained by respectively assembling the

elemental stiffness and mass matrices of the structure. The tower is subjected to a ground motion,

and the ground motion is simulated as a colored noise excitation by a random process simulation

method (Shinozuk and Jan 1972). The power spectral density (PSD) of the random colored noise

excitation is preset as the Kanai-Tajimi spectral density function which has the form of 
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Fig. 4 Simulated colored noise ground motion excitation (a) time history, (b) power spectrum density, (c)
probability density distribution
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 (18)

where  and S0 are the two dynamic characteristics and the intensity of the ground motion. The

parameters in Eq. (18) are selected as = 15.0 rad/s, = 0.6, and S0 = 4.65 × 10-4 m2/rad s3. The

time duration of the simulated ground acceleration is 1000s and the sampling frequency is 256 Hz.

The simulated acceleration time history is shown in Fig. 4(a). The PSD function of the simulated

acceleration time history is estimated and compared with the preset Kanai–Tajimi spectral density

function in Fig. 4(b). The probability density functions (PDFs) of the simulated ground acceleration

with Gaussian and nonparametric fitting are presented in Fig. 4(c). It can be seen that the PDF of

the simulated ground acceleration can be regarded as a Gaussian distribution.

 

3.1.2 Damage detection with incomplete measurements

In the following numerical investigation, measured horizontal displacement responses are

simulated by dynamic response analysis using Eq. (4). The relative displacement responses between

two adjacent nodes of the flexible tower model are calculated from the measured horizontal

displacement responses and utilized to detect structural damage. The undamaged structure is first

identified without considering the effects of measurement noise. The fourth-order moments of the

story drifts,  (i = 1, 2, 3), are calculated by Eqs. (1) and (2) based on the numerical structural

response obtained by the direct numerical method. These so-called measured moments are then used

to identify the stiffness parameters of the undamaged structure,  (i = 1, 2, 3). The fourth-order

moments and the identified stiffness parameters of all elements are presented in Table 1. The

maximum relative errors of the identified stiffness parameters is only 0.14%, while the other four

relative errors are 0.02%, 0.01%, 0.04% and 0.06%, respectively. The identified horizontal stiffness

coefficients of the undamaged building structure  are almost identical with the theoretical

values  when measurement noise is not considered. 

Since the stiffness of each element is determined by bending stiffness as shown in Eq. (16), the

damage of each element is introduced as the reduction of bending stiffness, which may be

considered to represent the damage of bracing systems in practice. Six damage scenarios of the

flexible tower with incomplete measurements are then designed and examined by the proposed

method. The details of the six damage scenarios are presented in Table 2. Scenarios 1 and 2 are

single damage cases, while there are two or three damage elements in Scenario 3, 4 and 5 and all

elements are damaged in Scenario 6. For each damage scenario, the fourth-order moments of the
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Table 1 Identified stiffness parameters of the undamaged flexible tower vs. the real values

 Element    

 1  818000.00  817836.65  806943.46

 2  818000.00  817907.89  806978.22

 3  818000.00  817698.12  806924.45

 4  818000.00  817468.40  806827.05
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story drifts are computed according to Eqs. (1) and (2). The horizontal stiffness parameters of the

damaged structure for every damage scenarios are identified by the constrained least-squares

method. With reference to the identified horizontal stiffness values of the undamaged structure (see

Table 1), the damage locations and damage severities are identified for every damage scenario. The

identified results without considering the effect of measurement noise are presented in Fig. 5 and

Table 3.

According to Fig. 5, the damage locations can be apparently and accurately identified out for both

the single damage and multi-damage scenarios. Even for the very small damage of 2%, the damage

locations can also be accurately detected, say, Element 3 in Scenario 2, Element 4 in Scenario 3 and

Element 5 in Scenario 6. In comparison with the actual damage severities shown in Table 2, the

identified damage severities are quite close to the actual values for these damage scenarios. The

feasibility and effectiveness of the proposed method are demonstrated again through the flexible

tower structure even when only the horizontal displacement responses are measured.

The influence of measurement noise on the quality of the damage detection results is also

 

Table 2 Details of damage scenarios of a flexible tower

 Scenario No.  Damage severity  Damage location

 1  5%  1st element

 2  2%  3rd element

 3
 10%  1st element

 2%  4th element

 4
 5%  2nd element

 10%  5th element

 5

 20%  1st element

 10%  3rd element

 5%  5th element

 6

 10%  1st element

 5%  2nd element

 5%  3rd element

 5%  4th element

 2%  5th element

Table 3 Identified damage severities of a flexible tower with noise free

 Scenario No.  Element 1  Element 2  Element 3  Element 4  Element 5

 1  -5.13  -0.14  -0.14  -0.14  -0.14

 2  -0.03  -0.03  -2.03  -0.03  -0.03

 3  -10.30  -0.34  -0.34  -2.34  -0.33

 4  -0.13  -5.13  -0.13  -0.13  -10.11

 5  -19.03  0.00  -8.94  0.00  -3.92

 6  -10.38  -5.41  -5.41  -5.43  -2.41
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Fig. 5 Identified results of a flexible tower with the MNI of 15% (a) Scenario 1, (b) Scenario 2, (c) Scenario
3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6
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investigated through the flexible tower structure. Random white noises are added to both the

measured horizontal displacement responses of the structure and the ground acceleration excitation.

The measurement noise intensity (MNI) of 15% is adopted here. The same procedure is adopted to

detect structural damage as that without considering measurement noise. The identified stiffness

parameters of the undamaged structure with the effects of measurement noise  are listed in

the last column of Table 1. The maximum relative error between the identified stiffness parameters

and the actual ones are only 1.44% for the five elements even when the MNI is 15%, which

demonstrate the reliability of the generalized SMBDD method under measurement noise and

incomplete measurements. 

The six damage scenarios presented in Table 2 are then explored to evaluate the effect of

measurement noise on the quality of identified results. For each damage scenario, the measured

horizontal displacement responses and the external excitation are contaminated by independent

white Gaussian random noises. The MNI is adopted as 15%. The horizontal stiffness parameters of

the damaged building for every damage scenarios are identified by utilizing the fourth-order

moments of the contaminated responses and the contaminated external excitation. With reference to

the identified horizontal stiffness values of the undamaged tower (see Table 1), the damage severity

of each element is finally calculated for every damage scenario. The identified results are listed in

and Table 4 and also presented in Fig. 5 in comparison with the preset values and the identified

results without considering the measurement noise. 

As seen from Fig. 5, there is no much difference between the identified results without

measurement noise and those with measurement noise which are at the same time very close to the

actual ones. Even when the MNI is as high as 15%, satisfactory results are also obtained for both

damage locations and damage severities by the proposed method. In other words, the proposed

method is insensitive to measurement noise. The reliability and robustness of the proposed method

are demonstrated through the flexible tower structure with considering the effect of measurement

noise. 

 

3.2 Damage detection on frame structures with incomplete measurements 

3.2.1 Numerical model

The feasibility and robustness of the SMBDD method are investigated through a frame structure

in this section. A 2-D moment resisting one-story and one-bay steel frame (see Fig. 6) is employed

to illustrate the application of the proposed method. The frame consists of two columns

(W360 × 382 and W360 × 463) and one beam (W840 × 176). The columns are made of 345 MPA

steel and the beam is made of 248 MPA steel. The bay width L is 9.15 m and the height h is

EÎ( )ni
u

Table 4 Identified damage severities of a flexible tower with MNI of 15%

 Scenario No.  Element 1  Element 2  Element 3  Element 4  Element 5

 1  -5.84  -0.90  -0.88  -0.87  -0.83

 2  -0.15  -0.16  -2.16  -0.17  -0.17

 3  -10.73  -0.83  -0.82  -2.81  -0.78

 4  -0.03  -5.04  -0.05  -0.06  -10.04

 5  -19.03  0.00  -8.94  0.00  -3.96

 6  -11.05  -6.13  -6.11  -6.12  -3.11
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3.96 m. The mass density of the left column (W360 × 382) is 382.46 kg/m, while that of the right

column (W360 × 463) is 462.82 kg/m and that of the beam (W840 × 176) is 17235.7 kg/m. The

Rayleigh damping is assumed and the first two damping ratios are adopted as 2%. Each column or

the beam is divided into two elements. These elements are numbered and marked in Fig. 6. The

beam element is adopted in the finite element model of the frame structure. The real values of

elemental bending stiffness of the undamaged frame  ( ) are listed in Table 5.

Two colored noise external excitations are applied on the frame structure as shown in Fig. 6. The

time duration of the external excitations is 1000s and the sampling frequency is 256 Hz. The

maximum values of the horizontal and vertical external forces are 53.13 kN and 117.15 kN,

respectively. 

 

3.2.2 Damage detection without measurement noise

In consideration that the members of the frame structure are made of H-steel, the effect of damage

on axial stiffness is much smaller than bending stiffness. The effect of the reduction of the axial

stiffness on the displacement responses is therefore neglected to make the problem simple. As a

result, it is straight-forward to introduce the damage of the frame structure as a reduction of bending

stiffness, while neglecting the effect of the small change of axial stiffness. The mass also remains

the same before and after damage. Only the horizontal and vertical displacement responses are

EI( )u i 1 2 3 4 5 6, , , , ,=

 Fig. 6 Configuration and modelling of a steel frame structure

Table 5 Identified elemental bending stiffness values of the undamaged frame structure with noise free vs. the
real values

 Element   (N·m2)  (N·m2)  Relative Error

 1  491153082.21  494203217.52  0.62%

 2  491153082.21  489363945.78  0.36%

 3  283037369.41  283104171.25  0.02%

 4  283037369.41  281073515.95  0.69%

 5  360456414.57  360771944.64  0.09%

 6  360456414.57  358373464.68  0.58%

EI( )i
u
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Fig. 7 Identified results of the frame structure with the MNI of 15% (a) Scenario 1, (b) Scenario 2, (c)
Scenario 3, (d) Scenario 4, (e) Scenario 5, (f) Scenario 6 
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measured and utilized to detect damage by the generalized SMBDD method, while no

measurements on rational displacements are attempted. The bending stiffness parameters of the

undamaged frame structure are first identified without considering the effect of measurement noise.

The identified results,  ( ), are presented and compared with real values,

, in Table 5. The maximum relative error of the identified stiffness parameters is only 0.69%.

The high accuracy of the identified stiffness parameters of the undamaged structure paves a good

foundation for the following damage detection of the frame structure. 

Six damage scenarios of the frame structure are then designed and examined to investigate the

robustness of the proposed method. The details of the six damage scenarios are presented in Table 6.

Scenarios 1, 2 and 3 are single damage in which Scenarios 1and 3 have damage in column elements

and Scenario 2 has damage in a beam element (see Fig. 6). The other three damage scenarios have

multi-damage with different locations and different damage severities. The actual locations of all

damaged elements can be found in Fig. 6. For each damage scenario, the actual fourth-order

moments of displacement responses are directly computed from the measured displacement

responses of the damaged structures by Eqs. (1) and (2). Then the stiffness parameters of the

damaged structure for every damage scenarios are identified by the constrained least-squares

method. With reference to the identified stiffness parameters of the undamaged structure (see Table 5),

EÎ( )i
u

i 1 2 3 4 5 6, , , , ,=

EI( )i
u

Table 6 Details of damage scenarios of the frame structure

 Scenario No.  Damage severity  Damage location

 1  5%  3rd element

 2  5%  2nd element

 3  2%  6th element

 4
 5%  1st element

 10%  5th element

 5

 10%  2nd element

 10%  3rd element

 20%  5th element

 6

 5%  1st element

 10%  2nd element

 15%  4th element

 20%  5th element

Table 7 Identified damage severities (%) of the frame structure with noise free

 Scenario No.  Element 1  Element 2  Element 3  Element 4  Element 5  Element 6

 1  0.00  0.00  -5.13  -0.03  -0.08  0.00

 2  0.00  -5.06  0.00  -0.14  -0.01  -0.06

 3  0.00  0.00  0.00  -0.05  0.00  -2.07

 4  -4.97  -0.04  0.00  -0.45  -10.02  0.00

 5  0.00  -9.07  -9.51  -2.25  -20.36  0.00

 6  -3.95  -9.97  0.00  -16.42  -20.06  0.00
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damage locations and their corresponding damage severities of damage scenario are identified. The

identified results are presented in Fig. 7 and listed in Table 7. 

As seen from Fig. 7, the damage locations of the frame structure can be accurately identified out

for both single damage and multi-damage scenarios no matter whether the damage is in beam

elements or in column elements. Even for the very small damage of 2% in Scenario 3, the damage

locations can also be detected out. In comparison with the real damage severities shown in Table 5,

it can be seen that the identified damage severities in Table 7 are quite close to the real values for

both single damage and multi-damage scenarios. The feasibility and robustness of the proposed

method are demonstrated through the frame structure with incomplete measurements when

measurement noise is not considered. 

 

3.2.3 Damage detection with measurement noise

The influence of measurement noise on the quality of damage detection results is then numerically

investigated through the frame structure. Measurement noise is considered for both measured

displacement responses and external excitations. The superimposed Gaussian random noises are

independent to and different with each other. The MNI of 15% is adopted here. The identified

stiffness parameters of the undamaged structure with the effects of measurement noise are listed and

compared with the real values in Table 7. The maximum relative error between the identified

stiffness parameters and the actual ones is 1.58%, which is larger than that without the effects of

measurement noise but still acceptable in consideration of the high measurement noise intensity of

15%. 

The six damage scenarios are explored again with considering the effect of measurement noise. For

each damage scenario, the measured displacement responses and the external excitation are

contaminated by measurement random noises. The noise intensity adopted here is 15%. The stiffness

parameters of the damaged structure for every damage scenarios are identified by utilizing the fourth-

Table 8 Identified results of the undamaged frame structure with MNI of 15%

 Element   (N·m2)  (N·m2)   Relative Error

 1  491153082.21  495524388.89  0.89%

 2  491153082.21  489843679.41  0.27%

 3  283037369.41  283513318.58  0.17%

 4  283037369.41  278577259.14  1.58%

 5  360456414.57  361059562.66  0.17%

 6  360456414.57  355794388.97  1.29%

Table 9 Identified damage severities of the frame structure with MNI of 15%

Scenario  No. Element 1 Element 2 Element 3 Element 4 Element 5 Element 6

1 0.00 -0.08 -4.99 0.00 -0.02 -0.02

2 0.00 -3.92 0.00 -0.32 -0.58 0.00

3 0.00 0.00 0.00 0.00 0.00 -1.10

4 -4.35 0.00 0.00 -1.00 -9.89 0.00

5 0.00 -8.91 -9.52 -1.96 -20.36 0.00

6 -4.48 -9.25 -0.32 -16.35 -20.15 0.00

EI( )i
u
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order moments of the contaminated responses and the contaminated external excitation. With

reference to the identified stiffness parameters of the undamaged structure (see Table 8), the damage

severity of each element is finally calculated for every damage scenario. The identified results are

presented in Fig. 7 and compared with real values and those without considering measurement noise.

The damage severity values of the six damage scenarios can also be found in Table 9. 

It can be seen from Fig. 7 that even when the MNI is as high as 15%, the damage locations of

these scenarios are accurately detected out for the frame structure with incomplete measurement.

The location of very small damage of 2% in Scenario 3 is also identified out. In addition, as seen

from Table 9, the identified damage severity values with measurement noise are close to the real

ones. Compared with the identified results without measurement noise, the measurement noise has

small effect on the identified results. The feasibility and robustness of the proposed method are

demonstrated through the frame structure with incomplete measurements and with high level of

measurement noise. 

 

 

4. Conclusions 

In this paper research efforts have been made to extend the SMBDD method from shear building

structures to more general building structures, from ground excitations to general external excitation

with arbitrary locations, and from complete measurements to incomplete measurements. The

equations of the generalized SMBDD method have been derived in the frequency domain. The

effectiveness and robustness of the generalized SMBDD method were first investigated through a

flexible tower with incomplete measurements. In the numerical investigation, only the horizontal

displacement responses of the flexible tower were measured and utilized to detect damage, the

number of which is much less than the number of the total DOFs. Various damage scenarios with

different damage locations and damage severities of the flexible tower were accurately identified by

the proposed method. The effect of measurement noise was also considered by contaminating the

displacement responses and external excitations with white Gaussian noise. Even when the

measurement noise intensity was as high as 15%, highly reliable results of the various damage

scenarios of the flexible tower were obtained by the generalized SMBDD method.

A frame structure with incomplete measurements was further numerically investigated with

consideration of the effects of measurement noise. Only the horizontal and vertical displacement

responses are measured and utilized to detect structural damage. The advantage of the proposed

method that is both sensitive to structural damage and insensitive to measurement noise has been

validated again through various damage scenarios of the frame structure with incomplete

measurement and a high level measurement noise of 15%. 
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