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Abstract: The human brain’s role in face processing (FP) and decision making for social interactions
depends on recognizing faces accurately. However, the prevalence of deepfakes, AI-generated
images, poses challenges in discerning real from synthetic identities. This study investigated healthy
individuals’ cognitive and emotional engagement in a visual discrimination task involving real and
deepfake human faces expressing positive, negative, or neutral emotions. Electroencephalographic
(EEG) data were collected from 23 healthy participants using a 21-channel dry-EEG headset; power
spectrum and event-related potential (ERP) analyses were performed. Results revealed statistically
significant activations in specific brain areas depending on the authenticity and emotional content of
the stimuli. Power spectrum analysis highlighted a right-hemisphere predominance in theta, alpha,
high-beta, and gamma bands for real faces, while deepfakes mainly affected the frontal and occipital
areas in the delta band. ERP analysis hinted at the possibility of discriminating between real and
synthetic faces, as N250 (200–300 ms after stimulus onset) peak latency decreased when observing
real faces in the right frontal (LF) and left temporo-occipital (LTO) areas, but also within emotions,
as P100 (90–140 ms) peak amplitude was found higher in the right temporo-occipital (RTO) area for
happy faces with respect to neutral and sad ones.

Keywords: face recognition; deepfakes; emotions; power spectrum; event-related potentials (ERPs)

1. Introduction

The human brain’s ability in face processing (FP) is crucial, as the decision on how to in-
teract with other individuals mainly depends on the outcome of the recognition process [1].
Face recognition (FR) is a cognitive process whereby humans identify and discriminate
between individuals based on facial features; its abilities vary across individuals and can
be influenced by experience, familiarity, and attentional focus [2]. It involves activating
and integrating specialized brain regions, such as the fusiform face area (FFA), which
plays a key role in face processing [3]. Neural networks within the FFA extract relevant
facial information, enabling the encoding and retrieval of facial representations from mem-
ory. The FFA, localized within the fusiform gyrus (FG), is responsible for extracting the
consistent elements of facial features and their spatial arrangements that are inherently
linked to a person’s identity. Specifically, the FFA is highly specialized in analyzing and
discerning facial features, enabling the recognition and differentiation between individuals’
faces. The FFA showed increased activation when individuals perceive faces, in contrast
to other objects or stimuli [4]. Faces can also be differentiated for their emotional content,
and previous studies have largely investigated the recognition processes of face emotional
expressions [5,6].

Early models of face perception, such as the influential model proposed by Bruce and
Young [7], revealed distinct pathways for perceiving and recognizing different aspects of

Brain Sci. 2023, 13, 1233. https://doi.org/10.3390/brainsci13091233 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci13091233
https://doi.org/10.3390/brainsci13091233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0001-7745-4092
https://orcid.org/0009-0006-6544-7454
https://orcid.org/0000-0001-7455-5656
https://orcid.org/0000-0002-6540-5952
https://doi.org/10.3390/brainsci13091233
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci13091233?type=check_update&version=2


Brain Sci. 2023, 13, 1233 2 of 18

personal attributes from faces, including identity, emotion, and facial speech. According
to these models, separate cognitive processes were involved, contributing to our overall
understanding of FP. Observing emotional expressions on another person’s face allows us
to gather information about the emotions they are experiencing and elicit similar emotional
responses within ourselves. The perception of emotional expressions plays a vital role
in social interactions and has been shown to activate brain regions involved not only in
perceiving facial stimuli but also in experiencing one’s own emotions [5]. It suggests a close
link between the perception of emotions in others and our own emotional experiences,
highlighting the intricated relationship between social cognition and emotional processing.
According to Adolphs [8], several brain regions involved in basic emotion recognition,
including the temporo-occipital, orbito-frontal, and right parietal cortices, are engaged in
processing the perceptual aspects and the emotional significance of stimuli. These regions
are crucial in perceiving and analyzing the visual information of stimuli and assigning
emotional value and significance to them. It suggests that these brain regions are involved
in the integrated processing of perceptual and emotional aspects of stimuli.

Brain regions can be categorized as ‘affective’ or ‘cognitive’. However, it is evident
that the brain regions typically associated with affective processes also play a role in
cognition, and those considered cognitive regions also contribute to emotions. Noteworthy,
cognition and emotion are strictly integrated and a complex cognitive–emotional dynamic
exists among various brain networks. Emotion and cognition strongly influence behavior.
Furthermore, the neural basis of emotion and cognition is highly interconnected and should
be viewed as non-modular, with minimal capacity for decomposition [9].

In recent years, the rapid development of artificial intelligence (AI) has given rise to a
concerning phenomenon known as deepfakes. Deepfakes are realistic digital media content,
particularly images or videos, that portray false information and can be created from scratch
or by modifying authentic content through deep learning algorithms. Media advanced
creation technologies based on deep learning algorithms are universally acknowledged
as a serious threat to a person’s reputation and digital identity, and, as the prevalence of
deepfakes continues to grow, it becomes crucial to investigate their potential effects on
human perception and cognition [10].

In the last decades, the human ability to distinguish between real and AI-generated
faces has been investigated. Specifically, neuroscience research focused on how synthetic
stimuli affect people’s capacity for face recognition tasks [11]. Multimedia forensic research
investigated how much face-mixing operations (i.e., a face manipulation where two faces are
mixed to create a hybrid one carrying traits of both original faces) are perceived by people.
Ensuring restricted access to locations or services is of utmost importance, particularly in
the context of face authentication systems, to prevent unauthorized entry [12]. Several
studies [13–16] have reported that humans can still generally detect AI-generated media
content correctly.

Recently, studies on electroencephalographic (EEG) correlates investigated viewers’
ability to distinguish familiar and unfamiliar people from their face-swapped counterparts.
Results showed that it is possible to discriminate fake videos from genuine ones when at
least one face-swapped actor is known to the observer [17].

Synthetic faces can also exhibit a broad range of emotions. Investigation of brain
reactions to facial expressions is becoming a widespread research area, aiming to better
understand emotional processing and cognitive mechanisms. Even though traditional
models suggest that facial identity and expression are processed in distinctive brain ar-
eas, the current findings highlight that emotion processing can strongly influence facial
recognition and memory mechanisms [18]. Finally, other studies have shown that FP in
adults is modulated by the emotional relevance of faces, especially those with expressions
of fear [19].

The main objective of this study is to explore the capacity of individuals to discriminate
between real and fake faces generated by AI, with a particular focus on emotional expres-
sions. This research is also motivated by the need to better understand the implications



Brain Sci. 2023, 13, 1233 3 of 18

of deepfakes on human perception and the potential challenges they pose to distinguish
between authentic and manipulated visual stimuli. Additionally, neural correlates of face
processing and emotion recognition are investigated by analyzing electroencephalographic
(EEG) data. Moreover, event-related potentials (ERPs) were evaluated as they offer a valu-
able understanding of the timing and neural mechanisms that underlie cognitive functions
like perception, attention, and memory, with a high level of temporal precision.

The manuscript is organized as follows: Section 2 (Materials and Methods) will de-
scribe the experimental protocol, signal processing chain, and statistical analysis; Section 3
(Results) shows the results of power spectrum analysis (PSA) and ERP analysis. In Section 4
(Discussions), the obtained results and comparisons with current findings in the literature
are reported. Finally, Section 5 (Conclusions) summarizes the results, limitations, and future
research developments. Furthermore, the Supplementary Materials, containing the set
of Figures S1–S3, reported all the 60 faces for the stimulation and the statistical analysis
outcomes for the PSD-related feature for the emotional comparison.

2. Materials and Methods

2.1. Participants

In total, 23 healthy volunteers (13 F and 10 M; mean age—24.7 years, std age—2.8 years,
median age—25 years, age range—19 to 29 years) were involved in the experimental session.
All subjects reported normal or corrected-to-normal visual acuity. This study was approved
by the Institutional Review Board and all participants gave written informed consent.

2.2. Experimental Protocol

Volunteers were subjected to 60 grayscale visual stimuli representing human faces,
both synthetic or real, and expressing positive, neutral, or negative emotions. During the
experimental session, room temperature (25 °C) and illumination condition (∼7800 lumen)
were maintained constant; subjects were asked to sit on a chair, and the distance between the
subject’s head and monitor was 60 cm. All sessions were conducted in the morning, from
9 am to 12 pm. All images were resized to have fixed dimensions (1024 pixel × 1024 pixel)
and resolution (96 dpi) and were presented centered over a uniform background on the
screen of a 24-inch full HD monitor. Real stimuli were selected from a set of Caucasian
faces (age range of 20–50 years) included in the CK+ face database [20] by looking at the
arousal and valence scores. The same face dataset was used for all participants, who were
unfamiliar with the presented faces.

Synthetic faces were generated through a generative-AI algorithm (i.e., FaceMix) [21]
by mixing together 4 grayscale real images, all expressing the same type of emotion,
randomly sampled each time from the real faces set. Stimuli were presented only once,
balanced in sex, type of emotional facial expression (positive, neutral, negative), and type of
image, i.e., synthetic or real. The dataset comprised three classes, specifically, the synthetic
class, real class, and emotional class, where the latter included both real and synthetic
faces split for the 3 different emotional expressions. Volunteers sat on a chair wearing
an EEG helmet in front of a monitor where stimuli were presented. The experimental
protocol was composed of two phases, as shown in Figure 1. The first phase was a 4 min
baseline acquisition with 2 min of closed and 2 min of open eyes. In the second phase,
subjects observed 60 images of faces (for a complete overview, please refer to Figure S1 in
the Supplementary Materials), composed by 3 sets of 20 faces (10 real and 10 synthetic).
Each set contained faces associated exclusively with a polarized mood: positive (happy
or smiling faces, Figures 2a,b and S1a), referred to as “happy”; neutral (relaxed faces,
neutral expressions, Figures 2c,d and S1b); or negative (sad, angry or discomforted faces,
Figures 2e,f and S1c), referred to as “sad”. Both faces and sets were presented randomly
for each subject. Each face was observed for 10 seconds by the subject, who was requested
to finally press “z” or “m” on a keyboard if the presented stimuli were, respectively,
considered synthetic or real. Image presentation and response times were, respectively,
managed and recorded through the software interface.
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Figure 1. Experimental protocol timeline.

Figure 2. Example of synthetic (a,c,e) and real (b,d,f) faces expressing positive (a,b), neutral (c,d),
and negative emotions (e,f) used as stimuli.

EEG monitoring and acquisition were performed through the DSI-24 helmet (Wear-
able Sensing, San Diego, CA, USA) with Ag/AgCl dry electrodes. The helmet consists
of 21 electrodes (19 EEG channels, Pz channel is used as a common reference, and two
auricular electrodes), was arranged according to the International 10–20 Standard, and was
wirelessly connected to a triggering hub device for neurophysiological signal synchroniza-
tion. Specifically, the trigger allowed us to synchronize the EEG data and presented stimuli
through a photodiode applied to the screen. EEG and trigger data were collected at a
sampling frequency of 300 Hz. The list of EEG channels used is given below: Fp1, Fp2, F3,
F4, F7, F8, Fz, C3, C4, Cz, T3, T4, T5, T6, P3, P4, O1, O2.
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2.3. Signal Processing Chain

EEG data were analyzed in MATLAB environment through EEGLAB [22] for con-
tinuous and event-related EEG processing. EEG signals were pre-processed following
the standardized Harvard Automated Processing Pipeline for Electroencephalography
(HAPPE) [23]. EEG pre-processing (Figure 3) included the following steps:

• Band-pass filtering (1–45 Hz);
• Channel selection;
• 50 Hz electrical noise removal through Cleanline EEGLAB plugin;
• Crude bad channel detection using spectrum criteria and 3 standard deviations as

channel outlier threshold;
• Independent component analysis (ICA) for clustering the data;
• Wavelet-enhanced independent component analysis (W-ICA) for thresholding with a

level 5 coiflet wavelet and threshold multiplier 0.75;
• Multiple artifact rejection algorithm (MARA) for independent component rejection if

artifact probability is greater than 0.5;
• Segmentation in epochs of 10 s each;
• Interpolation of bad data within segments from good channels only;
• Rejection of bad segments using amplitude-based and joint probability artifact detection;
• Channel interpolation with the spherical method;
• Average re-referencing of channels.

Figure 3. Example of EEG data from P3 channel before (a,c,e) and after (b,d,f) performing HAPPE.
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After the pre-processing phase, EEG signals were split into epochs of 10 s identifying
each precise stimulus. Of the total 1360 extracted epochs (Table 1), 1224 were retained for
further analysis (Table 2), while 136 were excluded by segmentation and rejection processes.

2.4. Statistical Analysis

For each epoch, the average power spectrum in the 6 frequency bandwidths of analysis
(i.e., delta, 1–4 Hz; theta, 4–7 Hz; alpha, 8–12 Hz; low-beta, 13–17 Hz; high-beta, 18–32 Hz;
gamma, 32–48 Hz) was computed with a 300-point fast Fourier transform (FFT) without
overlap. PSD-related features were computed as the relative power densities for each band
by normalizing the mean power spectra of each band by the power spectrum mean value
in the 1–48 Hz range [24].

The event-related potential (ERPs) analysis was conducted by grand averaging the
EEG signal in the first 500 ms post-stimulus without performing baseline correction [25].
N100 (80–120 ms) [26], P100 (90–140 ms) [27], face-specific N170 (140–210 ms) [28], and
N250 (200–300 ms) [29] and early P300 (300–400) [28] components were investigated in left
temporo-occiptal (LTO, includes T3, T5, and O1 channels), right temporo-occipital (RTO,
includes T4, T6, and O2 channels), left frontal (LF, includes F3 and F7 channels), and right
frontal (RF, includes F4 and F8 channels) areas. For each ERP component, the peak and its
latency with respect to the onset of the stimulus were computed for every subject.

Epochs were labeled as follows to facilitate further analysis:

• Happy—in these epochs, the presented face expressed a “happy” emotion;
• Neutral—in these epochs, the presented face expressed a neutral emotion;
• Sad—in these epochs, the presented face expressed a “sad” emotion;
• tt (i.e., true–true)—in these epochs, the presented face was real, and the subject’s

answer was “real”;
• ff (i.e., false–false)—in these epochs, the presented face was synthetic, and the subject’s

answer was “synthetic”;
• tf (i.e., true–false)—in these epochs, the presented face was real, and the subject’s

answer was “synthetic”;
• ft (i.e., false–true)—in these epochs, the presented face was synthetic, and the subjects’

answer was “real”.

Table 1. Epochs division according to labels before HAPPE.

Epochs Label tt ff tf ft Total Percentage

happy 173 172 57 58 460 33.3%
neutral 180 181 50 49 460 33.3%

sad 171 172 59 58 460 33.3%
total 524 525 166 165 1380 100%

percentage 38% 38% 12% 12% 100%

Table 2. Epochs division according to labels after HAPPE.

Epochs Label tt ff tf ft Total Percentage

happy 148 151 51 45 395 32.3%
neutral 159 162 45 43 409 33.4%

sad 158 153 56 53 420 34.3%
total 465 466 152 141 1224 100%

percentage 38% 38.1% 12.4% 11.5% 100%

Since the EEG-related PSD-extracted features were not normally distributed accord-
ing to the Shapiro–Wilk test, surrogate tests were performed for statistical analysis [30].
The bootstrap method was performed to estimate statistics by sampling our dataset with
replacement. After performing bootstrap statistics, a paired t-test was carried out to verify
whether the mean values of the parameters were statistically different at a significance
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level of 95% (p < 0.05). For emotional comparisons, a post hoc Bonferroni correction
was performed.

As for the ERP statistical analysis, the Shapiro–Wilk test was also performed on peak
and peak latency features. If both conditions under comparison were normally distributed,
a paired t-test was used, or the Wilcoxon rank-sum test was performed. For emotional
comparisons, a post hoc Tukey–Kramer correction was performed. Statistical comparison
tests were organized as follows:

• Imfalse vs. Imtrue: comparison between synthetic and real stimulation.

– HappyF vs. HappyT: comparison between synthetic happy and real happy
stimulation.

– NeutralF vs. NeutralT: comparison between synthetic neutral and real neutral
stimulation.

– SadF vs. SadT: comparison between synthetic sad and real sad stimulation.

• Happy vs. Neutral: comparison between happy vs. neutral emotions

– Imfalse_H vs. Imfalse_N: comparison between synthetic happy vs. synthetic
neutral emotions.

– Imtrue_H vs. Imtrue_N: comparison between real happy vs. real neutral emotions

• Happy vs. Sad: comparison between happy vs. sad emotions

– Imfalse_H vs. Imfalse_S: comparison between synthetic happy vs. synthetic sad
emotions

– Imtrue_H vs. Imtrue_S: comparison between real happy vs. real sad emotions

• Neutral vs. Sad: comparison between neutral vs. sad emotions

– Imfalse_N vs. Imfalse_S: comparison between synthetic neutral vs. synthetic sad
emotions

– Imtrue_N vs. Imtrue_S: comparison between real neutral vs. real sad emotions

3. Results

This section reports on the statistical results regarding PSD and ERP features. In the
first subsection, results of power spectrum analysis delta, theta, alpha, low-beta, high-beta,
and gamma bands are shown, while in the second subsection, the results of the ERP analysis
are reported.

3.1. Power Spectrum Analysis

Power spectrum statistical analysis is reported through scalp topographic maps (STMs).
STMs describe the spatial distribution of extracted parameters, computed at the electrode
position, across the brain. To simplify visualization, we used a false-colors STM (FCSTM)
highlighting the statistically significant areas (p < 0.05, p < 0.01 and p < 0.001). Non-
significant areas were standardized with the color grey. The FCSTM represents the p-value
of the paired t-test comparing the averages of the two conditions under investigation.
If an area of the FCSTM assumes warm colors (yellow, orange, red), the first term of the
comparison is statistically greater than the second one; on the contrary, if the area assumes
cold colors (cyan, light blue, blue) the second term is statistically greater than the first.

Moreover, in this study we proposed a set of stimuli that integrated cognitive and
emotional processes. This complex set of stimuli required a specific investigation on
the brain dynamic and the temporal resolution of FR process. Therefore, epoch analysis
was performed on three different time intervals: 0–5 s, 5–10 s, and 0–10 s, allowing an
interesting comparison among the first half (0–5 s), the second half (5–10 s), and the entire
epoch (0–10 s) durations.

3.1.1. Imfalse vs. Imtrue

As for the “Imfalse vs. Imtrue” comparison, results of statistical analysis, as reported by
Figure 4 (0–5 s), Figure 5 (5–10 s), and Figure 6 (0–10 s), show significant delta activation for
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deepfakes in the frontal (Figures 5a and 6a) and right occipital areas (Figures 4a, 5a and 6a);
also, the left temporal area (Figures 5e and 6e) shows significant high-beta activations
for deepfakes, whereas significant turn-ons for real faces are shown in theta in the right
frontal area (Figures 4b and 6b), in alpha in the right occipital (Figures 4c and 6c) and left
central areas (Figures 4c, 5c and 6c), and in high-beta and gamma in the right parietal area
(Figures 5e,f and 6e,f).

Figure 4. STMs of significant statistical activation of brain areas for “Imfalse vs. Imtrue” comparison
(0–5 s). (a) delta band, (b) theta band, (c) alpha band, (d) low-beta band, (e) high-beta band, (f) gamma
band.

Figure 5. STMs of significant statistical activation of brain areas for “Imfalse vs. Imtrue” comparison
(5–10 s). (a) delta band, (b) theta band, (c) alpha band, (d) low-beta band, (e) high-beta band,
(f) gamma band.
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Figure 6. STMs of significant statistical activation of brain areas for “Imfalse vs. Imtrue” comparison
(0–10 s). (a) delta band, (b) theta band, (c) alpha band, (d) low-beta band, (e) high-beta band,
(f) gamma band.

3.1.2. Emotional Comparison

As for the emotional comparison, the results of significant EEG activation are briefly
reported in Figure 7 (0–10 s). For a complete overview of the results regarding emotional
comparison, please refer to Figures S2 and S3 in the Supplementary Materials.

• In the “Happy vs. Neutral” comparison, greater significant activation was in the delta
band in the frontal and occipital areas (Figures 7a, S2a and S3a) and in the alpha band
in the left temporal and right parietal areas (Figures 7c and S3c) for faces expressing
neutral emotions.

• In the “Happy vs. Sad” comparison, greater significant activities were in the theta
band in pre-frontal and left occipital areas (Figures 7h and S3h) and in the low-beta
band in the frontal and right occipital areas (Figures 7j and S3j) for faces expressing
positive emotions, whereas there was greater significant activation in the alpha band
in the left temporal area (Figures 7i and S2i) and in high-beta band in the right frontal
area (Figures 7k and S2k) for faces expressing negative emotions. It is worth noting
that in the first 5 seconds (Figure S2g–l), faces expressing negative emotions elicited
more significant activation, whereas in the last 5 s of the epoch (Figure S3g–l), faces
expressing positive emotion were predominant in determining statistical significance.

• In the “Neutral vs. Sad” comparison, significant activations in the low-beta band were
found in the right occipital and left temporal areas (Figures 7p, S2p and S3p) for faces
expressing neutral emotions.

3.2. ERP Analysis

ERP analysis was performed considering four areas of the cerebral cortex: LF, RF, LTO,
and RTO. This was due to the different roles which these areas serve in face processing
(LTO and RTO, as reported by Barton [31]) and decision making (LF and RF, as reported by
Collins et al. [32]).



Brain Sci. 2023, 13, 1233 10 of 18

Figure 7. STMs of significant statistical activation of brain areas in emotional comparisons (0–10 s).
“Happy vs. Neutral” comparison (a–f): (a) delta band, (b) theta band, (c) alpha band, (d) low-beta
band, (e) high-beta band, (f) gamma band. “Happy vs. Sad” comparison (g–l): (g) delta band,
(h) theta band, (i) alpha band, (j) low-beta band, (k) high-beta band, (l) gamma band. “Neutral
vs. Sad” comparison (m–r): (m) delta band, (n) theta band, (o) alpha band, (p) low-beta band,
(q) high-beta band, (r) gamma band.
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3.2.1. Originality Comparisons

Statistical analysis on ERP components for originality comparison provided the fol-
lowing results (Table 3 and Figures 8 and 9).

Table 3. Statistical analysis results on ERP components peak and peak latency in originality com-
parisons (deepfakes vs. real faces). Prevalence is reported in brackets; “F” stands for false and “T”
for true.

Comparisons LF RF LTO RTO

Imfalse vs. Imtrue P300 (T) ↑ N250 (T)← N250 (T)← -
HappyF vs. HappyT N100 (F)← - P300 (T) ↑ -

NeutralF vs. NeutralT - - - N170 (F)←
SadF vs. SadT N250 (T)← - P100 (F) ↑ -

↑ = significance in peak amplitude,← = significance in peak latency.

Figure 8. ERP (0–500 ms) in LF (a), RF (b), LTO (c), and RTO (d) areas for “Imfalse vs. Imtrue”
comparison. Significant p-values (p < 0.05) for peaks amplitude are reported with the ⋆ (indicating
prevalence) and • symbols, whereas for peaks latency, they are reported with the ◭ (indicating
prevalence) and ◮ symbols.
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Figure 9. Boxplots of amplitude distributions in LF area (a) for P300 component and latency distribu-
tions for N250 component in RF (b) and LTO (c) areas for “Imfalse vs. Imtrue” comparison.

3.2.2. Emotional Comparison

As for the statistical analysis on ERP components for emotional comparisons, this
produced the following results (Table 4).

Table 4. Results of statistical analysis on ERP components peak and peak latency for emotional
comparisons (multiple comparisons between happy, neutral, and sad faces). Prevalence is reported in
brackets; “H” stands for happy, “N” for neutral, and “S” for sad.

Comparisons LF RTO

Happy vs. Neutral - P100 (H) ↑
Happy vs. Sad - P100 (H) ↑

Imfalse_N vs. Imfalse_S N100 (N) ↑ -
Imtrue_N vs. Imtrue_S N170 (S) ↑ -

↑ = significance in peak amplitude.

4. Discussion

This research aimed to investigate how people could distinguish between real and
AI-generated faces emphasizing emotional expressions and comprehend the effects of
deepfakes on human perception and the possible difficulties they present in differentiating
between real and artificial visual stimuli. To this purpose, a statistical analysis of EEG
correlates in terms of PSD- and ERP-related features has been performed.

On the behavioral level, a good deepfake discrimination capacity has been found,
which confirmed studies on the recognition of AI-generated faces [13–16]. Participants had
good performance in recognizing the true faces as well [33,34]. A good degree (∼76%) of
accuracy in classifying faces was observed, as reported in Tables 1 and 2. Participants were
slightly better at discriminating images with neutral emotional content than images with
positive or negative emotional content. It seems to confirm the work of Montagrin et al.,
which highlighted the important role played by memory in facilitating the recognition of
neutral faces in goal-relevant situations [35]. Statistical analysis of PSD-related features
highlighted two main significant turn-ons for deepfakes: delta activation in the frontal
(Figures 5a and 6a) and right occipital (Figures 4a, 5a and 6a) areas could be due to a
dynamic switching attention mechanism [36], meaning that participants spent more time
interpreting synthetic faces, whereas high-beta activation in the left temporal area, which
includes the FG [37], states that FFA activation is not determined by the originality label of
the face presented.

Theta activations in real faces were observed in the right frontal area (Figures 4b, 5b and 6b),
according to Canales et al. [38], it indicated an increase in short-range frontal theta syn-
chronization associated with visual imagery of faces and also with the need for cognitive
control [39]. Theta-, alpha-, high-beta-, and gamma-significant activities for real faces were
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all over the right hemisphere (RH), as shown in Figures 4b,c,e,f, 5b,c,e,f and 6b,c,e,f, might
instead hint a distinct pathway in the brain to discriminate real faces from synthetic ones,
which is in line with findings by Sergent et al., suggesting a right hemisphere predominance
for real faces when compared to objects [40]. It has been linked to increased left visual field
(LVF) activity during FR tasks [41].

Our findings in the emotional comparison show that it is feasible to discriminate
between positive, negative, and neutral emotions. Results of frontal theta activation
for happy faces (Figure 7h), especially in the second part of the epoch (Figure S3h), are
consistent with findings by Knyazev et al. reporting higher sensitivity to happy faces than
to angry ones in the late, conscious FP stage [42]. Moreover, other statistical outcomes are
reported in the Supplementary Materials in Figures S2g–l and S3g–l and show how brain
activation drastically changes between the first and the latter 5 seconds of the epoch in the
“Happy vs. Sad” comparison more than any other.

Current ERP research findings have shown interesting results in FR processing. Specif-
ically, fearful facial expressions have been found to produce a more pronounced negative
N100 component than happy and neutral faces [43]. In contrast, the P100 component has
shown to be sensitive mainly to domain-general visual processes and can be considered
as a marker of individual face recognition [44] or, at least, of category-level face process-
ing [45,46]. The N170 component has been proved to be face-specific with respect to most
objects, and increasing its latency when the structure of a face is hard to perceive [47]; the
N250 component is, instead, thought to be generated in or near the FFA: it increases if
a face image is the same as an immediately preceding face as compared with when it is
different [47]. Finally, research on the early P300 has hinted that such components may
reflect categorization and attention to motivational, relevant information, including emo-
tion, gender, or identity [48]. Our results on the ERP statistical analysis, while not finding
evidence in the literature, still suggest that brain activity might process AI-generated and
real faces differently. In fact, in the comparison “Imfalse vs. Imtrue” (Table 3), the N250
component presents a lower latency peak for real faces both in the RF and LTO areas
(Figure 8b,c), whereas earlier components seem to be modulated, both in peak amplitude
(P100) and latency (N100, N170), by deepfakes (Table 3). As for emotional comparison,
an increase in peak amplitude of the P100 component in RTO for happy faces compared
to neutral and sad ones (Table 4, Figures 10 and 11) was found consistently. In contrast,
the “Neutral vs. Sad” comparison did not produce any significant outcomes until the split
in deepfakes (N100 peak amplitude increased in the neutral class) and real (N170 peak
amplitude increased in the sad class) faces.

During preliminary analysis, we reported no significant difference in the outcomes of
the labeling task between female and male participants before the pre-processing phase.
Significance was found solely on the labeling outcomes of the remaining epochs after pre-
processing for the “sad_tf” labeled faces (p-value = 0.0346), with female participants being
more inclined to classify as “synthetic” a real face expressing negative emotion. Moreover,
considering the small sample size, we did not investigate gender differences for power
spectrum and ERP analyses.

The present study contributes to the deepfake perception, FP, and emotional engage-
ment literature. The main point was the interplay of cognitive and emotional processes.
Engaging these two sides helped us build a solid starting point for future research and
further analysis involving different emotional and cognitive tasks. Similar studies could
investigate behavioral and neurophysiological correlates in fragile subjects, such as older
adults or persons with psychological diseases, to better understand distinct patterns in
their neurophysiological response, aiming to provide an early evaluation of healthy elderly
cognitive status. Future studies might also explore how one’s affect influences the judgment
on emotional content about external context. Recent research shows that some emotions
can diminish, for example, deceit [49,50]. It is worthwhile noting that the proposed study
presents some limitations. The first regards the small sample size of the involved subjects,
which also precluded us from a gender difference investigation. Another limitation is the
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pre-processing pipeline, which can lead to different outcomes. Other EEG pre-processing
pipelines, such as PREP [51] and APP [52], should be investigated in future works for
results robustness and repeatability assessment. Finally, FP dynamic investigation is an
open question that deserves an appropriate deepening, since integrating cognitive and
emotional brain processes activates complex brain responses regarding behavior and in-
teraction among brain areas and networks. The future directions include increasing the
number of participants to achieve more robust and accurate outcomes, as well as using
self-report questionnaires from participants to pair a possible recognition strategy adopted
by participants during the experiment with the results of the EEG analysis. Moreover,
it could enable the application of more sophisticated modeling methodologies to gain
deeper insights into cognitive and emotional engagement in perceiving and discriminating
between real and synthetic faces.

Figure 10. ERP (0–500 ms) in LF (a), RF (b), LTO (c), and RTO (d) areas for “Happy vs. Neutral”
comparison. Significant p-values (p < 0.05) for peak amplitude are reported with the ⋆ (indicating
prevalence) and • symbols.
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Figure 11. ERP (0–500 ms) in LF (a), RF (b), LTO (c), and RTO (d) areas for “Happy vs. Sad”
comparison. Significant p-values (p < 0.05) for peak amplitude are reported with the ⋆ (indicating
prevalence) and • symbols.

5. Conclusions

This work aimed to investigate the EEG correlates of a healthy group subjected to
a visual task with cognitive and emotional implications to discriminate significant brain
activations in the different proposed stimulating cases. The novelty of the work concerned
the comparison between real and synthetic faces, for which, to the best of our knowledge,
no previous work has been found in the literature comparing the two conditions and how
their emotional content could modulate the participants’ brain activation. Despite some
obvious limitations, such as the small number of subjects studied and the lack of knowledge
and references on the FP time dynamics for power spectrum analysis, the reported findings
have led to many open questions that deserve to be explored in future works, especially
regarding the characterization of neurophysiological dynamics during emotional deepfake
discrimination tasks as well as in terms of gender differences.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci13091233/s1. Figure S1: Faces used as stimuli in the
proposed visual task. Figure S2: STMs for emotional comparison (0–5 s), Figure S3: STMs for
emotional comparison (5–10 s).
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