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Abstract—The main drivers of the development and production
of new energy devices are energy device efficiency and machin-
ery maintenance strategies. The former to minimize pollutant
emissions with a view to future carbon neutrality. Condition-
Based Maintenance (CBM), on the other hand, can help improve
machinery reliability and reduce downtime by monitoring equip-
ment conditions and addressing potential problems before they
become serious. It can also save companies money by reducing
the number of unnecessary repairs, minimizing the need for spare
parts, and optimizing maintenance schedules. In this paper, the
authors propose a deep learning methodology to automatically
detect anomalies on a real Combined Heat and Power (CHP)
unit supplying a school in Germany. The core of the work is a
convolutional autoencoder trained on the normal behavior of the
energy generator. The autoencoder is enhanced with a Bayesian
technique, the Monte Carlo dropout, used to add a stochastic
component to the model to quantify the uncertainty degree of
the detection. This information is crucial to determine if or when
action is actually needed, optimizing the service and maintenance
strategy. The proposed approach was applied to a real case study
and was found to be effective, heat exchanger fouling was detected
5 weeks before the standard detection system. The algorithm
returns high confidence in system anomalies and low detection
confidence for minor alterations in behavior, less risky for the
machine.

Index Terms—Anomaly Detection, Uncertainty Quantification,
Autoencoder, Monte Carlo dropout, CHP

I. INTRODUCTION

Frequently, energy generators are operated with low produc-
tivity or, in worst cases, some negative trends appear weeks
before a real breakdown of the machine; this lead to higher
energy consumption and unplanned reparations that could be
easily avoided through ad-hoc maintenance intervention. At
present, the most promising methodologies for addressing
anomaly detection issues are Machine Learning (ML) and
Deep Learning (DL) models [1].

A prevalent scenario in this context is novelty detection,
which is a technique utilized to handle partially unlabeled
data. Industries frequently provide datasets in which they are
confident that the machine under investigation is operating
within the normal functioning range, rather than labeling a
range of malfunctioning cases. Classically, novelty detection

is applied to unbalanced datasets in which the majority of
acquisitions describe the machine in a normal behavior while
a small portion of data is representative of a faulty condition
[2]. In contexts where machines are highly expensive and
production cannot be interrupted, every detection is carefully
considered to avoid costly breakdowns or performance losses.
Conversely, for energy devices with productions below 100
kW, maintenance or interventions are typically carried out
when the presence of a problem is certain. In this regard, it
is important not only to provide anomaly detection but also a
confidence level for the anomaly itself, and where possible, to
point the sensors involved in the problem. This reinforces the
concept of CBM.

Regarding adding a confidence level to the anomaly predic-
tion, despite the success of standard DL methods in solving
various real word problems, they cannot provide informa-
tion about the reliability of their predictions [3]. Two main
solutions have been proposed in recent years to introduce
the information of uncertainty quantification: the Variational
AutoEncoder (VAEs) [4] and the Monte Carlo dropout (MCD)
[5].

VAEs are a type of generative model that learn a low-
dimensional representation of the input data by encoding it
into a latent space and then decoding it back to the original
input space. In this process, VAEs minimize a reconstruction
loss between the original input and its reconstruction, as well
as a regularization term that encourages the latent space to
follow a prior distribution. The resulting model can be used
to encode-decode test samples and perform anomaly detection
by measuring the reconstruction error of these samples [6] -
[9].

MCD, on the other hand, is a dropout-based technique that
uses dropout [10] during inference to estimate the model’s
uncertainty. Dropout randomly drops out units from the neu-
ral network during training, which acts as a regularization
technique. During inference, dropout is applied multiple times
with different dropout masks, and the resulting predictions
are averaged to estimate the model’s uncertainty. In anomaly
detection, MCD can be used to estimate the uncertainty of
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the model’s prediction for each test sample returning a rate of
how many anomalies have been detected during the multiple
inferences [11] - [13].

One key difference between VAEs and MCD is that VAEs
are generative models, while MCD is a technique for uncer-
tainty estimation. VAEs can be used not only for anomaly
detection but also for tasks such as data generation. However,
MCD is a simpler technique that can be easily applied to any
existing neural network architecture.

Another difference is that VAEs require a prior distribution
over the latent space, while MCDs do not. The choice of prior
distribution can have a significant impact on the quality of the
VAE’s latent space representation, and finding an appropriate
prior can be challenging. [14]

Finally, VAEs tend to be computationally more expensive
than MCDs, as they require training a full generative model.
MCD, on the other hand, only requires running the inference
multiple times with different dropout masks.

Because of the above, an MCD method was chosen in this
study. The subject of the work is a YANMAR cogenerator with
a rated output of 20kWe installed in a school in Germany. The
main goals are the definition of an effective model for anomaly
detection that can provide an uncertainty quantification of
the anomaly and the identification of the sensors responsible
for the anomaly. This last information can provide valuable
insights into the underlying causes of the anomaly and can
facilitate targeted maintenance and repair efforts. By isolating
the specific sensor responsible for the anomaly, it is possible
to focus resources on the relevant component and avoid
unnecessary downtime or repairs.

This paper investigates an unexplored aspect in the current
literature, namely the utilization of Bayesian quantification
for anomaly detection in micro-CHP units. Specifically, the
authors enhance an existing autoencoder architecture to ac-
commodate the incorporation of MCD layers. The challenge
lies in striking a balance that preserves the detection perfor-
mance of the model despite the regularization introduced by
the dropout layers, while also enabling the quantification of
anomaly severity both from a system-level perspective and
from the individual contribution of each signal.

II. CASE STUDY

The YANMAR micro-CHP under analysis provides electric-
ity and thermal energy to a school facility located in Germany.
Thermal energy is produced through a highly efficient process
that recovers waste heat generated during electricity produc-
tion and transfers it to warm water from the load that is then
redirected back to the load. The core of the cogeneration unit is
an Internal Combustion Engine (ICE) that converts natural gas
into electrical energy. The heat extracted from the engine for
cooling and the heat present in the hot exhaust gases are both
recovered and transferred to a carrier liquid, usually water, that
feeds the system. The system is part of a more complex system
that includes a buffer tank and a gas boiler. The 20kWe CHP
engine meets the electric load with backup from the grid. The

recovered heat and the gas boiler are used to charge the buffer
tank to cover thermal requests.

Fig. 1. Case study plant layout.

Fig. 1 offers an illustrative representation of the plant layout,
emphasizing the interconnections of the generators. The red
lines denote the piping system responsible for conveying hot
water from the micro-CHP unit and the gas boiler to meet
the thermal load, while the blue lines indicate the return flow
of water after heat exchange with the school. The electrical
connections, drawn in green, represent the wiring network that
provides power supply to the facility.

The dataset available contains information from the whole
plant, indeed measurements acquired by 49 sensors are
recorded and stored in a relational database every 15 minutes.
Only 12 measurements were considered interesting to develop
an anomaly detection routine able to catch deviations from the
normal behavior of the CHP unit:

• CHP active power;
• CHP pump rotation rate;
• ICE inlet temperature;
• ICE outlet temperature;
• CHP cabin temperature;
• ICE oil temperature;
• ICE exhaust gas temperature;
• heat exchanger exhaust temperature;
• heating circuit pump rotation rate;
• ICE lambda sensor value;
• ICE gas mixer valve position;
• ICE throttle valve position.
In addition, a manipulated signal has been created. This

signal is a collection of boolean digits that keeps track of the
reliability of the lambda sensor’s records. The lambda sensor
can provide unreal behaviors when the CHP is starting or
shutting down.

A. Dataset split

To train the model, a 6-week training period is required
[15] where the CHP behaves normally. Two test-sets are
also required: the first one where the CHP does not present
particular deviation from the learned behavior to verify that
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the model does not present false positives and the second one
where a certain quantity of abnormalities happens to check
that the model correctly detects the presence of anomalies.

Every YANMAR CHP has a diagnostic onboard system
that at each acquisition reports the CHP status. Unluckily
faulty statuses are created utilizing coarse thresholds and,
consequently, the presence of an alarm is a sufficient condition
to say that the CHP has an anomaly but it is not a necessary
condition. Many faults or degradation trends go unnoticed
by the diagnostic system. The analyzed dataset presents the
following fault’ codes with the respective message:

• 0 - CHP stopped but ready to start;
• 2 - CHP stopped. Maintenance needed;
• 11 - Shutdown: generator protection;
• 12 - Low hydraulic pressure;
• 16 - Shutdown: water pressure too low;
• 18 - Shutdown: overheat interior;
• 19 - Shutdown: overheat engine oil.
Furthermore, the CHP can operate in four different op-

erating modes. If the anomaly detection model is trained
on a specific mode then also the test-sets must be selected
accordingly. Five operation modes are present:

• Mode 0, The CHP is turned off;
• Mode 1, the CHP is ready to charge an electric car;
• Mode 2, the CHP is optimized for summer operation;
• Mode 3, the CHP is optimized for heat production;
• Mode 4, the CHP is optimized for power production.
However, CHP under analysis mainly operates to optimize

heat production; As depicted in Fig. 2, except for Mode 0 when
the plant is idle, the CHP primarily functions in either Mode
2 or Mode 3. When the CHP operates at maximum capacity,
it is consistently configured to operate in Mode 3, which may
be attributed to the high demand for thermal power within the
facility. However, at partial load, the CHP primarily operates
in Mode 2.

Fig. 2. Distribution of the active power in relation to the CHP operating
mode.

Fig. 3 depicts the CHP behavior in terms of adimensional-
ized produced electric power (orange scatter), alarms reported

by the onboard diagnostic system (red scatter), and the human
detection made by the plant supervisor (purple vertical line).
Grey-shaded areas emphasize the dataset split used for this
work and in particular datasets ranges are as below:

• train-set, 1st July 2019 - 12th August 2019 (6 weeks);
• test-set with heat exchanger fouling, 1st July 2021 - 31st

December 2021;
• test-set in healthy conditions, 15th July 2022 - 7th Septem-

ber 2022;

Fig. 3. Active power describing CHP behavior.

The observations presented in Fig. 2 are supported by
the findings in Fig. 3, which indicate that the CHP system
primarily operates either at full load (between 80% and 100%
of the rated power) or at 50% partial load. It is worth noting
that the training period for the model corresponds to a period
where the CHP management logic is slightly distinct from
the two test sets. Specifically, the range of powers covered
during the training phase is comparatively smaller than that
observed after a plant shutdown period of approximately 5
months, where the power range has increased.

It is important to remark that the errors reported by the
onboard CHP system (red dots in the picture) are not correlated
to the heat exchanger fouling acknowledged by the plant
supervisor. Furthermore, these errors are of minor interest in
terms of research as trivial faults can be recognized more
easily due to their disruptive consequences often leading to
a machine shutdown. On the other hand, the heat exchanger
deterioration studied in this work is very interesting due to its
slow degradation trend (low negative) over time which is not
easily detectable by naive thresholds or by the human naked
eye.

III. PROPOSED MODEL

The authors addressed the same problem in [16] using
an autoencoder with convolutional layers (ConvAE) that
consider temporal information. In this paper, a new feature
is introduced by using a Bayesian approach to estimate the
confidence with which the autoencoder detects an anomaly.

As delineated in Section I, compared to VAE, the MCD
approach facilitates the introduction of stochasticity in the
model without necessitating any modification in the original
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architecture of the deep learning model, if a dropout layer has
already been incorporated.
In the reference architecture, there are no dropout layers but it
has produced excellent results ( [16]) and therefore we would
like to keep it similar. To compensate, changes were made to
the original ConvAE model by incorporating MCD to maintain
the same level of performance when it comes to reconstruc-
tion errors. In fact, since MCD functions as a regularization
technique during the training process, the original architecture
required additional complexity to maintain the same level of
information retention during learning.

Hyperparameters employed for both models are presented
in Table I, which highlights the augmentation of convolutional
filter numbers, from 10 to 18, and an expansion of the latent
space from 3 to 5 dense neurons. Additionally, a MCD of 5%
was incorporated, and the inference was conducted 50 times.

TABLE I.
HYPERPARAMETERS OF CONFIGURATIONS FOR THE TWO MODELS.

hyper-parameter ConvAE ConvAE MCD
sliding window 10 10
input dimension (10,13) (10,13)
latent dimension 3 5
output dimension (10,13) (10,13)

activation function relu relu
batch size 32 32

learning rate 10−4 10−4

l1 regularization 0 0
dropout 0 -
padding same same
strides 1 1

filters number 10 18
kernel size 5 5
optimizer Adam Adam

loss function MSE MSE
validation split 0.1 0.1

Montecarlo dropout - 0.05
Montecarlo samples - 50

The architecture of the Convolutional autoencoder with
Monte Carlo Dropout (ConvAE MCD) is reported in Fig. 4.
The ConvAE MCD exhibits an asymmetrical arrangement,
where the encoder is marginally bigger than the decoder. The
input data comprising 13 features are initially segmented into
10-sample moving windows and then processed using a 1-D
convolutional layer composed of 18 filters. The output of
this layer then proceeds to the bottleneck of the autoencoder
through a fully connected layer. On the decoding side, the
architecture is identical, except for the convolutional layer,
which employs 13 filters to align with the number of feature
reconstructions.

During the training stage, the model strives to minimize
the reconstruction error of the inputs. A threshold is set using
the 99th percentile of the training error to discern between
normal and abnormal samples during the testing phase. Two
types of anomalies are generated. The first type is generated
for the entire system if the average error over the 13 features
exceeds the 99th percentile threshold calculated on the train-set
reconstructed inputs. The second type of anomaly is generated

Fig. 4. Architecture of the Convolutional Autoencoder with MCD.

for each signal: a specific reconstruction error is calculated
and compared with a 99th percentile threshold obtained by
considering the error committed during the training phase
inference of the particular signal itself. The authors refer to
the first type of anomaly as system anomaly and the second
type as signal anomaly.
Therefore, the autoencoder generates anomaly signals that may
be susceptible to yielding false positives. To mitigate this
challenge, a post-processing low pass filter has been devised to
disregard any alarms that persist for less than 12 hours. The
methodology proposed in the article is illustrated in Fig. 5,
which presents a flowchart outlining the steps followed in the
study.

Fig. 5. Flowchart of the proposed methodology.
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IV. RESULTS

As mentioned in Section III, the autoencoder model has
been designed to reconstruct 13 features but, as a matter
of simplicity, in the following the authors describe only the
most interesting signals recorded during the test-set with heat
exchanger fouling and the test-set in healthy conditions.

During periods where anomalies are present the heat ex-
changer becomes dirty, and the efficiency of the CHP has a
negative trend, which leads to a significant increase in costs.
Fig. 6 shows how the anomaly was discovered only on 10th

December 2021 (vertical purple line). However, the proposed
algorithm detects the first system anomaly (black line) on Oc-
tober the 10th, due to an unexpected shutdown. Subsequently,
a second general anomaly is detected on November the 7th.
In this case, the anomaly depends on the fouling of the heat
exchanger, since signals related to the heat exchanger produce
specific alarms (red lines): in particular, it can be seen how the
exhaust gas temperature decreases significantly on average.

The discussed alarms are considered extremely reliable by
the model as the percentage of Monte Carlo experiments
generating an anomaly is 100%. However, the behavior of
the alarm linked to the heating circuit pump is different. The
pump starts operating at lower speeds, initially generating
an anomaly confidence level of around 60%, which then
decreases ranging between 20% and 10% when the pump
speeds up. In contrast, the alarm signal of the CHP cabin
temperature shows a confidence level of around 40%, which
then increases to 100%.

Ultimately, the algorithm detected the heat exchanger foul-
ing 5 weeks before the actual detection. Unluckily, the system
was not yet embedded in an online routine, otherwise, it
would have saved costs linked to the CHP inefficiencies. On
the other hand, if the heat exchanger anomaly was a late
detection by the engineer supervising the plant, the algorithm
revealed another problem of the cogeneration unit that went
totally untracked but then acknowledged by the YANMAR
maintenance department: the engine cooling system exhibited
abnormal functionality, resulting in a lower range of oil
temperature. As a result, the algorithm yielded a probability
of anomaly with complete certainty, i.e., 100%.

In order to demonstrate that the algorithm is not only
sensitive to anomalies but is also robust and does not produce
a large number of false positives, it is necessary to have a
dataset where we are confident that the CHP is functioning
properly and without malfunctions. At the beginning of July
2022, a global maintenance intervention was planned and also
the heat exchanger was substituted.
Fig. 7 shows how all signals recovered and no anomalous
trend is present: indeed, the algorithm proved to be well-
performing also when the CHP is healthy and to be not prone
to false positives. The presented data demonstrate that the
five signals, which are directly related to the heat exchanger,
have regained a normal behavior, devoid of any discontinuities.
Fig. 6 illustrates that all temperature signals (cabin, oil, and
gas exhaust) exhibited a negative temporal trend, which has

Fig. 6. Time-series of the normalized features used to test the ConvAE MCD
in the presence of heat exchanger fouling.

now vanished in Fig. 7. Furthermore, the pump of the heating
circuit has resumed its healthy pattern of modulation, operating
within the range of 0% to 100%.
By comparing the plots of these five signals before and
after the maintenance intervention, the authors have reached
the conclusion that the proposed routine exhibits sensitivity
towards the anomaly presented and effectively distinguishes
when a healthy condition has been restored.

V. CONCLUSIONS

Major companies are striving to migrate their business
from the production and sale of products to the provision of
services. In this context, data-driven approaches can flourish
and provide significant added value. Specifically, with growing
attention to climate change and energy and economic savings,
the transition from time-based maintenance techniques to
CBM plays a primary role.
In this paper, the authors propose a DL-based technique that,
when trained on 6 months of data under normal conditions of
a YANMAR micro-cogenerator, can provide both qualitative
and quantitative indications of the CHP’s behavior. After a
description of the case study, the authors explain how the
data were selected to train and test the proposed algorithm.
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Fig. 7. Time-series of the normalized features used to test the ConvAE MCD
in the absence of anomalies.

In particular, two test-sets were chosen: the first where dete-
rioration of the heat exchanger was known a-priori, and the
second where maintenance and replacement of faulty parts
had just occurred. The DL model consists of an asymmetric
autoencoder embedded with 1D-convolutional layers, Monte
Carlo dropout layers, and a fully connected bottleneck. At
the end of the detection pipeline, a frequency-based filter is
used to reduce false positive alarms and increase robustness.
The proposed algorithm demonstrated predictive capabilities
by detecting heat exchanger fouling five weeks before the
plant supervisor noticed and by revealing an anomaly in the oil
temperature measure that had gone disregarded. Furthermore,
the algorithm demonstrated not to be prone to false positives
by not detecting any anomalies during periods of normality.

The MCD layers allow the introduction of stochasticity in
the diagnosis process and by performing a certain amount of
inferences it is possible to get a quantification of the uncer-
tainty in detecting the anomalies adding a piece of important
information to decide if the maintenance intervention is urgent
or must be planned in the short future.
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