
 1

 

Variation of structural vibration characteristics versus non-uniform 

temperature distribution 

 
 

Yong Xiaa,, You-Lin Xua, Ze-Long Weia, Hong-Ping Zhub, and Xiao-Qing Zhouc 

 
a Department of Civil and Structural Engineering, The Hong Kong Polytechnic 

University, Hung Hom, Kowloon, Hong Kong, China 
 

b School of Civil Engineering & Mechanics, Huazhong University of Science & 
Technology, Wuhan, Hubei, 430074, China 

 
c College of Civil Engineering, Shenzhen University, Shenzhen, Guangdong, China 

 
 

Abstract 

 

In vibration-based condition assessment exercises, it is necessary to discriminate the 

variation of structural properties due to environmental changes from those caused by 

structural damage. Some efforts have been made to correlate the structural vibration 

characteristics and the air temperature or temperatures at the structural surface. As the 

temperature of an entire structure is generally non-uniformly distributed, using the air 

temperature or surface temperatures alone may not sufficiently capture the relation 

between the structural responses and temperatures. The present paper aims to 

investigate the variation of the structural vibration characteristics versus the 

non-uniform temperature field of the structure. Thermodynamic models are employed 

to estimate the temperature at different components of the structure at different time. 

As the material mechanical properties are temperature dependent, the structure can be 

regarded as a composite structure consisting of elements with different Young’s moduli. 

Consequently the natural frequencies of the structure can be calculated with the finite 
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element method. The procedures are repeated for different time and thus variation of 

the frequencies with respect to time is obtained. A simply-supported RC slab was 

constructed and used as a proof-of-concept example. The temperatures at different 

points of the slab were recorded continuously in one day, together with a series of 

forced modal testing to extract its modal properties. On the other hand, a finite element 

model was established to conduct a transient thermal analysis and estimate the 

temperature distribution of the slab, which shows a good agreement with the 

measurement counterpart. The temperature data at all components and thermal 

properties of the material were then inputted to the model to calculate the frequencies, 

which also matched the measured frequencies very well. Moreover, a good linear 

correlation between the natural frequencies measured and the structural temperatures 

other than the air temperature or surface temperatures is observed. The present study 

provides a new approach to quantify the environmental effect on the structural 

vibration characteristics.  

 

 

Keywords: Structural condition assessment; temperature effect; vibration 

characteristics; thermodynamics; linear regression 
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1. Introduction 

 

In structural condition monitoring assessment [1][2][3][4], a practical difficulty exists 

because the structural responses vary with the changing environmental conditions, 

particularly the temperature. Some studies have found that the changes in structural 

responses due to temperature variation could be more significant than the changes due to 

normal structural damage [5]. If the temperature effect is not fully understood, structural 

condition cannot be evaluated reliably [6]. 

 

During the past 20 years, quite a few studies have been conducted to investigate the 

environmental effect on structural vibration properties. Askegaard and Mossing [7] 

studied a three-span RC footbridge and observed a 10% seasonal change in frequency 

over a three-year period. Researchers from Los Alamos National Laboratory [8] found 

that the first three natural frequencies of the Alamosa Canyon Bridge varied about 5% 

during a 24 hours period as the temperature of the bridge deck changed by 

approximately 22C. Peeters and De Roeck [9] continuously monitored the Z24-Bridge 

for nearly a year and they reported that the frequencies decreased with the temperature 

increase. Desjardines et al. [10] studied modal data and average girder temperature 

collected over a six-month period in the Confederation Bridge. The first two modal 

frequencies identified from the Bill Emerson Memorial Bridge [11] monotonically 

decreased as the temperature went up in a linear way, while the mode shapes did not 

experience a significant change. Ni et al. [12][13] investigated the effect of 
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temperature and wind speed on modal parameters in the Ting Kau Bridge in Hong 

Kong using one-year monitoring data. Fu and DeWolf [14] found that the changes in 

the frequencies of a two-span composite steel-girder bridge were due to changes in the 

bridge bearings. Liu and DeWolf [15] found that the frequencies of a curved concrete 

box bridge varied by a maximum of 6% in a peak to peak temperature range of 70F 

(39C) during one year. Breccolotti et al. [16] numerically analysed the temperature 

effect on a bridge through thermal analysis. Macdonald and Daniell [17] investigated 

the variations of natural frequencies of the Second Severn Crossing cable-stayed 

bridge due to wind, temperature and traffic loading. Nayeri et al. [18] monitored a 

17-story steel frame building and it showed a strong correlation between the frequency 

and air temperature while the frequency variations lagged behind the temperature 

variations by a few hours. A chamber experiment which was conducted by Balmes et 

al. [19] demonstrated that axial stresses due to different thermal expansion in members 

cause the frequencies to change significantly. Xia et al. [20] have conducted 

experiments on a continuous concrete slab for nearly two year. It was found that the 

frequencies had a strong negative correlation with temperature and humidity, damping 

ratios had a positive correlation, but no clear correlation of mode shapes with 

temperature and humidity change could be observed. 

 

In summary, it has been widely observed that natural frequencies of structures decrease 

when temperature goes up. In addition, most of these researches focus on 

establishment of the correlation between the temperatures measured on the structure 
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surface (or in air) and the structural responses. However, the temperature distribution 

in a structure is generally non-uniform and time-dependent. For most of the 

construction materials, it is generally accepted that an increase in temperature will 

cause a decrease in Young’s modulus and shear modulus of the materials. Therefore, 

the Young’s modulus throughout a structure with existence of temperature gradient is 

not identical. Consequently the structural responses are associated with the temperature 

distribution of the entire structure. Using the air temperature or surface temperatures 

alone may not discover the realistic relation between the structural responses and 

temperature sufficiently. 

 

Under this concept, the present paper aims to quantify the temperature effect on the 

vibration properties of a structure by investigating the temperature distribution of the 

structure via a thermodynamic approach. First, the thermal field distribution of the 

structure will be obtained through a transient heat analysis. Second, with the 

temperature data at different members and the thermal properties of the structural 

materials, the structural mechanical properties in each member are obtained. Then the 

dynamic properties of the whole structure can be calculated. Finally, the relation 

between the temperature distribution and structural dynamic properties will be 

established quantitatively. The temperature data measured at some critical points at 

different times will be employed to verify the thermodynamic models. The calculated 

dynamic properties can also be compared with the measurement. A laboratory tested 

RC slab will be used as a proof-of-concept example to demonstrate the whole 
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procedures. 

 

 

2. Laboratory experiment 

 

2.1. Description of the RC slab 

 

A simply-supported RC slab was constructed for this study which measures 3200 mm 

long, 800 mm wide, and 120 mm thick with 100 mm overhang at each end, as shown 

in Fig. 1 and Fig. 2. Grade C30 concrete was selected in accordance with the design 

code in People’s Republic of China [21]. Ф12 mm reinforcing bars at a 150 mm 

interval were chosen for positive reinforcement with 15 mm cover and, Ф10 mm 

reinforcing bars at a 200 mm interval were laid in the perpendicular direction.  

 

Under the sunshine, the temperatures in the top surface and bottom surface of the slab 

are assumed uniformly distributed in two horizontal directions, which implies the 

temperature gradient exists along the thickness direction of the slab only. Therefore, 

seven thermocouples were embedded into the slab at an interval of 20 mm along the 

thickness direction (marked with T1 to T7 from the top to the bottom in Fig. 1) to 

measure the temperature distribution in the direction. To mount the thermocouples in 

position and measure the temperature of concrete, a plastic tube of 120 mm long was 

drilled with 7 holes at an interval of 20 mm in one side and another 7 holes at identical 



 7

interval in the opposite side. The tube was placed vertically in the center of the slab 

before pouring concrete. The seven thermocouples were then penetrated through the 7 

pairs of holes of the pipe and embedded in the concrete, as illustrated in Fig. 1b. The 

thermocouples were located in the center of the slab in plan, as shown in Fig. 1c. To 

examine the temperature distribution along horizontal direction, thermocouples were 

embedded in one corner to compare the temperature at the corner with the temperature 

in the center. Due to limitation of channels, three thermocouples were installed at the 

corner and placed at top of the slab, middle of the slab, and bottom of the slab 

(T9~T11). An additional thermocouple (T8) was employed to measure the air 

temperature. The figure also illustrates 14 points to install accelerometers to record the 

vibration of the slab subject to impact from an instrumented hammer.  

 

2.2. Procedures of the experiment 

 

After the slab curing 28 days, modal tests were carried out. Seven accelerometers were 

used to measure the vibration responses of the slab under impact from an instrumented 

hammer. Two sets of measurement were required to extract the mode shapes at the 14 

points. Modal data (frequencies, mode shapes and damping ratios) were extracted from 

the frequency response functions with the Global Rational Fraction Polynomial method 

[22], a standard modal identification technique. 

 

The present study aims to investigate the variation the structural vibration 
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characteristics with respect to different temperatures. Sets of modal testing were 

carried out hourly from 8:00 am to 22:00 pm on 11th Feb., 2009. At the same time, 

structural temperatures were automatically recorded from the embedded thermocouples 

every 2 minutes from 6:00 am on 11th Feb. to 6:00 am on 12th Feb., 2009. Due to space 

limitation on campus, the slab could be exposed to sun irradiation in the morning only 

and shaded by buildings in the afternoon, while this limitation does not affect the 

analytical methods proposed in the paper.  

 

A previous study on a slab has found that the mode shapes were not affected by the 

temperature changes as the temperatures along the horizontal directions are uniformly 

distributed [20]. Consequently only frequencies and damping ratios were extracted 

from four accelerometers while the mode shapes haven’t been measured during the 

day.  

 

 

3. Temperature data  

 

3.1. Variation of temperature in one day 

 

The uniformly distributed 7 thermocouples captured the temperature along the 

thickness of the slab. Fig. 2 shows the variations of the structural temperatures in 24 

hours, together with the air temperature. It shows that temperature at the slab (T1 to T7) 
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increased from 9:00 am to 13:30 pm and decreased after that. The temperatures near 

the top surface arose more significantly than the temperatures near the bottom surface, 

as expected. As solar irradiation was blocked by the adjacent buildings, the 

temperatures at T1 and T2 dropped down very fast in the afternoon while others 

decreased slower, due to the property of thermal inertia. Fig. 3 compares the 

temperatures measured at the center of the slab (T1, T4 and T7) with those measured at 

the corner (T9~T11). It is noted that T1 and T9 are the temperatures at the top, T4 and 

T10 are those in the middle, and T7 and T11 at the bottom. At most of the time, the 

temperatures at the same height are very close. This verifies the assumption that only 

temperature gradient exists along the thickness direction. 

 

To exhibit the temperature distribution throughout the slab, the temperatures at 

different height are plotted in Fig. 4. One can find that the temperature gradient along 

the thickness direction is non-uniform and non-linear in the day time, when the 

temperatures vary greatly. Consequently, stresses will be generated in the section even 

the slab is simply-supported. When temperatures become stable, temperature gradient 

along the thickness direction is rather linear. 

 

3.2. Thermodynamic analysis 

 

In practice, the temperature field of an entire structure is usually not available. A 

thermodynamic model is used here to predict the temperature distribution throughout 
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the structure. Two different thermal boundary conditions will be adopted. The model 

predictions will be compared with the measurement data. 

 

A 3-D heat conductivity model is established in ANSYS [23] as shown in Fig. 5. There 

are 6 identical elements in the thickness direction with height of 20 mm each. The 

mesh is descretized for both thermal analysis and mechanics analysis. Element type 

SOLID90 is employed for thermal analysis while SOLID65 is employed for mechanics 

analysis, which will be described later. As we assume that the temperature is uniformly 

distributed in the horizontal direction, temperature gradient occurs in the thickness 

direction only.  

 

In the literatures and practical exercises, some measured the structural surface 

temperatures and some obtained air temperature only. In the present study, these two 

cases and the corresponding thermal boundary conditions are considered. In the former 

situation, the top surface temperature T1 and bottom surface temperature T7 measured 

at different time are known and regarded as boundary conditions of the slab. Therefore, 

the temperature of all the nodes at the top is set to T1 and the temperature of all the 

nodes at the bottom is set to T7.  

 

In the second case, the air temperature is given. To consider the heat exchange 

condition between the slab and the surrounding environment, solar irradiation can be 

measured in-situ or simulated from theoretical models as [24] 
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                   rid IIII             (1) 

where I, Id, Ii and Ir are the total solar irradiation, direct solar irradiation, diffuse solar 

irradiation and reflected solar irradiation on a surface, respectively. The model takes 

into account of the nature of solar irradiation, the geometric relation between the sun 

and the earth, and the characteristics of the solar energy that reaches the surface of a 

structure. Then the energy exchange between the surface elements of the slab and the air 

can be expressed as [24] 

  ITTh
n

T
k as 



                                (2) 

where k is thermal conductivity, T is temperature, n is normal to the surface, h is the 

heat transfer coefficient, sT  is the surface temperature, aT  is the ambient air 

temperature, α is the absorptivity coefficient of the surface material, and I irradiation. 

For the bottom elements of the slab, Eq. (2) is similarly applied except that I includes 

the reflected solar irradiation only. The solar irradiation at the top surface and bottom 

surface of the slab is then calculated and listed in Table 1. It is noted that in the 

afternoon, the solar irradiation at the top surface includes the diffuse solar irradiation 

only because the direct irradiation was blocked.  

 

A transient thermal analysis is conducted to obtain the interior temperature at every 

time step (2 minutes here). In this analysis, k = 1.74 W/(m·ºC), c = 920 J/(kg·ºC), h = 

23 W/(m2·ºC) for the top surface and 8.7 W/(m2·ºC) for the bottom surface, and α = 0.7, 

which are obtained from the Chinese code [25]. Density of the concrete was measured 

as 2316.3 kg/m3. Fig. 6 compares the temperatures at different points along the 
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thickness direction of the slab using both cases of thermal boundary conditions with 

the measurement counterparts. A very good agreement is found among the three sets of 

data. This verifies that the numerical model and boundary conditions can be employed 

to predict the temperature distribution of the slab. For simple structures like the slab 

employed here, the thermodynamic model is accurate enough. For a practical structure 

with complicated configuration, the boundary conditions can be more complicated. 

This can be found in some works done in bridge engineering [26][27]. 

 

4. Vibration data 

 

4.1. Modal properties of the slab 

 

Typical measured mode shapes of the first four modes are shown in Fig. 7. Modes 1, 2 

and 4 are bending modes and mode 3 is a torsional one. In addition, a set of modal 

testing was implemented hourly from 8:00 am to 22:00 pm on 11th Feb., 2009 to 

extract the frequencies and damping ratios. 

 

4.2. Variation of frequency and damping ratio versus temperature change 

 

Fig. 8 illustrates the variation of the measured first natural frequency with respect to 

the temperatures measured from the thermocouples. It clearly shows that the frequency 

of the structure decreases when temperature goes up before noon while the frequency 
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increases as temperature drops down in the afternoon, as observed by many researchers. 

Variation of the higher modes will be presented later (Fig. 10). However, temperature 

effect on damping ratios is not so obvious. Fig. 9 illustrates the variation of the first 

two modal damping ratios extracted from measurement with respect to time. It has 

been found that damping ratios increase slightly when temperature arise [20]. Since the 

variation of temperature here is not significant and uncertainty level of measurement of 

damping is relatively high, the change of damping may be masked by the measurement 

noise.  

 

The linear regression technique is then utilized to analyze the relation between the 

frequency and temperature. A multiple linear regression model has the form of [28] 

0 1 1 ... p p ff t t                 (3) 

where f is the frequency, β0 to βp are the regression coefficients and εf is the regression 

error, t1 ~ tp are the temperature explanatory variables. A few cases of temperatures are 

studied here. 

 

First, the 7 structural temperatures measured (T1 to T7) are used as the explanatory 

variables (p=7). With the least-square fitting [28], the regression coefficients are 

computed. The square of the correlation coefficient R2 is 0.97 and the standard 

deviation of the error is 0.03 Hz, which means a very good correlation between the 

frequency and the temperatures. In literature, some researchers have chosen air 

temperature, average of the structural surface temperatures (i.e., (T1+T7)/2), and 



 14

differential of the surface temperatures (i.e., (T1-T7)/2) as explanatory variables. These 

are also applied to the present experimental data and correspondingly only one 

temperature variable is used in Eq. (3). The R2 statistics are calculated as 0.74, 0.88, 

and 0.18, respectively and the standard deviations of the error are 0.07 Hz, 0.05 Hz, 

and 0.13 Hz, respectively. This indicates that the structural frequency is not only 

affected by the air temperature or structural surface temperatures, but also by 

temperatures at all components of the structure. When one investigates the temperature 

effect on the vibration properties of a structure, consideration of temperature 

distribution throughout the structure will improve the correlation.  

 

It is widely accepted that Young’s moduli of materials decrease as temperature of the 

material increases and thus the natural frequencies decrease. When the thermal field of 

the structure is non-uniform, the structure can be regarded as a composite structure that 

has different Young’s moduli at different components. The natural frequencies can then 

be calculated. This is demonstrated in the following section. 

 

4.3 Quantification of temperature effect 

 

Although variation of frequencies may be due to many reasons, thermal dependent 

property of concrete is solely studied here. This is because the slab is simply supported 

and the physical boundary condition can be regarded as unchanged during the day. In 

previous study by the first author and his colleagues [20], it has shown that the friction 
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at the supports and the geometric variation due to temperature change has much less 

effect on the frequencies, as compared with the variation of Young’s modulus with 

respect to temperature. 

 

Young’s modulus of concrete with respect to temperature can be represented as a linear 

equation, in the range of natural temperature: 

                   20( ) [1 ( 20)]C EE T E T                        (4) 

where T is the temperature of the material, E20ºC is Young’s modulus of concrete at the 

temperature 20  and℃  θE is the temperature coefficient of Young’s modulus, which is 

suggested as 0.003 by CEP/FIP [29]. This implies that when the temperature of a RC 

structure goes up by 1℃ uniformly, the natural frequencies drop down by 0.15%. 

Therefore, when a structure experiences 20℃ change, the natural frequencies may 

change by 3.0%, which is not small as compared with those due to local damages. 

 

The model in ANSYS shown in Fig. 5 is employed here to calculate the natural 

frequencies of the slab. At temperature of 20℃, the Young’s modulus of each element 

is 26.0 GPa, which was measured from static tests on three standard cylinder 

specimens. Poisson's Ratio is set to 0.3 as usual. The first 2 modal frequencies are 

calculated as 20.30 Hz and 81.25 Hz, quite close to the measurement (19.92 Hz and 

82.16 Hz, respectively). The model is not updated here to match the measurement as 

this is not the objective of the present study.  
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At different time of the date, the temperature at each element of the slab has been 

calculated forgoing and the Young’s modulus of each element is temperature dependent 

as described in Eq. (4). These are inputted into the ANSYS model to calculate the 

frequencies. Variation of the first frequency with respect to time is shown in Fig. 10, as 

compared with the measurement. As the Young’s moduli used in numerical analysis are 

not exactly the same as the real ones, the frequencies differ from the measurements. To 

make comparison of the frequency change, the frequencies are normalized with the 

first values. One can find that there is a good agreement between the numerical results 

and measurements. This verifies that the variation of structural vibration properties is 

affected by the structural temperature distribution. Variation of the second and third 

measured bending frequencies is shown in Fig. 11, as compared with the analytical 

counterparts. It shows that the variation trend of the measured higher modal 

frequencies matches that of the analytical one. One can also observe that the 

discrepancy of the higher modes is larger than the first mode. This may be because the 

higher modes are not easy to be measured accurately in the case. Moreover, the first 

torsion mode cannot be reliably identified in some experiments and the results are not 

shown here. This might be because the supports are not ideally flat and partial of the 

slab does not contact with the support perfectly, which causes significant error of the 

measurement. 
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5. Conclusions and discussions 

 

This paper proposed a new approach to quantify the variation of structural vibration 

characteristics with respect to structural temperatures. Being different from the 

conventional studies that using air temperature or temperatures at a few points of the 

structure, the paper aims to obtain the thermal distribution of the entire structure from 

the thermodynamic models. Consequently the relation between the frequencies and the 

temperature at the whole structure is established. The frequencies can also be 

calculated from the FE model according to the thermal-dependent properties of the 

material. Both the frequencies and temperature distribution can be compared with the 

measurement to verify the numerical models.  

 

Application to a simple RC slab has found that the thermodynamic models can predict 

the structural temperature field accurately. Two different sorts of thermal boundary 

conditions were applied. In the first condition, the surface temperatures were given, 

and in the second, only the air temperature was provided and the solar irradiation was 

numerically simulated. Both gave similar temperature distribution of the slab along the 

thickness direction. This indicates that in the practice, structural temperature field can 

be predicted with a few critical temperature data at an acceptable accuracy. For more 

complicated structures with complex configurations, the first sort of thermal boundary 

condition requires more temperature measurements, while the second sort of boundary 
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condition is more convenient. In the heat transfer analysis, many thermal parameters of 

material obtained from design code or based on experience may affect the analytical 

results significantly. This causes the accurate prediction more difficult.  

 

Linear regression analysis has discovered that the first natural frequency has a better 

linear relation with the temperature values at seven different points than with the air 

temperature and/or surface temperatures only. This verifies that the frequencies are 

global properties and associated with the temperature distribution of the entire 

structure. Therefore, consideration of temperature distribution of a whole structure will 

lead to more accurate results of the temperature effect on the vibration properties of the 

structure. 

 

Temperature effect on steel bar is not considered in the paper. One reason lies in that 

temperature coefficient of Young’s modulus of steel θE = 3.6×10−4/◦C [30], which is 

much smaller than that of concrete as 0.003 [29]. 
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Fig. 1a. The RC slab 
 

 

 
 

Fig. 1b. Positioning thermocouples inside the slab 
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Fig. 1c. Plan position of the sensors 
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Fig. 2. Variation of the temperatures at the slab in a 24-hour period 
 

(air temp: ambient temperature) 
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Fig. 3. Comparison between the temperatures at the center  

and the temperatures at the corner of the slab 
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Fig. 4. Temperature distribution along the thickness direction of the slab  
at different time 
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Fig. 5 Finite element model of the slab constructed with ANSYS 
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Fig. 6 Comparison of temperature data: model prediction vs. measurement 
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Fig. 7 The measured first four mode shapes of the slab 
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Fig. 8 Variation of the first frequency versus temperatures 
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Fig. 9 Variation of the damping ratios 
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Fig. 10 Comparison of the frequency variation between the measurement and 
numerical analysis (the 1st bending mode) 

 

8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
97.0

97.3

97.6

97.9

98.2

98.5

98.8

99.1

99.4

99.7

100.0

100.3

F
re

q
u

en
cy

 v
ar

ia
ti

o
n

 r
at

io
 (

%
)

Time (hh:mm)

 Measurement
 Theory

8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
97.0

97.3

97.6

97.9

98.2

98.5

98.8

99.1

99.4

99.7

100.0

F
re

q
u

en
cy

 v
a

ri
a

ti
o

n
 r

a
ti

o
 (

%
)

Time (hh:mm)

 Measurement
 Theory

 

(a) The 2nd bending frequency           (b) The 3rd bending frequency 
 

Fig. 11 Comparison of the frequency variation between the measurement and 
numerical analysis (the 2nd and 3rd bending modes) 
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Table 1. The solar irradiation on the slab at different time 

 
 

Time 
Solar intensity at top 

surface (W/m2) 
Solar intensity at bottom 

surface (W/m2) 

06:00 am 1.0 2.3 

07:00 am 6.9 29.0 
08:00 am 56.6 52.2 
09:00 am 223.8 60.8 
10:00 am 403.7 64.8 
11:00 am 550.2 66.7 
12:00 pm 644.4 67.2 
13:00 pm 676.7 66.7 
14:00 pm 106.7 64.8 
15:00 pm 103.7 60.8 
16:00 pm 97.3 52.2 
17:00 pm 83.5 29.0 
18:00 pm 46.4 1.2 

 
 




