
Computer Methods and Programs in Biomedicine 234 (2023) 107516 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

HyM3D: A hybrid method for the automatic 3D reconstruction of a 

defective cranial vault 

Antonio Marzola 

a , ∗, Kathleen S. McGreevy 

b , Federico Mussa 

b , Yary Volpe 

a , Lapo Governi a 

a Department of Industrial Engineering of Florence, University of Florence (Italy), via di Santa Marta 3, Firenze 50139, Italy 
b Meyer Children’s Hospital IRCCS, Viale Pieraccini 24, Florence 50141, Italy 

a r t i c l e i n f o 

Article history: 

Received 21 December 2022 

Revised 8 March 2023 

Accepted 27 March 2023 

Keywords: 

Computed aided design 

Bioinformatics 

Statistical shape model 

Surface Interpolation 

Cranioplasty 

a b s t r a c t 

Background and objective: The ability to accomplish a consistent restoration of a missing or deformed 

anatomical area is a fundamental step for defining a custom implant, especially in the maxillofacial and 

cranial reconstruction where the aesthetical aspect is crucial for a successful surgical outcome. At the 

same time, this task is also the most difficult, time-consuming, and complicated across the whole recon- 

struction process. This is mostly due to the high geometric complexity of the anatomical structures, in- 

sufficient references, and significant interindividual anatomical heterogeneity. Numerous solutions, specif- 

ically for the neurocranium, have been put forward in the scientific literature to address the reconstruc- 

tion issue, but none of them has yet been persuasive enough to guarantee an easily automatable approach 

with a consistent shape reconstruction. 

Methods: This work aims to present a novel reconstruction method (named HyM3D) for the automatic 

restoration of the exocranial surface by ensuring both the symmetry of the resulting skull and the con- 

tinuity between the reconstructive patch and the surrounding bone. To achieve this goal, the strengths 

of the Template-based methods are exploited to provide knowledge of the missing or deformed region 

and to guide a subsequent Surface Interpolation-based algorithm. HyM3D is an improved version of a 

methodology presented by the authors in a previous publication for the restoration of unilateral defects. 

Differently from the first version, the novel procedure applies to all kinds of cranial defects, whether they 

are unilateral or not. 

Results: The presented method has been tested on several test cases, both synthetic and real, and the 

results show that it is reliable and trustworthy, providing a consistent outcome with no user intervention 

even when dealing with complex defects. 

Conclusions: HyM3D method proved to be a valid alternative to the existing approaches for the digital 

reconstruction of a defective cranial vault; furthermore, with respect to the current alternatives, it de- 

mands less user interaction since the method is landmarks-independent and does not require any patch 

adaptation. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Cranial defects are usually the result of trauma, tumor re- 

ections, congenital dysmorphisms, or complications of previous 

urgery. Patients with these defects suffer negative effects on a 

unctional level (from headaches up to neurological impairment) as 

ell as on an emotional and social sphere. In fact, by affecting the 

ormal facial shape, it is well-recognized that defect-related conse- 

uences are connected to decreased social and emotional function- 

ng [1] . Consequently, the success of a cranioplasty, i.e. the surgical 

rocedure to repair a cranial hole, resides in restoring the full func- 
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ionality of the cranial vault as well as in recovering satisfactory 

esthetics. When the original bone flap cannot be reimplanted, an 

llograft should be used to fill the gap. In this case, two approaches 

re possible: the first requires the intra-operative shaping of the 

econstructive device, while the second uses a pre-operatively de- 

igned and fabricated device. Indeed, the best way to improve the 

esthetic outcome is by using the second approach [ 2 , 3 ], since the

rst one totally relies on the surgeon’s ability. 

By considering the typical workflow followed in the pre- 

perative design and fabrication strategy schematically shown in 

ig. 1 , the reconstruction of the region of interest (ROI) results to 

e the most influencing for the achievement of a satisfying aes- 

hetics outcome, since it provides the actual shape of the pros- 

hesis. At the same time, this task is also the most difficult and 

https://doi.org/10.1016/j.cmpb.2023.107516
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Fig. 1. Typical Medical Device (MD) CAx Framework. 
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ime-consuming for the user: the ROI often has malformations or 

issing parts, and there is no information available to guide a con- 

istent restoration, mainly due to the wide variability and high 

omplexity of the human anatomy. The need of obtaining an ac- 

urate reconstruction and the complexity of the task has led to ex- 

ensive literature published on the subject [4] . A thorough analysis 

f the State-of-the-Art (SoA) reveals a wide range of alternatives 

roposed to achieve a cranial vault reconstruction that is consis- 

ent and, at the same time, as fast to implement and as simple as 

ossible. To ensure a consistent result, i.e. to provide a reliable re- 

onstruction considering both functional and aesthetical aims, all 

he studies proposed in the literature deal with how to find the 

issing information to achieve a restored skull as symmetrical as 

ossible and how to ensure the continuity between the recon- 

tructed patch and the surrounding healthy bone. 

Furthermore, there is a great interest in automating the frame- 

ork presented in Fig. 1 in order to speed it up, because the time

etween the diagnosis and the surgical intervention can be crit- 

cal in some applications (as in oncology). This goal can be ob- 

ained by making the instruments available also to less experi- 

nced CAx users or directly to surgeons, and eliminating all time- 

onsuming, repetitive, and lengthy user operations. Moreover, by 

sing an automatic procedure, it is possible to standardize and 

aximize the repeatability of the whole design process. Nowadays, 

oA techniques can be grouped into four different reconstructive 

pproaches, depending on the strategy used for the reconstruction: 

 i ) the Template-based approach uses prior knowledge provided by 

n external source which contains information on the expected full 

hape, enabling a data-guided reconstruction of the cranial bones; 

 ii ) the Surface Interpolation-based approach uses a mathematical 

urface that interpolates the edge of the defect; ( iii ) the Slice-based 

pproach deforms a mathematical curve to wrap the contour of 

he healthy bone slice-by-slice; ( iv ) the Machine Learning-based ap- 

roach, to automatically infer the restored shape using deep learn- 

ng techniques applied to an adequate number of Computed To- 

ography (CT) scans of healthy human skulls. 

A comprehensive description of the most representative meth- 

ds based on the first three approaches mentioned above, with 

heir strengths and limitations, is presented in [4] . Regarding the 

achine learning-based approach , not covered by [4] , to date there 

re no reliable methods that actually work on real bone geome- 
2 
ries because the 3D model to be analyzed is usually deformed or 

njured and significantly differs from the healthy ones used for the 

raining process. 

In summary, the SoA analysis shows that, up to date, a con- 

incing solution has not been yet proposed: all existing approaches 

ave weaknesses and limitations, which often consist of either a 

igh user interaction request or a lack of a-priori available data. 

hese issues usually prevent the achievement of an aesthetically 

cceptable reconstruction, especially in case of wide defects. To 

vercome these drawbacks, in a previous research [5] the authors 

roposed a new hybrid procedure for the semi-automatic restora- 

ion of the outer surface of a defective or deformed neurocranium. 

he proposed method proved to be able to ensure an adequate 

ymmetry of the resulting skull and the continuity between the 

one and the reconstructive patch. The approach was named hy- 

rid since a Surface Interpolation-based approach is used for actu- 

lly filling the hole but, to ensure a consistent reconstruction, the 

nterpolation is driven by a template able to compensate for the 

ack of information in the deformed or missing areas. The tem- 

late used in [5] was the healthy half of the skull under considera- 

ion, which was mirrored around the mid-sagittal plane (automat- 

cally retrieved by means of the procedure described in [6] ) and 

hen registered onto the contralateral half. Clearly, the algorithm 

roposed in [5] has a significant limitation: being a mirroring & 

egistration-based approach is not applicable in situations where 

he contralateral side cannot be used as the reconstruction tem- 

late (e.g., whenever the symmetrical counterpart does not exist, 

s deformed or even missing). As a consequence, it is suitable just 

or the restoration of unilateral defects. 

In this work, the applicability of the original hybrid approach 

s expanded to include any kind of defect, unilateral and non- 

nilateral, by considering a Statistical Shape Model (SSM) of the 

eurocranium as a template during the restoration process. SSM is 

 parametric model able to infer the most likely full shape start- 

ng from its partial knowledge. The SSM used in this paper has 

een built according to a procedure developed by the authors and 

resented in [7] . The improved method is called “HyM3D” (Hybrid 

ethod for 3D reconstruction of defective skulls). 

In the following, “Methods and Tools” section provides a com- 

rehensive description of the new procedure, while in “Results”

ection some test cases, which have been addressed to prove the 

obustness of the improved method, are presented together with 

he tests performed to tune the inputs of the algorithm. 

. Methods and tools 

.1. Data representation 

A discrete description based on a set of points distributed 

hroughout the surface, commonly referred to as “landmarks”, is 

he simplest but also the most general method for describing com- 

lex shapes [ 8 , 9 ]. The resulting discrete model is called Point Dis-

ribution Model (PDM) [10] . In early approaches, landmarks refer to 

alient feature points and are usually manually selected. To date, a 

ense set of points is used to deliver an adequate representation 

f complex 3D models. Therefore, landmarks are not located as 

er the common definition (i.e., they do not indicate only salient 

eatures) but are extracted from the whole volumetric model by 

roper algorithms. In medical applications, the volume data repre- 

enting the ROI is obtained through a segmentation task performed 

n the diagnostic images by using dedicated software packages. 

rom such volumetric data, a set of points are then sampled from 

he external surface of the shape, usually by using the Marching 

ube algorithm. The result is a matrix (henceforward named �) 

hat contains the 3D coordinates of each point. The matrix � de- 
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Fig. 2. The HyM3D method workflow. 
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cribes the 3D shape as PDM: 

= 

{
x k | x k ∈ R 

3 , k = 1 , . . . , N 

}
(1) 

In Eq. (1) , N represents the number of points used to describe 

he shape, and x k is the vector containing the 3D coordinates of 

ach point of the PDM usually provided in a well-defined Cartesian 

oordinate frame x, y , and z : 

 k = ( x k , y k , z k ) (2) 

In addition to the PDM, from the volume data it is possible 

o retrieve also the connectivity information between the points 

 k . This information allows the calculation of the normal vectors 

ll along the shape and, therefore, the reconstruction of its exter- 

al surface. A point set with a connectivity list is called a mesh , 

nd it is usually saved in STL format. Commercial software systems 

e.g., Materialise Mimics R © or 3DSlicer R ©) automatically perform the 

hole process from the segmented images to the STL file. 

PDMs or STLs are widely used for the study of biological shapes 

 8 , 11 ] because, although their representation is discrete and the in-

ormation they contain is low-level, this approach allows complex 

eometries (including those usually depicting anatomical struc- 

ures) to be encoded in a mathematically valid and compact man- 

er. 

The restoring method proposed in this work requires the 3D 

odel of the ROI to be provided as an STL file. Consequently, all 

athematical definitions will be referred to a 3D model in the 

orm of an STL file, i.e. described by a set of points x k and the

elated connectivity list. 

.2. The HyM3D method 

The HyM3D method is an automatic algorithm to restore the 

ull shape of a defective human cranial vault. As reported in the 

ntroduction , it is an improvement of the hybrid approach for the 

estoration of unilateral cranial defect proposed by the authors in 

5] . With respect to the original algorithm, HyM3D is able to face 

ny kind of cranial defects, whether they are unilateral or not. 

yM3D shares the same steps as well as the same concepts and 

athematical formulation with the original method except for the 

ntroduction of an external source to serve as a template during 

he reconstruction process. The external source is meant to replace 

he contralateral half of the skull used in the original approach. 

HyM3D represents a novel reconstruction method to address 

he issues identified by the SoA analysis and discussed in the In- 

roduction . In fact, it aims to allow the automatic restoration of 

he exocranial surface, ensuring both the symmetry of the result- 

ng skull and the continuity between the reconstructive patch and 

he surrounding bone. This aim is accomplished by exploiting the 

trengths of the existing approaches to overcome their limitations. 

 Surface Interpolation-based approach has the great advantage of 

llowing an easy automatization of the full process as well as im- 

osing mathematically the continuity at the edge of the defect, but 

t usually leads to non-consistent results for large holes [12] due 

o the lack of information within the defective region. On the con- 

rary, a Template-based approach is able to provide the missing in- 

ormation (within the defective region), but requires high user in- 
3

eraction to obtain a good matching between the deformed tem- 

late and the model to be reconstructed; moreover, also in case 

f an excellent matching, post-processing is still required to en- 

ure continuity between the reconstructive patch and the healthy 

one. As stated in the Introduction , the hybrid approach exploits 

he ability of the Template-based methods to provide knowledge of 

he missing or deformed region to guide a Surface Interpolation- 

ased algorithm. Adding meaningful information within the af- 

ected region allows an easily automatable data-driven consistent 

econstruction. The hybrid approach is then characterized by a user 

nteraction limited to the preparation of the initial model and to 

he selection of the hole to be restored: this results in a less cum- 

ersome and less time-consuming procedure when compared with 

oth Template-based or Slice-based approaches. The whole recon- 

tructive procedure is summarized in Fig. 2 . 

The first step is the automatic detection of all holes in the de- 

ective external surface of the cranial vault (see [5] for additional 

etails on this step). Among the identified holes, the user is asked 

o manually select a point on the edge of the hole that must be 

estored (the algorithm restores a hole at a time); this operation 

epresents the only interaction required to the user and it is nec- 

ssary to avoid the algorithm to close all the gaps in the model. 

n fact, there are gaps that must not be restored, such as the ex- 

ernal acoustic meatus, the orbits, and the underside of the skull. 

fter that, the algorithm automatically finds the interpolation cen- 

ers for the subsequent surface interpolation. Such centers are the 

oints located at the boundary of the defect, named Boundary 

oints (BPs), and some additional points within the hole which 

re retrieved from the external source. The points within the de- 

ect, named Missing Points (MPs), are extracted from the template 

odel after fitting the SSM onto the defective one; the eligible MPs 

re all the template’s points located within the boundary loop of 

he defect to be restored. To avoid any discontinuity at the edge, 

nly the innermost points (with respect to the hole to be filled) are 

onsidered MPs. In particular, only the eligible points that have a 

istance at least equal to m from the boundary loop are effectively 

ept as MPs, where m is an input to the algorithm. The greater is 

 the smaller the area of the hole covered by the MPs. 

Additional points of the defective cranial vault lying on the 

uter side of the boundary loop and within a given distance n 

rom the edge, named n-Ring Neighbors (n-RNs), are also taken 

nto consideration as interpolation centers in addition to MPs and 

Ps. n-RNs allow to create an overlapping region between the re- 

onstructed surface and the healthy skull to ensure the continuity 

etween the healthy bone and the corrective patch. n is an input 

o the algorithm and the greater is n, the wider the overlapped re- 

ion. 

Fig. 3 provides a visual explanation of all the interpolation cen- 

ers. 

The actual interpolation is performed by using a Radial Basis 

unction (RBF) named Thin Plate Spline (TPS). It proved to be the 

ost suitable in this application since it ensures a C 

1 continuity, 

rovides the smoothest result, and guarantees the lowest compu- 

ational burden [13] . Furthermore, RBF imposes few restrictions on 

he nodes’ geometry and can be used on scattered data with large 

ata-free regions. 
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Fig. 3. Interpolation centers. 
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It is worth mentioning that, by using TPS, the interpolation 

ondition is avoided in favor of an approximation of the centers: 

his brings many advantages in terms of computation time and 

moothness, but an iterative refinement on the BPs is required to 

nsure an adequate continuity between the bone and the patch. 

The resulting surface is then cut with the boundary loop 

nd merged with the initial neurocranium to obtain the restored 

natomy. 

A comprehensive description of each step as well as the full 

athematical formulation of the described method can be found 

n [5] . 

.3. The statistical shape model in HyM3D 

As stated in the Introduction , to allow the improved version of 

he hybrid method to be able to restore any kind of defect, the con- 

ralateral (healthy) mirrored part must be replaced by a new tool 

ble to provide the missing information also for non-unilateral de- 

ects. To date, a robust approach to deliver an adequate template 

or anatomical reconstruction is by exploiting statistical analysis, 

o gather and interpret information from a sufficiently large collec- 

ion of samples belonging to the same class of shape (healthy cra- 

ial vaults, in this application). The starting collection of samples 

s usually known as Training Set (TS). By means of a statistical rep- 

esentation of typical shape variations for the models under con- 

ideration, it is possible to account for the anatomical structures’ 

normous complexity as well as their high interpersonal variability. 

n particular, Statistical Shape Analysis (SSA) [ 14 , 15 ] represents the 

ost established statistical tool in medical image analysis [ 8 , 16–

8 ], and it has been widely used in image segmentation, anatom- 

cal reconstruction, joint kinematic analysis, morphological abnor- 

ality investigation [19–21] ; in addition, SSA represents a strong 

ool in providing the most likely full shape by starting from its 

-priori partial knowledge [ 17 , 22–25 ]. Furthermore, SSA already 

roved its reliability as a template for cranial vault reconstruction 

17] . 

Operatively, SSA encodes all the shape information learned from 

he TS into a Mean Shape and a series of its possible deforma- 

ions, called Modes of Variation (MoVs). The resulting deformable 

odel is called Statistical Shape Model or SSM. The SSM may be 

lso seen as a constrained deformation within a precise domain of 

 reference shape (i.e., the Mean Shape) [26] . Both the reference 

hape and the deformation constraints (i.e., the deformation do- 
4 
ain) are learned from the initial TS. Consequently, the construc- 

ion of an adequate TS is critical since it defines the domain of 

he shape space and, consequently, all the shapes the SSM may 

reate. In particular, the quality of the final model and its abil- 

ty to describe a consistent shape space are severely affected by 

he extension and homogeneity of the TS. Although it may always 

eem true that the larger the TS, the greater its ability to describe 

ifferent shapes, this statement only works if all training samples 

re mutually consistent; in other words, the training samples must 

escribe the same anatomical structures that differ only in their 

hape characteristics, not in their medical condition, ethnicity, age, 

ender, and so on. For these reasons and considering the difficul- 

ies to find a wide number of homogeneous anatomies, usually the 

esulting SSM has a poor ability to describe a shape space wide 

nough to be able to fit a partially known anatomy ensuring a lim- 

ted deviation between the original data and the deformed model. 

n our application, this means that a high user interaction would 

e required to properly reach a good matching between the de- 

ective model and the deformed template, which is a fundamental 

ondition to avoid discontinuities and to gain a consistent recon- 

truction. 

For this reason, the HyM3D method uses the SSM only to ob- 

ain the MPs, instead of exploiting the entire fitted model. As a 

onsequence, the slight deviation between the fitted SSM and the 

-priori known parts is no longer a major limitation. The continu- 

ty at the boundary of the cranial defect is here ensured by forcing 

he reconstructive surface through the BPs and the n-RNs. 

.3.1. Statistical shape model definition 

The way to define the SSM heavily depends on how the train- 

ng samples are organized. As said, in Data Representation section, 

he straightforward solution to represent complex shapes is by 

eans of a Point Distribution Model (PDM) [10] , i.e. a discrete de- 

cription based on a set of points (named landmarks) distributed 

cross the surface [ 8 , 9 ]. In biology, the statistical characterization 

f shape variations patterns based on Cartesian landmark coordi- 

ates, known as Geometric Morphometrics , is an approach grown 

ut from early ‘900 and fully established with Bookstein starting 

rom the ’80s [27] . The great advantage in working with PDMs is 

hat statistics on points are easily interpretable and have a physical 

ignificance; on the other hand, the high amount of data (i.e., the 

ense set of points) required to adequately describe complex 3D 

hapes makes it difficult to gather and analyze the whole set of in- 

ormation. To reduce the problem’s dimensionality without losing 

enerality, the typical approach to SSM definition is based on Prin- 

ipal Component Analysis (PCA) [28] . Using a PCA-based approach, 

t is possible to define the space of all possible shape deformations 

escribed by the set of the M samples { �1 �2 … �M } forming the 

raining set. Each training shape �i is represented as a PDM with a 

iscrete set of landmarks x i . According to Eq. (1) , �i can be defined

s: 

i = 

{
x 

i 
k i 

∣∣x 

i 
k i 

∈ R 

3 , k i = 1 , . . . , N i 

}
(3) 

here N i is the number of points used to describe the shape �i , 

nd x i 
k 

contains the 3 cartesian coordinates ( Eq. (2) ) of the k -th

oint. 

Each shape �i is properly rearranged by stacking the coordi- 

ates of each point k in a large (3 N i elements) column vector � x i .

onsidering the global reference system in the x -, y - and z -axis: 

  

i = 

[
x i 1 x i 2 . . . x i N i y i 1 y i 2 . . . y i N i z i 1 z i 2 . . . z i N i 

]T 
(4) 

As a result, the column vector reported in Eq. (4) represents the 

 N i variables of a single observation �i . 

To apply the PCA, the whole training set has to be then orga- 

ized in a matrix ( TS ) whose columns are the observations (i.e., 
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he M shapes) and rows are the variables: 

S = 

[
�
 x 

1 �
 x 

2 . . . � x 

M 

]
(5) 

For a correct definition of the TS , i.e., for a correct definition 

f the raw dataset on which apply the PCA, it must be strictly 

ssumed that the points are in correspondence , i.e., the points of 

ll training samples are located at the corresponding position. In 

ther words, it means that the k -th landmark x i 
k 

and x 
j 

k 
of two

hapes �i and �j represents the same point. It is worth noting that 

he PDMs from which to derive the training samples could be, and 

sually are, described by a different number of points N i . To obtain 

 proper TS , such models need to be reworked to satisfy the corre- 

pondence assumption. When all the training samples are in corre- 

pondence, all the observations have the same number of rows N , 

nd TS is a 3 N x M matrix. Obviously, the larger N, the more com-

lete the description of the variability of the initial training set; on 

he other hand, the larger N the more complex the correspondence 

roblem becomes. 

Finding a meaningful correspondence between shapes is one of 

he critical tasks of shape analysis [29] : a good correspondence en- 

bles to retrieve the correct information from the training set, be- 

ause each row of the TS , i.e. each variable, refers to a specific lo-

ation across all the training samples. 

Once the dataset TS is properly defined, the direct calculation 

f the mean shape is possible by simply averaging over all M sam- 

les: 

¯ = 

1 

M 

M ∑ 

i =1 

�
 x i (6) 

The covariance matrix S is given by: 

 = 

1 

M − 1 

M ∑ 

i =1 

( � x i − x̄ i ) ( � x i − x̄ i ) 
T (7) 

A typical PCA-based approach is usually used to provide an 

igendecomposition on S delivering the principal Modes of Varia- 

ion (MoVs) � (matrix whose columns are the eigenvectors of the 

 matrix) and their respective variances λ (vector containing the 

igenvalues of the matrix S). Operatively, the PCA returns the plau- 

ible deformations, delivered as directions ( �) and related ampli- 

udes ( λ) of displacement, of every single point of the mean shape. 

t is now possible to approximate new valid shapes, i.e. new in- 

ividuals belonging to the same family of shapes forming the TS 

atrix, by a linear combination of the first c MoVs: 

 = x̄ + 

c ∑ 

m =1 

αm 

√ 

λm 

ϕ m 

(8) 

Where: 

• x̄ is the mean shape as defined in Eq. (6) . 
• λm 

and ϕm 

are, respectively, the eigenvalues and eigenvectors 

of matrix S ordered by their variances ( λ1 ≥ … ≥ λc ). 
• α ∈ R c is a coefficients vector that permits to constrain the 

allowed variation to plausible shapes; usually, α is allowed to 

vary in the range [ −3; + 3], which corresponds to a deformation 

that is 3 standard deviations away from the mean ( α = 0 means 

that the model is equal to the mean shape). 
• c represents the number of significant eigenvalues. In the pre- 

sented application, c is defined so that the accumulated vari- 

ance (the numerator of Eq. (9) ) reaches a certain ratio r of the

total variance (the denominator of Eq. (9) ). Common values of 

r are between 0.9 and 0.98. Henceforward, an r equal to 0.98 

will be considered. 

∑ c 
i =1 λi ∑ M−1 
j=1 λ j 

= r (9) 
m

5

Following the mathematical framework presented in [30] , the 

SM defined in Equation 4.6 can be represented in matrix form: 

 = x ( α) = x̄ + U Dα = x̄ + Q α (10) 

Where U = ( ϕ1 ,…, ϕM 

) and D = ( 
√ 

λ1 , . . . , 
√ 

λM 

) are the matri- 

es containing, respectively, the eigenvectors and the eigenvalues 

f the covariance matrix S as defined in Eq. (7) . 

Eq. (8) and Eq. (10) represent a convenient mathematical repre- 

entation of an anatomical healthy ROI, and they are able to gener- 

te new consistent shapes by simply varying the parameters in the 

ector α. In this application, Eq. (10) is used to infer the full shape

f the defective model to be restored, predicting a likely healthy 

hape from given partial data by following the procedure described 

elow in the section How to find the MPs from the SSM: fitting the 

ean Shape on the defective model . 

Though the whole procedure seems straightforward, the con- 

truction of the TS matrix and, in particular, the establishment of 

he correspondences (i.e. the identification of the points belong- 

ng to different models but located at corresponding position) ac- 

ually represents a critical step. Point correspondence is a crucial 

ssumption to apply standard multivariate statistics to model a 

robability distribution over shapes because it enables proper data 

ollection and interpretation, starting from the training samples. 

herefore, the correspondence problem represents the most chal- 

enging part of the SSM construction [8] because the quality of 

he SSM itself is heavily influenced by the quality of the estab- 

ished correspondences. Since the manual landmarking approach 

s not appropriate when working with complex 3D shapes (due 

o the large number of points needed to produce an acceptable 

uperimposition), several methods for the automatic detection of 

hape correspondences have been proposed in the literature [8] . 

ll the proposed automatic algorithms perform a registration be- 

ween PDMs: the most straightforward solution is to choose an 

rbitrary shape as a reference and warp it to all others by using 

 non-rigid point set registration. To date, the most established 

ethods to perform such registration are based on Iterative Clos- 

st Point (ICP) algorithm [ 31 , 32 ] or, alternatively, on Coherent Point 

rift (CPD) algorithm [33] . The main advantage of using non-rigid 

oint set algorithms is that they treat correspondence as a variable 

o be estimated and not as an input (as happens, for instance, in 

he Procrustes-based algorithms). To overcome the bias caused by 

sing an arbitrary reference shape, the procedure can be repeated 

 second time using the Mean Shape obtained by the SSM [34] or 

y using a symmetric version of the non-rigid registration (as pre- 

ented in [35] with reference to ICP). 

The most established approach based on non-rigid registra- 

ion [8] in the specific application of the human skull proved to 

e insufficient when applied directly on the 3D model obtained 

rom the CT data. Actually, due to the wide anatomical variabil- 

ty and the extreme complexity of the hard tissues in the cranial 

egion, the method often fails to detect appropriate shape corre- 

pondences. To overcome these drawbacks, in [7] a methodological 

rocedure to compute an SSM using a pair-wise registration based 

n an automatic detection of shape correspondences is presented. 

he procedure relies on a strategy for robust automatic detection 

f shape correspondence to properly rearrange the initial training 

ataset formed by a large number of cranial models delivered as 

DMs; the aim is to build a TS matrix that describes the same 

ariability of the initial training set but properly shaped in order 

o enable a correct application of the SSA on the data. Requiring 

o user intervention, the number of samples in the Training Set 

an be increased at will to increase the variability, and therefore 

he accuracy, of the resulting parametric model. The ICP algorithm 

s used in [7] to align the initial training shapes. The best perfor- 

ance of the ICP with respect to the most established alternative 
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Fig. 4. The first two MoVs. 
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roposed in the literature, which is represented by the CPD [33] , is 

ell described in [36] . 

In this work, the algorithm described in [7] is followed to build 

he TS ; since the procedure described in [7] uses PDMs as inputs 

as for the HyM3D method) and requires no user interaction, it is 

ntegrated without any modifications in the procedure described in 

ig. 2 . 

Once the TS is properly shaped, both the Mean Shape ( Eq. (6) )

nd the covariance matrix S ( Eq. (7) ) can be defined. In SSA, to

educe the problem’s dimensionality without losing generality, the 

alculation of the eigenvectors ϕm 

and the eigenvalues λm 

of the 

ovariance matrix S is actually performed by a Singular Value De- 

omposition (SVD) [ 37 , 38 ] on the mean-centered dataset matrix L 

nstead of using the eigenanalysis on the covariance matrix S. L is 

btained by mean-centering the matrix TS , i.e. by subtracting the 

ariable averages from the data in TS ( Eq. (11) ). 

 = 

((
�
 x 

1 − x̄ 

)
, . . . , 

(
�
 x 

M − x̄ 

))
(11) 

The eigendecomposition applied on S yields the same results as 

he SVD performed on L , but the latter is preferred since it pro-

ides better numerical stability [8] . 

By performing the PCA to the TS , the first c significant MoVs 

ith the respective variances are delivered. Based on our defini- 

ion of c , they provide 98% of the total variance of all the instances

ontained in TS . Fig. 4 depicts the first two MoVs of the exocranial

urface as resulting from the application of the SSA to the TS ; the 

gure shows the maximum and minimum deformation according 

o ϕ1 and ϕ2 with respect to the mean shape ( α = 0). 

In this application, the initial training set contains 100 healthy 

ranial exoskeletons (43 female, 57 male, average age = 32.6 years). 

he original anonymized CT images were downloaded in DICOM 

ormat from an online repository [39] . At a first stage, a selec- 

ion of the patients was performed, to make the training set as 

niform as possible; unfortunately, the anonymized images pro- 

ided little information about each patient, so it was not possible 

o properly optimize the initial dataset. Despite that, the resulting 

SM can still be considered as a first attempt to test the poten- 

ialities of the method. By working on the uniformity and size of 

he Training Set, the quality of the resulting SSM, and therefore 

he accuracy of the reconstruction, can be significantly improved. 

he choice of the size of the TS was guided by the considera- 

ion presented in the next section entitled Statistical Shape Model 

valuation . 

The STL models have been obtained from the anonymized di- 

gnostic images using specifically designed tools in Materialise 

imics R © software (Materialise NV, Leuven, Belgium) for image 

egmentation and for exporting the STL models themselves. To 
6 
xpedite the subsequent operations, each of the so-obtained STL 

odels is roughly finished (removal of outliers and redundant re- 

ions). In order to keep the calculation cost limited, the number 

f points of each training neurocranium is decimated up to about 

0,0 0 0–15,0 0 0 points. 

As a result of the procedure presented in [7] , the matrix TS (as

efined in Eq. (5) ) and the parametric representation of the SSM 

 Eq. (8) ) are automatically provided. 

A comprehensive assessment of the effectiveness of the deliv- 

red results along with an evaluation of the quality of the TS ma- 

rix and, consequently, of the quality of the correspondences es- 

ablished among the training samples, is reported in the following 

aragraph. 

.3.2. Statistical shape model evaluation 

The most established approach for the SSM quality assessment 

s based on the work published by Davies in 2002 [40] . In this

aper, the author proposed a methodological procedure to evalu- 

te the general quality of an SSM identifying the properties that 

ould ideally be required for such a model: the Generalization abil- 

ty , the Specificity , and the Compactness . The author’s aim was in- 

eed to compare different models constructed starting from the 

ame training set rather than to propose an absolute measure of 

he quality of an SSM. As a consequence, to provide a more sig- 

ificant and objective evaluation of the quality of an SSM, many 

uthors [ 8 , 41–44 ] have proposed alternative approaches over the 

ears, especially for the calculation of the Generalization ability and 

he Specificity . The different approaches differ for the metric D
sed to compare different shapes (see Eq. (12) and Eq. (13) ). How- 

ver, only the method for calculating the three factors that Davies 

escribed has evolved over time, while the basic ideas supporting 

he evaluation technique proved to be very robust and are, there- 

ore, still valid in their original formulation. In this Section, an ex- 

austive description of the three properties is provided, and the 

pproach followed in this application to calculate each of them is 

escribed and justified. 

The first property, the Generalization ability G, quantifies the ca- 

ability of the SSM to reproduce a given model; in other words, 

measures the ability of the model to learn the characteristics of 

he family of shapes under consideration from a limited training 

et. It is estimated by performing a series of leave-one-out tests 

n the training set, measuring the distance of the omitted train- 

ng shape �i to its closest match �i ∗(c) provided by the reduced 

SM. 

The Generalization ability is given as a function of the number c 

f the significant eigenvalues used to define the parametric model 



A. Marzola, K.S. McGreevy, F. Mussa et al. Computer Methods and Programs in Biomedicine 234 (2023) 107516 

(

G

r

D
p

c

D
s

fi

a

i

s

(

v

b

a

S

c

a

m

d

i

T

d

t  

t

t

S

M

m

b

t

n

m

t

v

i  

S

s

I∑

C

t

p

s

o

b

i

t

Fig. 5. Generalization ability. 

Fig. 6. Specificity. 

Fig. 7. Compactness. 
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see Eq. (9) for the definition of c ): 

 ( c ) = 

1 

N 

M ∑ 

i =1 

D 

(
�i 

∗( c ) , �
i 
)

(12) 

Lower values of G indicate better SSMs. D represents the met- 

ic used to compute the distance between the shapes: by varying 

, the significance of the difference changes. According to the ap- 

roach presented in [42] , the Symmetric Mean (SM) distance cal- 

ulated between the nearest points is used in this paper as the 

metric. Using the SM calculated between the nearest points, in- 

tead of exploiting the same pairwise correspondences already de- 

ned during the TS definition, ensures to exclude from the evalu- 

tion any aspect regarding the registration process, thus provid- 

ng only an assessment of the model’s ability to match a given 

hape. 

This approach also considers a normalization with respect to N 

i.e. the number of the points of �i ∗ and �i ). As a consequence, G
alue is not just an index for direct comparison with other SSMs 

ut also represents a measure of the fitting error (in mm ) between 

 target shape and its closest reconstruction achievable with the 

SM under consideration. Using this method and taking into ac- 

ount a sufficient number of leave-one-out tests, G may be seen as 

n estimate of the expected fitting error (in mm) of the statistical 

odel under consideration. 

The second measure to evaluate an SSM is the Specificity S that 

escribes the model’s ability to generate new consistent shapes, 

.e. shapes belonging to the family of shapes under consideration. 

he measure is estimated by generating random parameters α; the 

istance of each generated shape �k ∗∗(c) to the closest match of 

he training set is then averaged over a large number of runs t . As

he Generalization ability , the Specificity is provided as a function of 

he significant eigenvalues number c : 

 ( c ) = 

1 

t 

n ∑ 

k =1 

min 

{ i =1 ,...,M } 
D 

(
�k 

∗∗( c ) , �
i 
)

(13) 

For the Specificity , the metric D used in this application is the 

ean Absolute Distance (MAD) between corresponding points to 

ake the measurement robust and independent from the num- 

er of landmarks [41] . When comparing two SSMs obtained from 

he same TS , lower values of S indicate better SSMs. It is worth 

oting that the S(c) gets worse as the c improves; although this 

ay seem a counter-intuitive behavior (since it is expected that 

he quality of an SSM improves when its ability to encode a larger 

ariability of the TS improves), it may be fully explained by keep- 

ng in mind that the more variety there is, the easier it is for the

SM to elude the members of the TS . 

The last measure is the Compactness C, which simply repre- 

ents the cumulative variance of the model as calculated by PCA. 

n this application, the C value is normalized by the total variance 
 M−1 
j=1 λ j : 

 ( c ) = 

∑ c 
i =1 λi ∑ M−1 
j=1 λ j 

(14) 

A compact model (i.e. small value of C) requires few parameters 

o encode a larger variability of the TS . So, contrary to the two 

revious measures, higher values of C indicate better SSMs. 

The just-defined values of G(c) , S(c) and C(c) for the con- 

tructed SSM have been computed and reported in Figs. 5-7 . 

To calculate G(c) , as many leave-one-out tests as the number 

f shape samples have been performed, so all the 100 shapes have 

een tested. The number of runs t carried out to calculate the S(c) 

s 10,0 0 0, as recommended by Davies in [45] . 

Despite S(c) and C(c) cannot be used as absolute measures of 

he quality of an SSM, G(c) can be interpreted, as said before in 
7 
his section, as an indication of the fitting error between the SSM 

nd a target shape. Consequently, G(c) ( Fig. 5 ) indicates that the 

SM built in this application can match a target shape with an ex- 

ected absolute mean error equal to 0.51 ±0.09 mm by consider- 

ng that c has been set equal to 73 to ensure an r equal to 0.98

see Eq. (9) ). It is important to note that the quality of a statisti-

al model is directly correlated with the available amount of train- 

ng data. As the training set is expanded, the resultant parametric 

odel’s accuracy and variability increase. Due to the data collec- 

ion method, the availability of 3D anatomical models is, unfortu- 

ately, almost always inadequate since it is rare to get a suitably 

esolute diagnostic image of a healthy ROI. Furthermore, the re- 

uired pre-processing (i.e. manual segmentation and model clean- 

ng) is very cumbersome and time-consuming. As a consequence, 

he limitations imposed on the permitted deformation prevent the 

esulting SSM from accurately adjusting to new data. In addition, 

ig. 8 shows that the higher the number of samples, the more dif- 

cult is to get better indices. Due to the flattening of the G(M) 

urve, more and more training samples are required to enhance 

he quality of the resulting SSM. The choice of 100 training sam- 

les is then justified by a trade-off between reaching good indices 

nd the number of additional training samples required to obtain 

 significant improvement of the same indices. 
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Fig. 8. Generalization ability by increasing the number of training samples. 

Fig. 9. The prior model x g (a) constraints the possible resulting shapes x c (b). 
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Table 1 

The combinations of parameters n and m in each of the test cases addressed. 

m = 10 mm m = 25 mm m = 40 mm m = 80 mm 

n = 10 rings n = 10; m = 10 n = 10; m = 25 n = 10; m = 40 n = 10; m = 80 

n = 40 rings n = 40; m = 10 n = 40; m = 25 n = 40; m = 40 n = 40; m = 80 

n = 70 rings n = 70; m = 10 n = 70; m = 25 n = 70; m = 40 n = 70; m = 80 
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.3.3. How to find the MPs from the SSM: fitting the mean shape on 

he defective model 

In addition to the ability to generate new consistent shapes 

ased on a set of representative training samples, SSMs have also 

een used to infer the full shape from partial data ( Fig. 9 ). Whether

he objective shape x is partially known, it can be used as prior 

nowledge to constraint the shape space described by the SSM. 

The information available (namely the locations of the known 

oints describing the model to be reconstructed) is given in form 

f q < N entries: these entries are henceforward denoted as x g ∈ 

 

3 q . Related to the data x g , the sub-vector x̄ g ∈ R 

3 q and sub-matrix

 g ∈ R 

3 q x M can be defined from the full model’s x̄ and Q by select-

ng the rows corresponding to the given entries only. It is neces- 

ary to know which entries in x g correspond to which entries in x 

n order to select the correct rows from x̄ and Q . It is then possible

o define: 

 g = x g ( α) = x̄ g + Q g α (15) 

here α is the only unknown parameter. By inverting Eq. (15) : 

= Q 

−1 
g ( x g − x̄ g ) (16) 

Since the vector α ∈ R 

c is not affected by the actual number 

f points of the shapes involved ( c depends on the MoVs and it 

s uniquely defined by defining r ), it is possible to infer the un- 

efective model by using Eq. (10) with the α value provided by 

q. (16) . The resulting shape, called x c , represents the most likely 

complete) shape according to the TS once given the initial par- 

ial data. In this application, it represents the most likely healthy 

ranial vault reproducing the known bone ( Fig. 9 ). x c is, then, the

odel useful for providing the MPs. 

The computation of x c can be easily included in the procedure 

resented in [5] , as they share the same input x g . 

. Results 

The procedure to obtain the parametric model and to fit the 

ean Shape onto the a-priori known model has been implemented 
8 
n Matlab R © (MathWorks, Inc.) to make the integration with the 

riginal formulation (also implemented in Matlab R ©) easier. The 

lgorithm automatically provides the matrix TS (as defined in 

q. (5) ) and the SSM ( Eq. (8) ). The SSM only needs to be built once,

nd can then be integrated into the reconstruction process de- 

cribed in Fig. 2 which automatically provides the restored cranial 

ault by taking just the STL of the defective neurocranium to be re- 

onstructed as input. The algorithm also requires two more input 

arameters (as discussed in the paragraph The HyM3D method ): 

• m , which represents the minimum distance (in mm ) between 

the boundary loop and the outer ring of the MPs. 
• n , which represents the number of points rings lying on the 

outer side of the boundary loop to create an overlapping region 

between the interpolating surface and the healthy bone. 

Before facing the actual reconstruction task, several tests have 

een performed in order to define the best combination of the two 

arameters. This preliminary experimental campaign involved 15 

odels, including 5 real defective skulls, 9 real skulls with syn- 

hetic defects, and a synthetic skull with synthetic defects. Both 

nilateral and non-unilateral defects have been considered. The 

ests have been carried out by applying 12 times the algorithm to 

ach of the 15 test cases with the parameters m and n combined 

s follows ( Table 1 ): 

The choice of the m and n values is defined as explained in the 

ollowing. By choosing a minimum value of m equal to 10 mm, 

he MPs are very close to the boundary loop but far enough not 

o compromise the continuity of the reconstructed surface. Values 

ower than 10 mm would lead to interpolation centers too close to 

he boundary loop. This situation is to be avoided since it would 

ead to the same continuity problems as in the typical Template- 

ased approaches. In these cases, traditional Surface Interpolation - 

ased is suitable for a consistent reconstruction. On the other 

and, the maximum value of m (80 mm) has been chosen be- 

ause it guarantees to have no MPs, i.e. to consider a pure Sur- 

ace Interpolation - based approach. For these reasons, values lower 

han 10 mm and greater than 80 mm are not significant for the 

arameter m . Fig. 10 (a) and Fig. 10 (b) depict the interpolating sur- 

ace passing through the centers of interpolation (shown in black) 

efined with, respectively, m = 10 and m = 80. In both Figures, n 

s equal to 10. 

Regarding the n value, it relates to the thickness of the over- 

apping region between the interpolating surface and the healthy 

one: the larger n the more extensive the overlapping region. 

Fig. 10 (c) and Fig. 10 (d) show the interpolating surface passing 

hrough the centers resulting from, respectively, n = 10 and n = 40. 

n both Figures, m is equal to 10. 

As for m , values lower than n = 10 or greater than n = 40

roved to be non-significant for the parameter n . In particular, the 

esulting reconstruction has proven not to be much sensitive to 

mall variations of the parameter n , and imposing values lower 

han 10 would be equivalent to imposing n = 10. Obviously, n = 0 

as been not taken into consideration because it cannot ensure the 

ontinuity of the curvature between the healthy bone around the 

efect and the reconstructed patch. 

The tests showed consistent results in all the considered 15 case 

tudies. 
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Fig. 10. The reconstructed surface by varying the interpolation centers. The outer rim is formed by the n-RNs and the BPs while the inner points are the MPs. (a) n = 10 

and m = 10; (b) n = 10 and m = 80; (c) n = 10 and m = 10; (d) n = 40 and m = 10. 
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In the following, a selection of 4 representative models is pre- 

ented and discussed in detail. The discussed models are shown in 

able 2 and include: 

• TC#1 and TC#2 which are, respectively, a synthetic and per- 

fectly symmetric skull and a real skull. Both have a large syn- 

thetic defect that crosses (i.e. extends beyond) the sagittal plane . 
• TC#3 and TC#4 which are real defective skulls with, respec- 

tively, a purely unilateral large defect and a defect that crosses 

the sagittal plane . 

Tables 3–6 show the results of the test campaign carried out on 

he four case studies presented in Table 2 . The results are evalu- 

ted using the AV index and the AV point map [ 5 , 6 , 46 ]. These indices

re able to deliver a quantitative assessment of the restored model 

egardless of what the shape of the cranial vault had been before 

he defect. AV represents the mean distances between each point 

f the restored skull with respect to its closest tessellated surface 

riangle of the mirrored configuration of the restored skull itself. 
9 
onsequently, AV provides a quantitative evaluation of the overall 

kull asymmetry: small value of the AV index means a symmetrical 

econstruction and, thus, an acceptable outcome. AV point is, instead, 

he point-value of the AV provided as a colormap on the restored 

ranial vault: abrupt changes in the AV point colormap suggest pos- 

ible macroscopic discontinuities at the connection between the 

one and the patch. It is worth remarking that the AV index and 

he AV point map enable an evaluation both in terms of symmetry 

nd in terms of continuity between the patch and the surrounding 

ealthy bone which can be applied also when the original healthy 

hape is completely unknown, which is, by far, the most common 

ituation. 

According to these indices, the results show that the quality of 

he reconstruction heavily depends on the m value, while it is little 

nfluenced by the n one. In particular, the best reconstruction can 

e achieved by imposing a low value of m , i.e. by minimizing the 

istance between the MPs and the boundary loop. But, as can be 

een in Table 4 , a too-low value of m could lead to worse results



A. Marzola, K.S. McGreevy, F. Mussa et al. Computer Methods and Programs in Biomedicine 234 (2023) 107516 

Table 2 

The four test cases discussed in detail. 

Table 3 

The resulting AV and AV point for TC#1. 

Table 4 

The resulting AV and AV point for TC#2. 

10 
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Table 5 

The resulting AV and AV point for TC#3. 

Table 6 

The resulting AV and AV point for TC#4. 
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n those cases where the template is not able to adequately follow 

he defective model: the coarse alignment between the MPs and 

he other interpolation centers can cause curvature discontinuities 

n the surface if m is too small, i.e. no sufficient distance is left 

etween the boundary loop and the outer ring of the MPs. As said 

efore in this section, this situation leads to the typical problems 

f pure Template-based approaches. For these reasons, an optimal 

alue of m can be found only after an initial tuning of the parame-

er, experimentally assessed on the defective model under consid- 

ration. However, it can be assumed that, according to the reported 
11 
esults, the optimal value of m falls between 10 and 25 mm (see 

ables 3-6 ). This could be seen as a limitation of the devised al- 

orithm, but it must be considered that a trial-and-error approach 

s commonly exploited in Reverse Engineering methods to find the 

est parameters definition because usually there is not sufficient 

-priori information able to provide such parameters. 

Regarding m = 80, it is worth to note that the results clearly 

nderline that the reconstruction obtained without considering 

he MPs (therefore following a pure Surface interpolation - based ap- 

roach) leads to questionable reconstructions in all the addressed 
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Table 7 

Starting models for the discussed test cases. 

F

(

ases. This confirms that considering the MPs actually entails a rel- 

vant improvement over the Surface Interpolation-based approach. 

Regarding the n value, as already mentioned, the results show 

hat it has little influence on the quality of the reconstruction. 

owever, in all the case studies the reconstruction worsens slightly 

f n increases. Probably, a high value of n over-constrains the inter- 

olating surface that is less able to adapt accurately to interpola- 

ion centers. 

.1. Evaluation of the proposed algorithm 

In order to evaluate the quality of the reconstruction carried 

ut by means of the HyM3D method, 50 test cases have been con- 

idered. The aim is to assess the quality of the reconstruction pro- 

ided by the algorithm by retrieving the MPs from the SSM. The 

0 test cases include neither the models considered in the previ- 

us Section nor the ones included in the training set. 

In the following, the results of three representative cases, se- 

ected among all the test cases, are discussed in detail (see Table 7 

nd Figs. 11 (a)- 13 (a)): 

• TC#1 is a complete and perfectly symmetric synthetic skull. 
• TC#2 is a real healthy skull. 
•
 TC#3 is a real bilateral defective skull. l

ig. 11. Test Case TC#1 ∗ – (a) The defective model; (b) The fitted SSM; (c) Deviation map

e) Deviation map between (d) and (a). 

12 
TC#1 and TC#2 are the same skulls presented in [5] . 

For each of the complete skulls (TC#1 and TC#2), artificial bi- 

ateral defects are modeled: the resulting models are named TC#1 ∗
 between (a) and (b); (d) The reconstruction provided by the proposed algorithm; 
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Fig. 12. Test Case TC #2 ∗ – (a) The defective model; (b) The fitted SSM; (c) Deviation map between (a) and (b); (d) The reconstruction provided by the proposed algorithm; 

(e) Deviation map between (d) and (a). 
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Table 8 

AV values for all the unilateral test cases dis- 

cussed. 

Test Cases Undefective Reconstructed 

#1 ∗ 0.000 mm 0.003 mm 

#2 ∗ 0.945 mm 1.130 mm 

#3 N.A. 1.326 mm 

m

t

v

t

t

nd TC#2 ∗. Being a defective model, TC#3 is not further modified. 

n all the reported cases, the area of each defect (real or synthetic) 

s greater than 100 cm 

2 , so they can be considered large defects 

ccording to [12] . 

As far as procedure inputs are concerned, they are imposed, ac- 

ording to the previous section, as follows: m = 18 mm and n = 10

ings. In particular, the m value is set equal to 18 mm after an ini-

ial tuning, because it has proven to be a trade-off value between 

he quality of the reconstruction and the robustness of the proce- 

ure in all the cases. 

The results of the evaluation process are reported in Table 8 and 

igs. 11-13 . Along with the defective models to be reconstructed, 

igs. 11 (a)- 13 (a), Figs. 11 (b)- 13 (b) and Figs. 11 (c)- 13 (c) show, re-

pectively, the fitted SSMs and the deviation map between the de- 

ective model (a) and its respective fitted SSM (b). The deviation 
c

13
aps depict, point by point, the Euclidian distances measured be- 

ween correspondent points. It is worth underlining that the de- 

iation maps confirm the expected absolute mean error between 

he fitted SSM and the target model discussed in the section Sta- 

istical Shape Model Evaluation : in fact, the expected error has been 

omputed to be approximately 0.51 ±0.9 mm , very close to the val- 
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Fig. 13. Test Case #3 – (a) The defective model; (b) The fitted SSM; (c) Deviation map between (a) and (b); (d) The reconstruction provided by the proposed algorithm; (e) 

Deviation map between (d) and (a). 
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es measured in the reported cases (i.e., respectively, 0.63 mm , 

.49 mm , and 0.68 mm ). 

The fitting errors shown in Figs. 11 (c)–13 (c) clearly demonstrate 

hat performing the reconstruction through a typical Template- 

ased approach (namely extrapolating from the SSM the full 

oints-set that falls into the boundary loop) can lead to a dis- 

ance up to 2.5 mm between the outer rim of the reconstructed 

atch and the edge of the surrounding bone. This condition re- 

ults, as expected, in a lack of continuity between patch and bone 

hich must be fixed by the operator through a series of manual 

ime-consuming and cumbersome operations: as widely discussed 

n this paper, this actually represents the main limitation of the 

emplate-based methods. 

On the contrary, performing the reconstruction by using the 

roposed algorithm it is possible to overcome these shortcom- 

ngs: Figs. 11 (d)- 13 (d) and Figs. 11 (e)- 13 (e) show, respectively, the

econstruction provided by the devised algorithm and the devia- 

ion maps between each defective model (a) and the reconstructed 

odel (d). In particular, Figs. 11 (e)- 13 (e) show that the reconstruc- 

ion is perfectly superimposed on the known part of the skull to be 

econstructed: by retrieving the BPs and n -RNs directly from the 

efective model, the algorithm is able to provide a restored cra- 

ial vault perfectly matching the actual model to be reconstructed 

ithout requiring time-consuming manual operations. 
14 
In the following, the results attained by the reconstruction 

trategy based on the SSM are further evaluated by means of the 

V index and the AV point map. The computed AV index is reported 

n Table 8 for the above-mentioned test cases. Where the com- 

arison between the reconstructed model and the original healthy 

ne is possible (i.e., for TC#1 ∗ and TC#2 ∗), AV shows a value 

or the restored skulls very close to that of the originally known 

hapes, proving the effectiveness of the reconstruction delivered 

y the algorithm. With regard to TC#3, whose original shape is 

ot known, the reconstruction achieves an AV index comparable 

ith the AV computed for the undefective real model TC#2, which 

emonstrates the ability of the procedure to deliver consistent 

esults. 

The results also show that exploiting an external source as a 

emplate cannot ensure reconstructed models with an AV even 

ower than the original ones, as was the case in the mirroring-based 

econstruction (see [5] ). Actually, this is an expected result: while 

 reconstruction driven by the contralateral part leads obviously to 

 maximization of the similarity of the two halves, there are no 

onstraints able to ensure symmetry when the external template 

s exploited to retrieve the MPs. 

With regard to the AV point , the absence of abrupt changes in the 

olormaps reported in Table 9 shows the lack of any kind of dis- 

ontinuities or asymmetries at the interface between the healthy 
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Table 9 

AV point maps for the discussed test cases. 
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kull and reconstructive patch for all three test cases. As a conse- 

uence, both AV and AV point prove the effectiveness of the delivered 

econstruction. 

Dealing with the computational time to achieve the digital 

ranial restoration starting from the properly modified STL, it is 

losely related to the resolution of the surface model (number of 

ertices forming the STL file). For the addressed test cases, the 

omputational time resulted to be between 30 s and 2 min for 

oint sets varying from 40 0 0 to 10,0 0 0 points. The algorithm is

ested with a CPU Intel R © Core TM i7–4712HQ/2.3 GHz and 16 GB 

AM. 

. Conclusions and final remarks 

The increasingly powerful and specialized CAx tools for han- 

ling complex geometries, such as anatomical ones, are represent- 

ng a breakthrough in clinical practice. Especially in cranioplasty, 

he capability to make reliable simulations as well as to design the 

ctual implant at the preoperative stage using the patient’s diag- 

ostic images has proven to be worthwhile, both in terms of effec- 

iveness and costs. 

To date, one of the hardest tasks in cranioplasty surgery is the 

re-operative virtual design of a corrective cranial plate. To ensure 

n acceptable aesthetical and functional outcome, such a design 

ust be based on a proper anatomical reconstruction usually done 

n virtual environments by skilled operators. 

Several techniques have been developed for cranial vault digital 

econstruction, but all of them share some drawbacks that limit 

heir applicability (e.g. too complex or time-consuming operations 

r incorrect resulting geometries). The limitations are mainly re- 

ated to the lack of information in the missing area and the com- 

lexity of the shape that must be restored. Consequently, a con- 

incing solution able to ensure an easily automatable procedure 

ith a consistent shape reconstruction is not yet available. 

To overcome these drawbacks, a novel hole-filling procedure 

or the restoration of defective cranial vaults has been presented, 

uited for both unilateral and non-unilateral large defects. 
15 
The procedure works automatically starting from the external 

oly-faces of the defective neurocranium, leaving to the user only 

he selection of the hole to be repaired by clicking one point on its 

dge. Being landmarks-independent and avoiding any patch adap- 

ation, the devised procedure represents a valid alternative to the 

xisting approaches in terms of user’s burden, requiring less time- 

onsuming and less cumbersome operations. 

The innovative idea is to exploit a properly defined template to 

btain some meaningful points (named MPs) in the missing or de- 

ormed region, with the aim to guide the subsequent reconstruc- 

ion carried out by a Surface Interpolation-based technique. This ap- 

roach makes it possible to overcome the shortcomings of the typ- 

cal Surface Interpolation-based technique, which usually leads to a 

on-consistent shape: usually, the reconstructed patch results too 

at due to the lack of centers of interpolation inside the defective 

egion. 

With regard to the template, a procedure able to ensure a re- 

iable automatic construction of the SSM starting from a training 

et of healthy ROI has been implemented in the algorithm. Since it 

oes not require any manual operation, the number of samples in 

he training set can be increased at will, without time-consuming 

r heavy and tedious operations required from the user. This al- 

ows for a training set with a larger population and, consequently, 

 more precise template for improving the ability to reproduce the 

ide interpersonal variability of the anatomical structures. 

Several case studies have been faced to assess the effectiveness 

nd reliability of the devised procedure. Since the quality of the re- 

onstruction is strictly related to the aesthetical outcome, the eval- 

ation method aims to assess the quality of the procedure consid- 

ring those criteria that mainly affect aesthetics, i.e. the symmetry 

f the resulting skull and the continuity between the reconstructed 

atch and the surrounding bone. 

According to the proposed evaluation method, the novel proce- 

ure leads to a consistent aesthetic outcome, also in the case of 

on-unilateral defects. 

In addition, the test cases confirm that the reconstruction 

riven by the MPs enables to overcome the limitations of both the 

urface Interpolation-based and the Template-based techniques, en- 
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uring the cranial surface continuity and the resulting shape con- 

istency without time-consuming user operation. 

Considering the specific procedure here proposed, several as- 

ects to be improved can be identified. 

First of all, it is specially developed for the cranial vault. Be- 

ause of the high complexity of the anatomy structures, it is diffi- 

ult to provide a methodology reliable for all applications. Despite 

hat, the possibility to extend the applicability of the proposed ap- 

roach to different anatomies may deserve further investigations. 

In addition, future developments could address the application 

f the devised algorithm to reconstruct missing areas from incom- 

lete acquired 3D data in other fields, such as cultural heritage or 

ndustrial ones. From this point of view, the proposed approach 

ould represent a powerful tool to be included, for instance, in the 

raditional Reverse Engineering process. 

Future work should also concern the optimization of the whole 

rocedure, to make it more robust given the wide variability of the 

nput models. In order to improve the applicability of the proce- 

ure by making it fully automatic, future efforts should concen- 

rate on the pre-processing steps like, for instance, the diagnostic 

mages segmentation and the subsequent STL preparation (cleaning 

f the model and cranial vault isolation). In addition, an improve- 

ent of the SSM could be feasible by expanding the training set 

o to increase its ability to match the defective model. 
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