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Substructure Based Approach to Finite Element Model Updating 

 

ABSTRACT 

A substructure-based finite element model updating technique is proposed in this paper. A few 

eigenmodes of the independent substructures and their associated derivative matrices are assembled 

into a reduced eigenequation to recover the eigensolutions and eigensensitivities of the global 

structure. Consequently, only the concerned substructures and the reduced eigenequation are 

re-analyzed in the optimization process, thus reducing the computational load of the traditional 

model updating methods which perform on the global structure. Applications of the proposed 

substructure-based model updating to a frame structure and a practical bridge demonstrate that the 

present method is computationally effective and efficient.  

 

Keywords: Model updating; Substructuring; Eigensolution; Eigensensitivity 
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Nomenclature 

K, M Stiffness matrix, mass matrix 

i , Λ  The ith eigenvalue, matrix of eigenvalues 

i , Φ  The ith eigenvector (mode shape), matrix of eigenvectors 

Φ  Matrix of expanded mode shapes 

J Objective function 

S Sensitivity matrix 

r Elemental physical parameter 

  Interface force along the boundaries of the substructures 

C Connection matrix 

N Degrees of freedom of the global structure 

NS Number of the independent substructures 

NP Size of the primitive matrix, or the degrees of freedom of all substructures 

 jn  Degrees of freedom of the jth substructure 

z Participation factor of the substructural eigenmodes 

 

Superscripts 

(j) The jth substructure 

p Primitive matrix or vector 

T Transpose of matrix or vector 

Subscripts 

m Master modes 

s Slave modes 

i The ith modes 
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1. Introduction 

Accurate finite element (FE) models are frequently required in a large number of applications, such 

as optimization design, damage identification, structural control and structural health monitoring [1]. 

Due to uncertainties in the geometry, material properties and boundary conditions, the dynamic 

responses of a structure predicted by a highly idealized numerical model usually differ from the 

measured responses. For example, Brownjohn et al. [2] reported that the differences between the 

experimental and numerical modal frequencies of a curved cable-stayed bridge exceeded 10% for 

most modes and even reached 40% in some cases. In another study [3], 18% difference was found 

between the analytical and measured frequencies. Jaishi and Ren [4] observed differences of up to 

20% in the natural frequencies predicted by an FE model and those measured in a steel arch bridge, 

and reported that the Modal Assurance Criteria (MAC) values could be as low as 62%. Similarly, 

Zivanovic et al. [5] found that the natural frequencies of a footbridge predicted by an FE model in 

the design before updating differed from their experimental counterparts by 29.8%. Therefore, an 

effective model updating method is necessary to obtain a more accurate FE model that can be used 

for other purposes such as prediction of response and damage identification. 

 

Model updating methods are usually classified into two categories: one-step methods and iterative 

methods [6]. The former directly reconstruct the stiffness and mass matrices of the analytical model, 

while the latter modify the physical parameters of the FE model repeatedly to minimize the 
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discrepancy between the analytical modal properties (frequencies and mode shapes) and the 

measurement counterparts. The iterative methods are becoming more popular, since they allow for 

the physical meaning of the predicted parameters to be reflected, and the symmetry, 

positive-definiteness and sparseness in the updated matrices to be preserved.  

 

Most iterative model updating methods employ optimization techniques, which require the 

eigensolutions and associated sensitivity matrices of the analytical model to be calculated in each 

iteration [7]. As the analytical model of a practical structure in civil engineering usually comprises a 

large number of degrees of freedom (DOFs) and contains many uncertain parameters that need to be 

updated, extracting the eigensolutions and associated eigensensitivities from the large-size system 

matrices is very time-consuming.  

 

The substructuring method is preferable to cope with large scale structures. In general, the individual 

substructures are analyzed independently to obtain designated solutions, which are subsequently 

assembled to recover the properties of the global structure by constraining the interfaces of the 

adjacent substructures [8]. The substructuring method is advantageous mainly in three aspects. First, 

as the global structure is replaced by smaller and more manageable substructures, it is much easier 

and quicker to analyze the small system matrices. Second, the separated substructures are analyzed 

independently. When one or more substructures are modified, only the modified substructures need 
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to be reanalyzed while the others remain unchanged [9]. This property can be promising when 

applied to model updating or damage identification field. When the uncertain parameters or the 

damage areas are localized within parts of a structure, only one or more substructures containing 

those parts are re-analyzed during model updating or damage identification, and the other 

substructures are untouched [10, 11]. The substructuring method will be more efficient when some 

identical substructures exist or when the substructuring method is incorporated with parallel 

computation. Finally, the substructuring method is helpful to be combined with the model reduction 

technique in calculating the eigensolutions and eigensensitivities [12, 13]. 

 

Kron [14] first proposed a substructuring method to study the eigensolutions of large scale systems in 

a piecewise manner, and it has been developed by the authors in terms of efficiency [15, 16]. This 

paper attempts to extend the substructuring method to calculate the eigensolutions and 

eigensensitivities for the sensitivity-based model updating process. The eigensolutions and 

eigensensitivities of the global structure are recovered from a few eigenmodes and their associated 

derivatives of the independent substructures. In particular, eigensensitivity with respect to an 

elemental parameter of the global structure is calculated from the derivative matrices of one 

substructure that contains the element. The derivatives of other substructures to the elemental 

parameter are zero. This can save a large amount of computational effort in calculation of the 

eigensolutions and eigensensitivities which dominate the model updating process. The effectiveness 
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and efficiency of the proposed method are illustrated through a numerical frame structure and a 

practical bridge. 

 

2. Sensitivity-based model updating method 

In sensitivity-based model updating procedure, the general objective function combining the modal 

properties of the frequencies and mode shapes is usually denoted as [6]  

         
2 2

2 2A AE E
i i i i ji ji

i i j

J r W r W r                 (1) 

where E
i  represents the eigenvalue which is the square of the ith experimental frequency, E

ji  is 

the ith experimental mode shape at the jth point. A
i  and A

ji  denote the corresponding eigenvalue 

and mode shape from the analytical FE model, which are expressed as the function of the uncertain 

physical parameters  r . iW  and iW  are the weight coefficients due to the different 

measurement accuracy of the frequencies and mode shapes. The objective function is minimized by 

continuously adjusting the parameters  r  of the initial FE model through optimization searching 

techniques. 

 

The optimization algorithm, which is a sensitivity-based iterative procedure, minimizes the objective 

function in a trust region. The quadratic model  r  is defined by a truncated Taylor series of J(r) 

as [7, 17] 
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               21

2
r J r J r r r J r r             

T T
 (2) 

where  r  denotes a step vector from the current  r .  J r  and  2J r  are the gradient 

and the Hessian of J(r), respectively. After an iterative process, the optimized  *r  is reached with 

  0J r  . The gradient and Hessian of  J r  can be expressed by the sensitivity matrix as 

        2Sr rJ r f  
T

,      2 SJ r r S r  T
 (3) 

where   f r  encloses the weighted residuals    A EW r    and    A EW r   . In 

each iteration, the optimization algorithm constructs a model function  r  near the current point 

 r  according to the sensitivity matrix, and determines a trust region surrounding the current  r . 

The optimized value of  *r  in this iteration is then computed by minimizing the model function 

 r  inside the trust region.  

 

To find the optimal searching direction, sensitivity analysis is usually conducted to compute the rate 

of the change of a particular response quantity with respect to the change in a physical parameter [7]. 

For example, the sensitivity matrices of the eigenvalues and mode shapes with respect to a parameter 

r can be expressed as 

  
   r

S r
r


   

,    r
S r

r


    

 
(4) 

[S(r)] can be computed for all elemental parameters using the finite difference method, modal 

method or Nelson’s method. The finite difference method calculates the eigensolutions at perturbed 

points and compares the differences at these points as the derivative [17]. This method is sensitive to 

the round off and truncation errors associated with the step size used and is computationally 
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inefficient, so it is usually not employed for model updating. Fox and Kappor [19] proposed the 

modal method, which approximated the eigenvector derivatives as a linear combination of the 

eigenvectors. As all modes of the system are required to calculate the eigenvalue and eigenvector 

derivatives, this method was computationally expensive for a large-scale structure. Nelson’s method 

[19] calculates the eigenvector derivative using the modal data of that mode solely. It is exact and 

computationally efficient. Sutter et al. [20] compared the difference method, modal method and 

Nelson’s method in terms of computational accuracy and efficiency, and concluded that the Nelson’s 

method is the most powerful one among the three methods. Hence, Nelson’s method will be 

considered in this research to be integrated with the substructuring method for eigensensitivities. 

 

In traditional model updating methods, the eigensolutions and eigensensitivity matrices are 

calculated from the system matrices of the global structure, based on the classical eigenequation 

     i i i  K M  (5) 

where K and M are the stiffness and mass matrices, and i  and  i  are the ith eigenvalue and 

eigenvector, respectively. Based on Eq. (5), the Lanczos method or Subspace Iteration method are 

widely employed to calculate the eigensolutions for a large-scale structure, while the Nelson’s 

method is used for the eigensensitivity [21]. These traditional methods calculate the eigensolutions 

and eigensensitivity by treating the entire structure as a whole. Updating the FE model of a 

large-scale structure usually involves a heavy workload, as calculating the eigensolutions and 
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eigensensitivities based on the large-size system matrices is expensive and many runs are usually 

required to achieve the convergence of the optimization. To reduce this computational burden, in the 

present paper, a structure is divided into a few independent substructures whose eigensolutions and 

eigensensitivity are analyzed independently. The substructural solutions are then assembled to obtain 

the eigensolutions and eigensensitivity of the global structure by imposing constraints on them. The 

substructuring method is proposed in the following sections to estimate the eigensolutions and 

eigensensitivities for model updating purpose.  

 

3. Eigensolutions with substructuring method 

The global structure with N DOFs is divided into NS substructures. Treating the jth substructure of n(j) 

DOFs ( j=1, 2, …, NS ) as an independent structure, it has the stiffness matrix  jK  and mass matrix 

 jM , and n(j) pairs of eigenvalues and eigenvectors as [22]: 

  
     

 
 

1 2Diag , ,..., j

j j j j

n
     Λ , 

     
 
 

1 2, ,..., j

j j j j

n
     Φ

 

  
       T

j j j j   Φ K Φ Λ , 
       T

j j j j   Φ M Φ I , ( j=1, 2, …, NS ) (6) 

Based on the principle of virtual work and geometric compatibility, Kron’s substructuring method 

[14, 22] reconstructs the eigensolutions of the global structure by imposing the constraints at the 

interfaces as 

  

p

T τ

      
         

z 0Λ I Γ

0Γ 0
 

(7) 
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In this equation,
 

  

Tp   Γ CΦ , 

  
     1 2p Diag , ,..., SN   Λ Λ Λ Λ , 

     1 2p Diag , ,..., SN   Φ Φ Φ Φ , (8) 

where C is a rectangular connection matrix constraining the interface DOFs of the adjacent 

substructures to move jointly [23]. In matrix C, each row only contains two non-zero elements, 

which are 1 and -1 for rigid connection. τ is the internal connection forces of the adjacent 

substructures.   is the eigenvalue of the global structure. z acts as the participation factor of the 

substructural eigenmodes, and the expanded eigenvectors of the global structure can be recovered by 

 pΦ Φ z . The eigenvector Φ of the global structure is obtained by discarding the identical values 

in Φ  at the interface points. Superscript ‘p’ denotes the diagonal assembly of the substructural 

matrices, representing the primitive matrices before constraining the independent substructures. 

 

From the viewpoint of energy conservation, all modes of the substructures contribute to the 

eigenmodes of the global structure, i.e., the complete eigensolutions of all substructures are required 

to assemble the primitive form of Λp and Φp. It is inefficient and not worthwhile to calculate all 

modes of the substructures, as only a few eigenmodes are generally of interest for a large-scale 

structure. To overcome this difficulty, the proposed method will improve the efficiency of Kron’s 

substructuring method by introducing a modal truncation technique. In each substructure, the first 

few eigensolutions, corresponding to the lower vibration modes, are selected as the ‘master’ 
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variables. The residual higher modes are treated as the ‘slave’ variables. Only the master modes are 

calculated to assemble the eigenequation of the global structure, while the slave modes are discarded 

in the later calculations. From here on, subscripts ‘m’ and ‘s’ will denote the ‘master’ and ‘slave’ 

modes, respectively.  

 

Assuming that the first  
m

jn  ( j = 1, 2, …, NS ) modes in the jth substructure are chosen as the 

‘master’ modes while the residual  
s

jn  higher modes are the ‘slave’ modes, the jth substructure has 

the ‘master’ eigenpairs and ‘slave’ eigenpairs as 

 
     

 
 
m

m 1 2Diag , ,..., j

j j j j

n
     Λ , 

     
 
 
m

m 1 2, ,..., j

j j j j

n
     Φ , 

 
 

 
 

 
 

   
 

m m m s
s +1 2

Diag , ,...,j j j j

j j j j

n n n n
  

 
 
 

Λ , 
 

 
 

 
 

   
 

m m m s
s +1 2

, ,...,j j j j

j j j j

n n n n
  

 
 
 

Φ , 

 
     
m s

j j jn n n  ,  1, 2,..., Sj N
 

 (9) 

Assembling the ‘master’ eigenpairs and ‘slave’ eigenpairs for all substructures, respectively, one has 

 
       1 2p

m m m m mDiag , ,..., ,..., SNj   Λ Λ Λ Λ Λ , 
       1 2p

m m m m mDiag , ,..., ,..., SNj   Φ Φ Φ Φ Φ , 

 
       1 2p

s s s s sDiag , ,..., ,..., SNj   Λ Λ Λ Λ Λ , 
       1 2p

s s s s sDiag , ,..., ,..., SNj   Φ Φ Φ Φ Φ  

 

 
m m

1

SN
j

j=

NP n ,  
s s

1

SN
j

j=

NP n ,  

1


SN

j

j=

NP n ,  1, 2,..., Sj N  (10) 

Denoting 
Tp

m m   Γ CΦ , 
Tp

s s   Γ CΦ , the eigenequation (Eq. (7)) is re-written according to the 

master modes and slave modes as 

  

p
m m m

p
s s s

T T
m s




      
           

          

Λ I 0 Γ z 0

0 Λ I Γ z 0

Γ Γ 0 0τ
 

(11) 

With the second line of Eq. (11), the slave part of the mode participation factor can be expressed as 
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    1p
s s s


 z Λ I Γ τ

 
(12) 

Substituting Eq. (12) into Eq. (11) gives 

  
 

p
m m m

1T T p
m s s s






           
        

Λ I Γ z 0

0Γ Γ Λ I Γ τ
 

(13) 

In Eq. (13), Taylor expansion of the nonlinear item   1p
s 


Λ I  gives 

         1 1 2 3p p p 2 p
s s s s  

   
    Λ I Λ Λ Λ 

 
(14) 

In general, the required eigenvalues   correspond to the lowest modes of the global structure, and 

are far less than the values in p
sΛ  when the master modes are appropriately chosen. In that case, 

retaining only the first item of the Taylor expansion gives    1 1T p T p
s s s s s s

 
 Γ Λ I Γ Γ Λ Γ , and 

therefore Eq. (13) is simplified into 

  
 

p
m m m

1T T p
m s s s




           
       

Λ I Γ z 0

0Γ Γ Λ Γ τ
 

(15) 

Representing τ  with mz  from the second line of Eq. (15) and substituting it into the first line, Eq. 

(15) is reduced into 

  
 p 1 T

m m m m m      Λ I Γ Γ z 0  

    1T p
s s s


 Γ Λ Γ

 
(16) 

The size of the reduced eigenequation (Eq. (16)) is equal to the number of the retained master modes 

m mNP NP , which is much smaller than the original one of NP NP  in Eq. (7).   and mz  can 

be solved from this reduced eigenequation using common eigensolvers, such as Subspace Iteration or 

Lanczos method [21]. As before, the eigenvalues of the global structure are  , and the eigenvectors 
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of the global structure are recovered by p
m mΦ Φ z .   1T p

s s s


 Γ Λ Γ  is associated with the 

first-order residual flexibility that can be calculated using the master modes of the substructures as 

     1 1 TT p p p p T
s s s s s s

 
   Γ Λ Γ CΦ Λ Φ C

 
(17)

 

  

         

         

1 1 T1 1 1 1
m m m

1 Tp p p
s s s

1 1 T

m m m
S S S SN N N N

 



 

     
      
     

K Φ Λ Φ 0 0

Φ Λ Φ 0 0

0 0 K Φ Λ Φ

 (18) 

 

In the present substructuring method, the higher modes of the substructures are not calculated and are 

compensated with the first-order residual flexibility. In Eq. (13), the nonlinear item   1p
s 


Λ I  is 

approximately represented by the first item of Taylor expansion   1p
s


Λ , and the error introduced by 

this approximation is 

Error =    
   

   
s s

p p
s s1 1

1 1p p
s s

p p
s s

1 1

1 1







 

 
  

     
 

   

Λ Λ

Λ I Λ

Λ Λ
NP NP



 

   

   
   

s s

p p
s s1 1

p p
s s

p p
s s

Diag









 
 

              
   

Λ Λ

Λ Λ

Λ Λ

i i

NP NP



 

(19) 

    Relative error = 
   

 
 

p p
s s

p
s

p
s

Diag Diag
1

i i

i

i


 



 
 

  
       

 
 

Λ Λ

Λ
Λ

       

( i=1, 2, …, NPs ) (20) 



14 
 

Therefore, the largest relative error =  p
smin


Λ

. 

 

It reveals that the relative error of this substructuring method is dependent on  p
smin


Λ

. If the 

required eigenvalues   are far less than the minimum value of p
sΛ , the introduced error will be 

insignificant. That is to say, the minimum value of p
sΛ  will control the accuracy of the proposed 

substructuring method. As p
sΛ  includes the eigenvalues of the slave modes of the substructures, 

retaining more master modes in the substructures can increase the values in p
sΛ . One should 

determine how many master modes need to be calculated in each substructure according to the 

precision required. The influence of this slight error on model updating results will be investigated 

through a numerical example in Section 5. 

 

4. Eigensensitivity with substructuring method 

The eigensensitivity of the ith mode ( i=1, 2, …, N ) with respect to an elemental parameter will be 

derived in this section. The elemental parameter is chosen to be the stiffness parameter, such as the 

bending rigidity of an element, and denoted as parameter r in the Rth substructure. The reduced 

eigenequation (Eq. (16)) is rewritten for the ith mode as 

       p 1 T
m m m mi i      Λ I Γ Γ z 0  (21) 

Eq. (21) is differentiated with respect to parameter r as 
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p 1 T
m m m mp 1 T

m m m m

ii
i ir r

 
 




            

Λ I Γ Γz
Λ I Γ Γ z 0

 
(22) 

Since  p 1 T
m m m mi     Λ I Γ Γ  is symmetric, pre-multiplying  T

iz  on both sides of Eq. (22) 

gives the eigenvalue derivative of the ith mode 

       
1 Tp

T m mmi
i ir r r


  

  
    

Γ ΓΛ
z z  (23) 

where 

  
 1 T T

m m 1 T 1 1 T 1m m
m m m mr r r r

    


   
  

  
   

Γ Γ Γ Γ
Γ Γ Γ Γ  (24) 

In this equation, the derivative matrices 
p
m

r



Λ

, m

r



Γ

, and 
r




 are formed using the eigenvalue 

derivatives, eigenvector derivatives, and residual flexibility derivatives of the substructures. Since 

the substructures are independent, these derivative matrices are calculated within the Rth 

substructure solely, while those in other substructures are zeros, i.e., 

  
 p

m m
R

r r

 
 

     
 
  

0 0 0

Λ Λ
0 0

0 0 0

,  
 T p

m m m
R

r r r

 
 

        
 
  

0 0 0

Γ Φ Φ
C C 0 0

0 0 0

 

  

          1 1 T

m m m
TC Diag C

R R R R

r r


 

 
 

         
  
 
 
  

0 0 0

K Φ Λ Φ
0 0

0 0 0

 (25)

 

 iz , mΓ , and 1   have been computed in previous section for eigensolutions and can be re-used 

here directly. 
 
m
R

r



Λ

 and 
 
m
R

r



Φ

 are the eigensolution derivatives of the master modes in the Rth 

substructures. They can be calculated with common methods, such as Nelson’s method [19], by 
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treating the Rth substructure as one independent structure. Subsequently, the eigenvalue derivative of 

the global structure can be obtained from Eq. (21), and it solely relies on a particular substructure 

(the Rth substructure). 

 

Regarding Eq. (16), the eigenvectors of the global structure are recovered by p
m mΦ Φ z . Hence, the 

ith eigenvector of the global structure can be expressed as 

   p
mi iΦ Φ z  (26) 

Differentiating Eq. (26) with respect to the elemental parameter r, one can obtain the eigenvector 

derivative of the ith mode as 

  
 

p
pm
m

i i
ir r r

         

Φ zΦ
z Φ

 
(27) 

In Eq. (27), p
mΦ  and  iz  have been obtained when calculating the eigensolutions. 

p
m

r



Φ

 is 

associated with the eigenvector derivatives of the Rth substructure as Eq. (25). i

r

 
  

z
 can be 

obtained from the reduced eigenequation (Eq. (21)), as described in the following.  

 

i

r

 
  

z
 is separated into the sum of a particular part and a homogeneous part as 

  
   i

i i iv c
r

     

z
z

 
(28) 

where ci is a participation factor. Substituting Eq. (28) into Eq. (22) gives: 

  
   i iv YΨ

 
(29) 

where 
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 p 1 T

m m m mi      Ψ Λ I Γ Γ ,  
 

 
p 1 T
m m m mi

i iY
r

       


Λ I Γ Γ
z  

Since the items in Ψ and {Yi} are available when calculating the eigenvalue derivatives, the vector 

 iv  can be solved with Eq. (29) effortlessly.  

 

The eigenvector  iz  of the reduced eigenequation (Eq. (16)) satisfies the orthogonal condition of  

     T
1i i z z

 
(30) 

Differentiating Eq. (30) with respect to r gives 

  

       T
T

0i i
i ir r

 
 

 
z z

z z
 

(31) 

Substituting Eq. (28) into Eq. (31), the participation factor ci is therefore obtained as 

  
        T T1

2i i i i ic v v  z z
 

(32) 

Given the vector  iv  and the participation factor ci, the first-order derivative of  iz  with respect 

to the elemental parameter r can be achieved as 

  
           T T1

2
i

i i i i i iv v v
r

      

z
z z z

 
(33) 

Finally, the eigenvector derivative of the global structure can be calculated using Eq. (27), based on 

the items i

r

 
  

z
, 

p
m

r



Φ

, iz  and p
mΦ . 

 

Since the reduced eigenequation (Eq. (21)) is smaller in size compared to that of the global structure 

(Eq. (5)), calculation of i

r

 
  

z
 can be processed much faster than that in the conventional Nelson’s 
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method based on the global eigenequation (Eq. (5)). As calculation of the eigenvector derivatives 

dominates the whole model updating process, the substructuring method will improve the 

computational efficiency significantly, as demonstrated in the following examples.  

 

5. Numerical example: a frame structure 

As explained previously, the contribution of the slave modes to the eigenequation of the global 

structure are approximately compensated by the first-order residual flexibility matrix. This 

introduces some slight errors in calculation of the eigensolutions and eigensensitivities, and is 

regarded as methodology error [24]. A simulated frame structure (Fig. 1) is first employed to 

investigate the influence of this methodology error on model updating results. The frame structure 

comprises 160 two-dimensional beam elements as labeled in Fig. 1(a). There are 140 nodes and 408 

DOFs in total. The material constants of the beam elements are chosen as: bending rigidity (EI) 

=170 106 2Nm , axial rigidity (EA) = 2500 106 N, mass per unit length (ρA) = 110 kg/m, and 

Poisson's ratio = 0.3.  

 

In model updating, the simulated “experimental” modal data are usually obtained by intentionally 

introducing damages on some elements, and then the analytical model is updated to identify these 

damages [1, 6, 25]. In the present paper, the simulated frequencies and mode shapes, which are 

treated as the “experimental” data, are calculated from the FE model by intentionally reducing the 
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bending rigidity of some elements [25]. The simulated reduction in bending rigidity is listed in Table 

1 and denoted in Fig. 1(a). The first 10 “experimental” modes are available, and the measurements 

are obtained at the points and directions denoted in Fig. 1(a). Both the “experimental” frequencies 

and mode shapes are utilized to update the analytical model. The mode shapes have been normalized 

with respect to the mass matrix. 

 

The eigensolutions and eigensensitivities of the analytical model are calculated using the proposed 

substructuring method, and match the “experimental” counterparts through an optimization process. 

Using the substructuring method, the frame is disassembled into three substructures (NS = 3) when 

torn at 8 nodes as Fig. 1(b). The first 30 modes are retained as master modes in each substructure to 

calculate the first 10 eigensolutions and eigensensitivities of the global structure. It is noted that 

using the proposed substructuring method, the eigensolutions and eigensensitivities are calculated 

based on the reduced equation (Eq. (16)) with size of 90 90, rather than on the original global 

eigenequation (Eq. (5)) with size of 408 408. The eigenmodes and eigensensitivities at the 

experimentally measured points are then singled out to match the “experimental” modal data for 

model updating purpose. The bending rigidity of all column elements is assumed as unknown and 

chosen as the updating parameter. Accordingly, there are 64 updating parameters in total.  

 

The optimization is processed with the trust-region method provided by the Matlab Optimization 
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Toolbox [17, 26]. The algorithm can automatically select the steps and searching directions 

according to the objective function (discrepancy of eigensolutions) and the provided eigensensitivity 

matrices. The model updating process stops when the pre-defined tolerance of the objective function 

(Eq. (1)) or the maximum number of the iterations is reached. 

 

The influence of the methodology error on model updating results is first investigated by simulating 

the “experimental” data without introducing any discrepancy on the elemental parameters, as the 1st 

case (Table 1). The analytical eigensolutions are calculated using the substructuring method, and 

compared with the “experimental” data in Table 2. Some minor differences are found in Table 2, as 

expected. The relative differences in frequencies are less than 0.3% for all modes. The MAC values 

[27], which indicate the similarity of the analytical and experimental mode shapes, are above 0.99. 

This verifies that the error of the proposed substructuring method in calculation of eigensolutions is 

very small. Model updating is conducted to find out the change of the elemental bending rigidity due 

to the slight errors in calculation of eigensolutions and eigensensitivity. Fig. 2(a) gives the 

proportional changes in the elemental bending rigidity before and after updating that are calculated 

using the proposed substructure-based model updating method. The small values observed in Fig. 2(a) 

demonstrate that the slight errors in calculation of the eigensolutions and eigensensitivities have 

negligible effects on the model updating results. The errors come from the approximation of the 

higher modes with the residual flexibility matrix, as quantified in Eq. (19) and Eq. (20), 
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The “experimental” modal data is then generated by introducing certain known discrepancies in the 

bending rigidity of some elements, which are given in Table 1. In the 2nd case, the bending rigidity of 

a randomly selected column in the 1st substructure is assumed to be reduced by 30%. The column is 

composed of Element 147 and Element 148, denoted by ‘D1’ in Fig. 1(a). That is, the bending 

rigidity of Element 147 and Element 148 are reduced by 30% while the other elements remain 

unchanged. All the elements are then reassembled into a structure to obtain the “experimental” 

frequencies and mode shapes. The model updating process is conducted to make the analytical model 

reproduce the “experimental” frequencies and mode shapes. The frequencies and mode shapes before 

and after the updating are compared in Table 3. It demonstrates that the analytical modal data closely 

match the simulated “experimental” counterparts after the updating. The identified changes of the 

elemental parameters are illustrated in Fig. 2(b). The stiffness parameters of Element 147 and 

Element 148 are reduced by 30%, which agree with the simulated reduction in the elemental 

parameters. Some small values observed in other elements are due to the errors in calculation of 

eigensolutions and eigensensitivity, which have negligible influence on the model updating results. 

 

Without losing generality, the bending rigidity of elements located in different substructures are 

assumed to have some known discrepancy as well. In the 3rd case, the bending rigidity of two 

columns (denoted by ‘D1’ and ‘D2’ in Fig. 1(a)) is assumed to be reduced by 30% and 20% (see 

Table 1), respectively, i.e., the bending rigidity of Elements 147 and 148 are reduced by 30% and the 
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bending rigidity of Elements 139 and 140 are reduced by 20%. All the elements are then assembled 

into a model to generate the ‘experimental’ frequencies and mode shapes. The proposed 

substructure-based model updating method is used to adjust the elemental parameters of the 

analytical model, to match the simulated “experimental” modes. The frequencies and mode shapes 

before and after the updating are compared with the “experimental” ones in Table 4, and the 

identified variation of bending rigidity is shown in Fig. 2(c). In Table 4, the frequencies and mode 

shapes of the updated model better match the “experimental” counterparts, as compared with those 

before updating. In Fig. 2(c), obvious negative values are observed in Elements 139, 140, 147 and 

148. In particular, the bending rigidity of Elements 138 and 140 are identified to be reduced by about 

0.2 and those of Elements 147 and 148 are reduced by about 0.3. The location and severity of the 

identified reduction in elemental parameters agree with the simulated ones very well. 

 

Case 2 and Case 3 verify that the location and severity of the assumed reduction in elemental 

stiffness can be successfully identified through the proposed substructure-based model updating 

method. It again proves that the influence of the methodology errors is insignificant, when proper 

size of the master modes is retained. One can improve the accuracy of the eigensolutions and 

eigensensitivities by including more master modes in the substructures [15, 16]. The proposed 

substructuring method is effective to be applied in model updating process.  
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6. Practical application: a bridge structure 

To illustrate the feasibility and computational efficiency of the proposed substructuring method in 

real structures, a practical bridge, the Balla Balla River Bridge in Western Australia is employed here. 

An FE model based on design drawings was established. The FE model of this bridge has 907 

elements, 947 nodes each has 6 DOFs, and 5420 DOFs in total, as shown in Fig. 3.  

 

In the field vibration testing, the accelerometers were placed in seven rows corresponding to the 

seven girders. There are 19 measurement points in each row and 133 in total as shown in Fig. 4. Ten 

pairs of natural frequencies and mode shapes were extracted from the frequency response function 

(FRF) by the rational fraction polynomial method [28], and some of them are illustrated in Fig.5. 

 

The analytical model is updated employing both the traditional model updating procedure and the 

proposed substructure-based model updating method for comparison. There are 1289 physical 

parameters selected as updating candidates, which include the Young’s modulus (E) of diaphragms, 

girders, slabs, and the axial stiffness (EA) and bending rigidity (EIxx, EIyy) of the shear connectors. 

The objective function combines the differences in the frequencies and mode shapes between the 

experimental test and analytical model. The weight coefficients are set to 0.1 for the mode shapes 

and 1.0 for the frequencies. 
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Using the traditional model updating method, the eigensolutions and eigensensitivities are calculated 

based on the system matrices of the global structure [29]. The Lanczos method is employed to 

calculate the eigensolutions and the Nelson’s method is used for the eigensensitivities [19, 21]. In 

each iteration, the first 30 eigenmodes are calculated from the FE model to compare with the 10 

modes measured in field testing. The model updating process is terminated after 69 iterations, which 

costs 86.16 hours on an ordinary personal computer. One iteration takes about 1.26 hours. The 

convergence process in terms of the norm of the objective function is demonstrated in Fig. 6. 

 

Using the proposed substructuring method, the eigensolutions and eigensensitivities of the global 

structure are calculated in substructure manner in each iteration. The optimization algorithm, 

updating parameters, and convergence criterion are the same as those used in the previous traditional 

model updating. The global structure is divided into 11 substructures along the longitudinal direction 

as shown in Fig. 3. The detailed information of the 11 substructures is listed in Table 5. In each 

iteration, a few eigensolutions of the independent substructures are calculated to obtain the 

eigensolutions of the global structure. To calculate the eigensensitivity of the global structure with 

respect to an elemental parameter, the derivative matrices of only one substructure that contains the 

elements is required while those in other substructures are set to zero. 

 

As stated previously, the number of the master modes retained in the substructures influences the 
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accuracy of the eigensolutions and eigensensitivities, and subsequently, affects the convergence of 

the model updating process. In model updating process, more accurate eigensolutions and 

eigensensitivities are required when the results are close to the optimum, as some errors in 

eigensolutions and eigensensitivities may lead to an incorrect search direction and thus cause the 

convergence difficulties. In the present paper, different number of master modes is employed in the 

substructures according to the progress of the model updating procedure. In the beginning, the first 

40 modes of each substructure were retained as master modes to calculate the first 30 eigensolutions 

and eigensensitivities of the global structure. The number of master modes in the substructures was 

then enlarged gradually as the convergence slowed down. At the final steps, 90 modes were retained 

in each substructure to improve the accuracy of the eigensolutions and eigensensitivities. With this 

adaptive scheme, the substructure-based model updating process is completed within 76 iterations 

and the convergence process is demonstrated in Fig. 4. The computation time spent on different 

stages is listed in Table 6 and totals about 48.07 hours, which is about 56% of that using the 

traditional global model updating method.  

 

The frequencies and mode shapes of the updated structure are compared with those values before 

updating as listed in Table 7. It is observed that the proposed substructuring method can achieve 

similar results to the global method. In particular, the averaged difference in frequencies between the 

updated model and the experimental measurement is less than 1%. The MAC values are improved 
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from 0.85 to 0.93. As compared with the traditional model updating method, this substructure-based 

model updating method achieves the same precision but higher efficiency.  

 

7. Conclusion 

This paper has proposed a substructuring method to calculate the eigensolutions and 

eigensensitivities for the model updating purposes. The eigensolutions of the global structure are 

calculated from some lowest modes of the substructures. Calculation of the eigensensitivities with 

respect to an elemental parameter requires analysis of the sole substructure that contains the element. 

Since the model updating process involves frequent calculation of the eigensolutions and 

eigensensitivities, this substructure-based model updating method is advantageous in improving the 

computational efficiency.  

 

The effectiveness of the substructure-based model updating method was illustrated by a frame 

structure. Although the substructuring method introduces some slight errors in calculation of the 

eigensolutions and eigensensitivities, the effect of the errors on the model updating results is 

negligible when proper master modes are retained in the substructures. Application to a practical 

bridge demonstrates that the proposed substructure-based model updating is efficient to be applied to 

update large-scale structures with a large number of design parameters. The accuracy of the proposed 

substructuring method is improved by including more master modes in the substructures.   
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Fig. 2. Location and severity of discrepancies identified using the substructuring method. 
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Fig. 3. The FE model of Balla Balla River Bridge with division formation of 11 substructures. 
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Fig. 4. Locations of sensors. 
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Fig.5. Measured frequencies and mode shapes of the Balla Balla River Bridge. 
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Table 1. 
The assumed stiffness reduction in the elements. 
 

Case 1 Case 1 Case 2 

Assumed discrepancy 
of 

bending rigidity 

No  
discrepancy 

Element 147(-30%); 
Element 148(-30%); 

Element 147(-30%); 
Element 148(-30%); 
Element 139(-20%); 
Element 140(-20%); 
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Table 2. 
The frequencies and mode shapes of the frame using the proposed substructuring method. 
 

Modes 
Experimental 
frequencies 

 (Hz) 

Analytical 
frequencies 

(Hz) 

Difference 
(%)a 

MACb 

1 2.1406 2.1406 0.000% 1.0000 

2 6.6401 6.6401 0.000% 1.0000 

3 11.7694 11.7695 0.001% 0.9999 

4 17.5859 17.5862 0.002% 0.9999 

5 19.5540 19.5891 0.179% 0.9967 

6 22.1608 22.2017 0.184% 0.9958 

7 24.1594 24.1601 0.003% 0.9999 

8 26.7532 26.8147 0.230% 0.9949 

9 30.3360 30.4001 0.211% 0.9941 

10 31.2727 31.2801 0.024% 0.9986 
 

a relative difference of frequency between the simulated experimental data and those predicted with the 
proposed substructuring method. 
b modal assurance criterion (MAC) of mode shapes between the simulated experimental data and those 
predicted with the proposed substructuring method. 
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Table 3. 
The frequencies and mode shapes of the frame structure before and after updating (case 2). 

 

Modes 
Experimental 
frequencies 

(Hz) 

Before updating After updating 

Analytical 
frequencies 

(Hz) 

Difference 
(%)a 

MAC b 
Analytical 
frequencies 

(Hz) 

Difference 
(%)a 

MAC b 

1 2.1354 2.1406 0.241% 1.0000 2.1350 0.014% 1.0000 

2 6.6279 6.6401 0.184% 1.0000 6.6266 0.019% 1.0000 

3 11.7522 11.7695 0.147% 0.9999 11.7462 0.051% 1.0000 

4 17.5502 17.5862 0.205% 0.9998 17.5495 0.004% 1.0000 

5 19.4946 19.5891 0.485% 0.9934 19.4886 0.031% 1.0000 

6 21.9613 22.2017 1.095% 0.9897 21.9541 0.032% 1.0000 

7 24.0944 24.1601 0.272% 0.9995 24.0927 0.009% 1.0000 

8 26.3567 26.8147 1.738% 0.9838 26.3537 0.012% 1.0000 

9 30.0544 30.4101 1.183% 0.9791 30.0518 0.009% 0.9999 

10 31.1147 31.2801 0.532% 0.9934 31.1048 0.031% 1.0000 

 
a relative difference of frequency between the simulated experimental data and the model prediction. 
b modal assurance criterion (MAC) of mode shapes between the simulated experimental data and the 
model prediction. 
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Table 4. 
The frequencies and mode shapes of the frame structure before and after updating (case 3). 
 

  
Modes 

  
Experimental 
frequencies 

(Hz) 

Before updating After updating 

Analytical 
frequencies 

(Hz) 

Difference 
(%)a 

MACb 
Analytical 
frequencies 

(Hz) 

Difference 
(%)a 

MACb 

1 2.1334 2.1406 0.337% 1.0000  2.1330 0.018% 1.0000  

2 6.6070 6.6401 0.501% 1.0000  6.6057 0.020% 1.0000  

3 11.7427 11.7695 0.228% 0.9998  11.7375 0.044% 1.0000  

4 17.5042 17.5862 0.468% 0.9997  17.4970 0.041% 1.0000  

5 19.4323 19.5891 0.807% 0.9927  19.4254 0.036% 1.0000  

6 21.9215 22.2017 1.278% 0.9875  21.9138 0.035% 1.0000  

7 24.0036 24.1601 0.652% 0.9987  23.9939 0.040% 1.0000  

8 26.3274 26.8147 1.851% 0.9816  26.3236 0.014% 1.0000  

9 30.0210 30.4101 1.296% 0.9775  29.9969 0.080% 0.9999  

10 31.0952 31.2801 0.595% 0.9936  31.0866 0.027% 0.9999  

 
a relative difference of frequency between the simulated experimental data and the model prediction. 
b modal assurance criterion (MAC) of mode shapes between the simulated experimental data and the 
model prediction. 
 
 



43 
 

 
Table 5. 
The information of division formation with 11 substructures. 
 

Index of 

Substructure 
Sub 1 Sub 2  Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Sub 11 

Geometric 

range (m) 
0~5 5~10 10~15 15~20 20~25 25~30 30~35 35~40 40~45 45~50 50~54 

No. elements 99 88 66 116 66 66 66 116 66 66 99 

No. nodes 113 115 92 143 92 92 92 143 92 92 113 

No. tear nodes 23     23     23      23      23      23      23     23      23      23 
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Table 6. 
Comparison of the computation time and the number of iterations. 
 

  Global method  

Substructuring method 

40 master 
 modes 

60 master 
modes 

80 master 
modes 

90 master 
modes 

Time for each 
iteration (Hour) 

1.26 0.43 0.57 0.69 0.84 

No. of iterations 69 16 18 31 11 

Total for the 
updating process 

(Hour) 
86.16 48.07 
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Table 7. 
The frequencies and mode shapes of the bridge before and after updating. 
 

Mode 
Measured 
Frequency 

(Hz) 

Before updating 
After updating 

Global method Substructuring method 

Frequency 
(Hz) 

Difference
(%)a 

MACb Frequency
(Hz) 

Difference
(%)a 

MACb 
Frequency 

(Hz) 
Difference

(%)a 
MACb

1 6.76 6.26 7.34% 0.93 6.53 3.47% 0.95 6.55 3.17% 0.95 

2 7.95 7.74 0.27% 0.96 7.93 0.27% 0.99 7.92 0.33% 0.99 

3 10.06 8.71 13.37% 0.71 10.02 0.42% 0.94 10.02 0.39% 0.94 

4 10.75 12.13 12.84% 0.80 11.01 2.42% 0.89 11.03 2.60% 0.89 

5 11.03 9.45 14.36% 0.76 10.86 1.56% 0.82 10.85 1.60% 0.81 

6 12.64 13.27 4.98% 0.85 12.58 0.45% 0.97 12.59 0.38% 0.96 

7 14.71 17.55 19.29% 0.92 14.77 0.38% 0.90 14.78 0.45% 0.90 

8 15.76 18.52 17.49% 0.88 15.77 0.03% 0.93 15.77 0.06% 0.94 

9 16.39 18.74 14.35% 0.82 16.38 0.07% 0.95 16.39 0.00% 0.95 

10 20.18 24.91 23.42% 0.86 20.23 0.24% 0.92 20.28 0.50% 0.93 

Averaged 12.77% 0.85 0.93% 0.93 0.95% 0.93 

 
a relative difference of frequency between the measurement and the model. 
b modal assurance criterion (MAC) of mode shapes between the measurement and the model. 
 

 

 

 

 

 




