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1. INTRODUCTION
Basically the vibration of stay cables can be classified
into the following two categories. The first one is the
vibration due to the direct loading on the cables. Rain-
wind induced vibration (Hikami and Shiraishi 1988) and
vortex-induced vibration are typical ones. The other type
is the support-induced motion due to girder or pylon
vibration. This type of vibration can be further classified
into two: one is due to the linear coupling between 
the cable and the girder/pylon and the other is the
parametrically excited vibration. In the recent years, the
cable vibration caused by parametric excitation due to
deck or tower motion has been studied, for example,
Takahashi and Konishi (1987), Lilien and Pinto da Costa
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(1994), Yamaguchi and Fujino (1998), Wu et al. (2006),
Gattulli and Lepidi (2003), and so on.

However, these analytical approaches either investigate
the cable vibration given support motions of the
girder/pylon, or study a cable-beam coupled system. The
former approach does not consider interaction between
the local motion (cable) and the global motion
(cable/girder/pylon) (Abdel-Ghaffar and Khalifa 1991).
The latter one simplifies the system into few degrees of
freedom, usually no more than three (Fujino et al. 1993),
otherwise the analytical solution is difficult to obtain.
Consequently it cannot deal with real cable-stayed bridges
usually with multiple cables and multiple modes. In this
regard, finite element methods have to be employed.



In literature, there are three types of cable elements
available. In the first type, each cable is represented by
a single truss element or single spring element with an
equivalent modulus (Ernst 1965). This approach has
been commonly used for analysis of cable-stayed
bridges (Karoumi 1999). In the second approach, each
cable is divided into several straight truss elements
(Abdel-Ghaffar and Khalifa 1991). However, using
truss elements cannot consider the transverse vibration
and out-of-plane vibration of the cables, and thus
parametric vibration of the cables cannot be obtained
(Wu et al. 2006). The third approach developed by
Broughton and Ndumbaro (1994) can account for the in-
plane (longitudinal and transverse) and out-of-plane
responses of cables. Wu et al. (2006) applied it to a
cable-stayed bridge and obtained the coupled cable-
deck vibration and the parametric vibration of the
cables. However, the feasibility of the method hasn’t
been thoroughly verified through available analytical
solutions, particularly for the case of random excitation.

To extend feasibility of the cable finite element in
real cable-stayed bridges with multiple cables, in this
paper the cable element developed by Broughton and
Ndumbaro (1994) is applied to a simplified cable-
beam system whose analytical solutions of nonlinear
vibration to harmonic and random loadings have been
obtained. Moreover, the analytical results of the
system under harmonic loading have been verified
through experiments (Fujino et al. 1993). Comparison
shows that the cable element can deal with nonlinear
vibration particularly auto-parametric oscillation of
cables under harmonic and random loadings.

2. MODELLING OF A CABLE-BEAM SYSTEM
To compare the analytical approach and finite element
approach, a simple cable-beam system as shown in
Figure 1 is employed here, which has been studied by
Fujino et al. (1993) for harmonic loading and Xia and
Fujino (2006) for random loading.

2.1. Analytical Approach to the Cable-Beam

System

With analytical approach, horizontal vibration of the
beam is denoted as ub(x, t) and vertical vibration as
vb(x, t), and local horizontal motion of the cable is
represented by uc(s, t). As the analytical approach
cannot deal with the system with degrees of freedom
more than three, local vertical vibration of the cable is
neglected. This simplification is proved acceptable by
numerical solution, as shown in later sections. Based
on assumption of small response, vibration of the
system is described by the global horizontal motion
(φh), global vertical motion (φg), local horizontal

motion of the cable (φy) and the corresponding
generalized coordinates, h, g and y, as illustrated in
Figure 2.

With Lagrange’s approach, equations of motion of
the system are given as (Fujino et al. 1993)

y'' + 2ξyy' + y + ζhh'' + 2ηgyg + αy3 = 0 (1)

(2)

(3)

where ξy, ξh and ξg are viscous damping ratio; fy, fh

and fg are natural frequencies of the cable, beam in
horizontal and vertical directions, respectively;

, u0 is the initial elongation

of the cable; µc is the uniform mass per unit length of the
cable; My, Mh and Mg are modal mass of the cable and
beam; Lc is the chord length, θ the cable inclination
angle, xc is the distance between the cable stay point and
the support of the beam; Ph(t) and Pg(t) are horizontal
and vertical external forces applied to the cable-
supported end of the beam, respectively; and prime
denotes the derivative with respect to time. Detail
derivation of the equations can be referred to the study
by Fujino et al. (1993). From the above equations of
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Figure 1. Cable-stayed beam as a model of cable-stayed bridges



motion, it is observed that cubic nonlinear terms, linear
and quadratic coupling terms are included.

Under the harmonic loading, the multiple scales
method (Nayfeh and Mook 1979) can be employed to
solve the above equations and obtain the responses of
the system under different excitation amplitudes and
excitation frequencies. For the case of random
excitation, a general equivalent linearization with non-
stationary approach (Roberts and Spanos 1990) can be
employed to calculate the root-mean-square (RMS) of
the system responses to different excitation levels.

2.2. Finite Element Approach to the Cable-Beam

System

With finite element approach, the cable is modelled by
three-dimensional cable elements and the beam is
modelled by three-dimensional Euler Bernoulli beam
elements.

In the local coordinate system of the cable element as
shown in Figure 3, the original length of the element is
L0, the initial basic force is P0, and the displacements in
three directions (x*, y*, z*) are (ui , vi , wi) in node-i and
(uj, vj, wj) in node-j. The equilibrium equation of one
cable element is given below.

(4)

where {F}e = {−R, −S, −T, R, S, T}T is the load vector applied
to the ends of the element, P = P0 + ECAC/L0 × e is the

updated element basic force, e L u v w L= +( ) + + −0
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is the element extension where u = uj – ui , v = vj – vi , and
w = wj– wi , and Ec and Ac are Young’s modulus and
cross-sectional area of the cable element.
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Figure 2. Local and global vibration shapes
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The above equation can be used to generate element
incremental stiffness matrix, which includes transverse
and out-of-plane actions of the cables. These are the
major differences between the present cable element and
other elements such as truss element and chord element
that cannot evaluate the parametric vibrations of cables
(Wu et al. 2006).

The restoring force of the cable element is a function
of nodal displacements and element forces. Therefore, as
the structure deforms, it needs to be reformulated using
Newton-Raphson method. The stiffness matrix is
updated during the iterative procedure. Direct integration
is performed to calculate the time history dynamic
response of the cable.

The lumped mass matrix and Rayleigh damping are
used for the cable-beam system. For the cable-beam
model shown in Figure 1, the cable is modelled by 
20 cable elements and the beam is modelled by 18 Euler
Bernoulli beam elements, as shown in Figure 4.

3. NONLINEAR VIBRATION UNDER
HARMONIC LOADING

The cable-beam model is analysed with the two
different approaches described above. Parameters of
the system are listed in Table 1. It is noted that the
frequency ratio of the system (local horizontal: global
horizontal: global vertical) is approximately 1:1:2.
Here the global vertical mode is the second in-plane
mode of the beam.
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Figure 4. Finite element model of the cable-beam system

Table 1. Parameters of the cable-beam model

Parameter Value Parameter Value Parameter Value

Lc 2.08 m fy 9.63 Hz Mh 5.401 kg
L 2.00 m fh 9.38 Hz Mg 6.200 kg
xc 1.99 m fg 19.82 Hz EcAc 35077.6 N
θ 29.0 deg ξy 0.20% φh(xc) 0.993
µc 0.07 kg/m ξh 0.35% φg(xc) 0.971
u0 0.0067 m ξg 0.14%

Under the horizontal excitation Ph = Fhcos(Ωht) only,
where Fh and Ωh are the amplitude and frequency of the
dynamic force, the vibration amplitudes of the cable and
the beam obtained by the two methods are compared in
Figure 5, in which Fh = 0.15 N. It is observed that the
two methods give very similar results. There are two
peaks in the frequency response diagram that
correspond to the resonances of the system.

Similarly under the vertical excitation only with
amplitude Fh = 0.16 N, the frequency responses of the
system obtained by the two methods are compared in
Figure 6. From the figure, one can conclude:

1) The results obtained by the two methods match
very well, which verifies the accuracy of the
cable finite element method.

2) When the excitation frequency is less than
19.73 Hz or larger than 19.84 Hz, horizontal
motion of the cable and the beam is trivial (zero
response), and only vertical vibration is excited,
which is called as linear motion.

3) When the excitation frequency falls between
19.73 Hz and 19.84 Hz (1:2 superharmonic
tuning), large horizontal vibration of the cable is
excited at half excitation frequency. This is
referred to as auto-parametric oscillation (Fujino
et al. 1993), or internal resonance (Nayfeh and
Mook 1979). At the same time, the vibration
amplitude of the beam decreases. In the
situation, the linear motion is unstable.

4) With the finite element approach, local
vertical vibration of the cable at different
excitation frequencies is plotted in Figure 6(d),
which shows a similar manner as the beam’s
vertical motion. This, however, cannot be
obtained through the analytical approach as
only three degrees of freedom can be solved in
the case. It is also found that the auto-
parametric oscillation of the cable in the
vertical direction is less than 10% of that in 
the horizontal direction. Therefore neglecting
the vertical motion of the cable is acceptable 
in the analytical solution.
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Figure 5. Vibration of the system under horizontal excitation (Fh = 0.15 N)
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Figure 6. (Continued)



4. NONLINEAR VIBRATION UNDER
RANDOM LOADING

The real loading on the bridge is generally not purely
harmonic but often random. Hence nonlinear responses
of cable-stayed bridges due to random excitation are
very important from practical point of view. Although
the local and global random responses of the bridges can

be estimated separately, the coupled cable-beam system
under random excitation has been rarely studied so far.

Here only vertical random excitation is studied to
examine the capability of the cable element in dealing
with parametric vibration. For different excitation levels
in terms of RMS, the responses are also obtained in
sense of RMS, as shown in Figure 7. In the numerical
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Figure 7. RMS responses under vertical random excitation
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Figure 6. Vibration amplitude under vertical excitation (Fg = 0.16 N)



approach, 16 times simulation are applied and the mean
values are presented here.

From the figure, one can find that:
1) In general the responses with the two methods

agree very well.
2) When the excitation is less than a certain level,

horizontal motions of the cable and the beam
cannot be excited, and only vertical vibration is
observed, which is similar to the case of
harmonic excitation.

3) When the excitation is larger than a certain
level, large horizontal vibration of the cable is
excited. At the same time, vibration amplitude
of the beam decreases. In the situation, the
original linear motion is unstable.

4) Horizontal vibration of the beam and the cable via
the finite element approach is larger than the
counterpart with the analytical approach. Spectrum
analysis shows that, in the analytical approach, the
response of the beam is a banded process with
three peaks corresponding to the three natural
frequencies of the system. However, in the finite
element approach, the system has much more
degrees of freedom and higher modes are excited
as well under the random excitation. The high
frequency components contribute the vibration as
well, which is not included in the analytical
solution. This may result in different results.

5. CONCLUSIONS
Nonlinear vibration of the cable-beam system under
harmonic loading and random loading is obtained with an
analytical approach and finite element approach. Results
show that the two methods give very close results even in
the event of parametric vibration. Feasibility of the finite
element approach to nonlinear vibration of cables is thus
verified. The cable element cannot only deal with the
structure with multiple cables, which is not possible for
analytical methods, but also includes the cable-bridge
interaction and out-of-plane vibration of cables.
Therefore, it is deemed to be an ideal tool in analyzing
vibration of real cable-stayed bridges. Application of the
cable finite element approach to bridges with multiple
stay cables will be investigated in the near future.
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