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A R T I C L E  I N F O   
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A B S T R A C T   

In this paper, we applied the Dispersion Normalised Positive Matrix Factorisation (DN-PMF) approach recently 
proposed in the literature to provide a more realistic picture of the relative importance of emission strength vs. 
atmospheric dispersion conditions. The disentanglement of such effects is of great concern in pollution hot spots 
like the Po Valley (Italy), where particulate matter limit values are exceeded despite the existing abatement 
measures. To explore the potentiality of the DN-PMF approach – still scarcely applied in the literature – a well- 
chemically characterised PM1 (atmospheric particles with aerodynamic diameter <1 μm) dataset comprising 
samples collected at different time resolutions at an urban background site (Bologna) in the southern Po Valley 
was used. Indeed, it is well known that shallow mixing layers promote pollutant accumulation but this obser
vation is not enough to exclude an enhancement of emission strength which could be tackled by appropriate 
abatement strategies. 

The source apportionment of sub-micron sized aerosols having a quite long atmospheric residence time in a 
complex environment like the Po Valley - which is also strongly impacted by secondary aerosol formation on a 
basin-scale - is generally quite challenging when using receptor models. Due to the availability of a huge dataset 
with variables having multiple time resolutions, in this work the DN-PMF was implemented in a multi-time 
resolution approach (MT) to achieve a better source identification and to gain knowledge about the relative 
importance of atmospheric dilution vs. emissions. A comparison between results obtained by the application of 
the regular multi time resolution (REG-MT) vs. the DN-MT approach is presented here for the five factors 
identified (nitrate-dominated, sulphate-dominated, biomass burning, mineral dust, and urban aerosol). The first 
interesting outcome is that REG-MT and DN-MT results do not point at significant differences in temporal pat
terns for aerosol components and sources impacting at the basin-scale (i.e. sulphate- and nitrate-dominated 
aerosol, biomass burning) thus suggesting that the diel modulation of these PM1 emissions is somehow 
masked by the stronger variability of the mixing layer. Conversely, contributions from local sources with more 
pronounced diel variation like traffic are quite well reproduced by DN-MT and the ambient concentrations are 
enhanced compared to REG-MT. This is an important piece of information highlighting that PM1 concentrations 
from local sources have been likely underestimated by REG-MT assessments. 

To our knowledge, this is one of the very few applications of DN-MT and the first one at a European site where 
the huge effort made to implement air pollution containment measures is still not very much effective in reducing 
PM levels; moreover, in this paper a detailed discussion about the possible interpretation of the output of DN-MT 
in terms of temporal patterns is reported.   

1. Introduction 

It is well known that particulate matter (PM) has an impact both at a 
global scale, e.g., on climate (IPCC, 2021) and at a local scale, especially 
on human health (Lelieveld et al., 2015; Nozza et al., 2021). The World 
Health Organisation (WHO) classifies PM among the major 
health-damaging air pollutants (WHO, 2021) and most of the countries 
in the world continue to exceed WHO’s guidelines for PM exposure 
(Health Effects Institute, 2020). Nevertheless, at the state of the art, it is 
still unclear what are the key characteristics and mechanisms primarily 
responsible for adverse health effects in real-world conditions. This gap 
of knowledge can be attributed to the extremely complex nature of PM 
in ambient air in terms of size distributions, physical and chemical 
properties, the variety of emission sources, formation processes, atmo
spheric transformations, etc. 

To face this lack of information, the PRIN-2017 RHAPS project 
(Redox-activity and Health-effects of Atmospheric Primary and Sec
ondary aerosol; Costabile et al., 2022) was funded by the Italian Ministry 
of University and launched with the aim of identifying specific proper
ties of ambient PM1 responsible for toxicological effects, and linking 
them to emission sources and atmospheric processes. To reach this goal, 
extensive field campaigns were carried out in the Po Valley (northern 
Italy), allowing to achieve a comprehensive physical-chemical PM1 
characterisation obtained through a combination of low- and high-time 
resolution measurements. The Po Valley is very well known as one of the 
major polluted areas in Europe (EEA, 2019); indeed, it is the most 
populated (more than 20 million inhabitants) and industrialised part of 
Italy, highly impacted by anthropogenic emissions mainly deriving from 
the transport sector as well as from industrial, agricultural, and livestock 
farming activities. It is a closed basin shielded from the Alps and 
Apennines mountains to the north and south, respectively, and its 
peculiar orography often promotes stagnant atmospheric conditions 
with shallow mixing layer heights (MLH) and low wind speeds, espe
cially during winter (Crova et al., 2021; Forello et al., 2019; Vecchi et al., 

2018, 2019). The combination of intense pollution emissions with poor 
atmospheric dispersion conditions results in the accumulation of 
gaseous and particulate pollutants and consequently frequent exceed
ances of particulate matter concentration limits imposed by European 
regulations are detected (see e.g., Scotto et al., 2021). Such character
istics make the Po Valley one of the most interesting areas for studying 
primary and secondary particulate matter complex evolution under real 
world conditions (see e.g., Larsen et al., 2012; Putaud et al., 2010; 
Ricciardelli et al., 2017; Vogel and Elbern, 2021). Within this context, 
this work aims at characterising in detail the emission sources that 
impacted the investigated site during the RHAPS project field campaigns 
by performing a source apportionment study where all the information 
collected is put to the maximum use. 

To combine measurements with high- and low-time resolution and to 
maximise the amount of information gained, the multi-time resolution 
advanced receptor model was implemented (Ogulei et al., 2005; Zhou 
et al., 2004) and further developed (Crespi et al., 2016; Forello et al., 
2019, 2020; Kuo et al., 2014; Liao et al., 2015; Mooibroek et al., 2022; 
Sofowote et al., 2018, 2021, 2023; Srivastava et al., 2019) in the Mul
tilinear Engine ME-2 program (Paatero, 1999). By using this approach, 
each data can be inserted into the model with its native time resolution, 
and the temporal patterns of the identified emission sources can be 
reconstructed at a time resolution equal to the shortest sampling interval 
present in the dataset. In this paper, the multi-time resolution receptor 
model (in the following referred to as regular multi-time resolution 
model REG-MT) was used to perform the source apportionment study 
exploiting variables measured at different time resolutions (1, 2, 24 h), 
and gaining detailed information about source emission chemical pro
files and time patterns at the receptor site. 

It is worthy to note that the source apportionment study presented 
here was quite challenging because the sub-micron sized aerosols have 
longer residence time in the atmosphere and the atmospheric stability 
conditions promote secondary aerosol formation and ageing thus 
enhancing aerosol complexity. Moreover, the field campaigns were 
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carried out in 2021, when particulate matter concentrations and emis
sion sources behaved a bit differently than usual due to some restrictions 
related to COVID-19 pandemic still in force. 

To separate the effect of atmospheric dispersion from source emis
sion rates (including atmospheric chemistry processes), Dai et al. (2020) 
have recently proposed the dispersion-normalised Positive Matrix Fac
torisation (DN-PMF) approach where input data are the measured con
centrations of each species normalised by the ventilation coefficient 
(VC). The latter is given by the product of MLH and mean wind speed 
and used as an indicator of atmospheric dilution; compared to tradi
tional PMF results, the output gives source emission information with 
reduced influence of local meteorology. The dispersion-normalisation 
approach has still been little explored in the literature (Chen et al., 
2022a, 2022b; Dai et al., 2021; Gu et al., 2022; Kim et al., 2022; Park 
et al., 2022) and applied only a few times to a multi-time resolution 
modelling approach (Sofowote et al., 2021, 2023); in this work, by 
exploiting the availability of MLH and wind speed data measured at the 
same site with high time resolution, it was implemented in the 
multi-time factorisation (DN-MT). To the authors’ knowledge, no ex
amples of DN-MT application are available for European sites and it is 
noteworthy that in this paper we provide a possible interpretation of the 
temporal patterns related to the actual strength of source emission and 
atmospheric chemistry processes; this was discussed in much more 
detail compared to currently published papers. This piece of information 
can be useful for air quality management as the emission sources can be 
better identified and tackled taking into account the masking due to 
atmospheric dilution effects on the observed concentrations. 

2. Materials and methods 

2.1. Field measurements 

Field campaigns were carried out in Bologna (BO), which has about 
400 000 inhabitants and is located in the southern Po Valley, at the foot 
of the Apennines mountain chain. It is mainly impacted by anthropo
genic activities related to urban emissions (traffic and residential heat
ing) as well by agricultural and livestock activities which are largely 
diffused in its surroundings. It is also important to note that around the 
city there are trafficked highways. The monitoring site (44◦31′29″ N, 
11◦20′27″ E) is located in the National Research Council (CNR) research 
area, which can be considered representative of the urban background 
as it is about 2 km from the main railway and about 7 km from the major 
highway and there are no relevant industrial activities nearby. The 
measurement campaigns were performed in the periods 21 January 
2021–18 March 2021 during winter, and 8 June 2021–14 July 2021 
during summer; the starting time for 24-h resolution samples was set at 8 
a.m. (Local Time). In the following, time will be always expressed as 
local time (LT), i.e., UTC+1 during winter and UTC+2 during summer. 
Online and off-line parallel measurements were carried out in order to 
get a comprehensive PM1 physical and chemical characterisation; mul
tiple sampling lines operated in parallel to acquire all the samples 
needed to reach the goals of the RHAPS project. A detailed description of 
the site and the operated instrumentation can be found in Costabile et al. 
(2022); therefore, only the information relevant to the PM1 dataset 
exploited in this work is summarised below and minimum detection 
limits (MDLs) and analytical uncertainties can be found in Table S1. 

PM1 daily mass concentration was retrieved on PTFE filters (Pall 
R2PJ047, Pall Life Sciences, Ann Arbor, MI, USA) by gravimetric tech
nique using an automatic sample changer and a Sartorius microbalance 
with a sensitivity of 1 μg. Elemental concentrations (Na, Mg, Al, Si, P, S, 
Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Y, Zr, Mo, Ba, and 
Pb) were determined on these samples by Particle Induced X-Ray 
Emission (PIXE) analysis at the INFN-LABEC accelerator facility 
(Lucarelli et al., 2014). On parallel 24-h samples collected on pre-fired 
quartz-fibre filters (Pallflex Tissuquartz 2500 QAO-UP, Pall Life Sci
ences, Ann Arbor MI, USA) different punches were analysed by different 

analytical techniques: major ions (Cl− , NO3
− , SO4

2− , Na+, NH4
+, K+, Mg++, 

Ca++) were determined by Ion Chromatography (IC) analysis (Piazza
lunga et al., 2013); levoglucosan (1,6-Anhydro-beta-glucopyranose) by 
HPLC-PAD (Piazzalunga et al., 2010); elemental and organic carbon 
fractions (EC and OC) by thermal-optical transmission (TOT) analysis 
with an offline OCEC Carbon Aerosol Analyser (Sunset Laboratory Inc., 
Tigard, OR, USA) by applying the NIOSH5040 temperature protocol. 

Elemental concentrations with 1-h (winter samples) and 2-h (sum
mer samples, characterised by lower ambient aerosol concentrations) 
resolution were measured by PIXE (Calzolai et al., 2015). These 
high-time resolution samples were collected using the STRAS sampler 
(Size and Time-Resolved Aerosol Sampler), recently developed in-house 
to replace the streaker sampler (D’Alessandro et al., 2003), which is 
outdated and no longer on the market. In this work, the STRAS sampler 
was operated with a PM1 inlet and the samples were collected on a 
polycarbonate filter. 

EC and OC concentrations were available with 2-h resolution by a 
Sunset Field Thermal-Optical Analyser (Model-4 Semi-Continuous OC- 
EC Field Analyzer - Sunset Laboratory Inc., Sunset Laboratory Inc. 
Tigard, OR, USA). 

The non-refractory PM1 chemical components (sulphate, nitrate, 
ammonium, chloride, and organic aerosol OA) were measured with 2.5- 
min time resolution by the High-Resolution Time-of-Flight Aerosol Mass 
Spectrometer (HR-AMS, Aerodyne Research) (Canagaratna et al., 2007) 
following the set-up, protocols and data analysis procedures described in 
Paglione et al. (2020). Data were then averaged on 1-h to reduce data 
noise and to assure a better comparability and harmonisation with all 
the other variables. 

To gain information on the atmospheric dilution conditions, the 
mixing layer height (MLH) was computed from turbulence parameters 
measured at a sampling frequency of 10 Hz by an ultrasonic anemometer 
uSonic-3 (Metek GmbH, Germany) positioned at a height of 3.3 m above 
ground level by following the procedure described in Vecchi et al. 
(2019); wind speed values were also obtained by the same instrument. 

To be used as external check (see Sections 3.1 and 3.2), an estimate of 
PM1 mass concentrations was also retrieved exploiting particle number 
size distribution data (details on the methodology can be found in 
Costabile et al., 2017) measured by the combination of a Mobility Par
ticle Size Spectrometer (TROPOS SMPS) and an aerodynamic particle 
sizer (APS, TSI). 

2.2. Modelling methods 

2.2.1. Multi-time resolution receptor model 
In the multi-time resolution receptor model firstly reported by Zhou 

et al. (2004), the basic bilinear equation of PMF is expanded as 

xsj =
1

ts2 − ts1 + 1
∑P

k=1
fkj

∑ts2

i=ts1

gikηj + esj (1)  

to allow a factorisation of input data xsj into the matrices F (factor 
chemical profiles, matrix element fkj) and G (factor temporal contribu
tions, matrix element gik) with different time resolutions without the 
need of averaging high-time resolution data or interpolating low-time 
resolution data beforehand. In Equation (1), s, j, and k representthe 
sample, the species, and the factor, respectively; ts1 and ts2 indicate the 
start and the end times for the sth sample, whose temporal length is 
expressed in terms of discrete time units i, i.e., the shortest sampling 
interval time in the considered dataset; this means that factors temporal 
contributions in the G matrix have the time resolution of one time-unit. 
ηj is the adjustment factor for replicated species measured by different 
samplers and/or analytical methods at a different time resolution. 

This main equation is implemented in the Multilinear Engine ME-2 
program (Paatero, 1999) and solved by minimising the object function 
Q, defined as the squared sum of the uncertainty-scaled residuals 
deriving from Equation (1) and auxiliary equations (Equation S1). In this 
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work, the auxiliary equations included in the model were a regularisa
tion equation (Equation S2) to smooth time series contributions, a mass 
balance equation (Equation S3) forcing the sum of concentrations of the 
species to be equal or smaller than the total PM mass concentration, a 
normalisation equation for factors in the G matrix, and pulling equa
tions, when needed (see Section S1 for further details). 

In this work, to evaluate the robustness of the solution the bootstrap 
analysis (BS, for details see e.g. Norris et al., 2014) implemented in the 
MT by Crespi et al. (2016) and dQ-controlled perturbation or displace
ment of factor profile (DISP, for details see e.g. Paatero et al., 2014) 
analysis implemented in the MT by Mooibroek et al. (2022), were car
ried out. 

2.2.2. Dispersion-normalised multi-time resolution analysis 
To better understand the impact of atmospheric dilution in source 

contribution patterns retrieved by receptor modelling, the dispersion- 
normalised PMF (DN-PMF) approach (Chen et al., 2022a, 2022b; Dai 
et al., 2020, 2021; Gu et al., 2022; Kim et al., 2022; Park et al., 2022; 
Sofowote et al., 2021, 2023) was applied to the MT by normalising the 
input data by the ventilation coefficient (VC), which quantifies the at
mospheric dilution (Tiwari et al., 2016). The VC can be considered as an 
index of the volume where particulate matter is diluted per unit of time, 
and for each sampling interval i it is defined as the product of the MLH 
and the mean wind speed v during the time interval i: 

VCi =MLHi • vi (2) 

A single value of VC is computed for each row in the dataset (i.e., for 
each sampling interval). The normalisation of input data is performed by 
multiplying each species concentration in sample i for the corresponding 
VCi and dividing by VC, which is the average value of VC over the whole 
sampling period: 

xDN
ij = xij •

VCi

VC
= xij • VC∗ (3)  

where xDN
ij are the DN input data; the term VCi/VC will be referred to as 

VC*. The same normalisation is applied to data uncertainties used in the 
multi-time receptor model as data weights. The VC was calculated as the 
average value of 1-h resolution VC data over the winter and summer 
sampling periods (VC = 215.9 m2 s− 1); thus, concentrations were scaled 
to the values they would have had if the VCi were equal to the mean VC 
over the whole sampling period. This means that when VCi is low (e.g., 
during the night and/or with shallow mixing layer and/or low wind 
speeds), the ambient concentrations which are high due to poor dilution 
are scaled downward, while when VCi is high (e.g., at noon and/or with 
high mixing layer and/or high wind speed), the actual concentrations 
which are low due to the stronger dilution are increased. 

The obtained concentration xDN
ij and the corresponding uncertainties 

are then used as input for the DN-MT. As output, the two matrices of 
factors temporal contribution GDN (matrix element gDN

ik ) and chemical 
profile FDN (matrix element fDN

kj ) are obtained. The resulting FDN values 
typically exhibit very similar values to the ones obtained in the appli
cation of the regular multi-time resolution model (REG-MT) since 
emission sources remain the same; however, slight differences can be 
present because some input concentrations xDN

ij are drastically decreased 
when VC* is very low, and the factorisation process is strongly driven by 
input values approaching zero (Paatero et al., 2005). The GDN values 
represent emission source temporal contributions without the influence 
of atmospheric dilution: therefore, they give important information 
about the actual emission strength (including atmospheric chemical 
processing). To keep the GDN values consistent with input data ambient 
concentrations and comparable with the REG-MT results, a 
de-normalisation must be applied to the output values as shown in 
equation (4): 

gdeDN
ik = gDN

ik

/
VC∗ (4)  

where gdeDN
ik are the matrix elements of the de-normalised matrix GdeDN. 

BS and DISP analyses were performed also on the DN-MT solutions 
following the same approaches mentioned in Section 2.2.1. 

2.3. Input dataset preparation 

In this work 1-h was chosen as the base time unit in the model; 
indeed, the largest part of our data have such time resolution as it is 
suitable to describe emission source patterns and atmospheric dilution 
processes. 

Adjustment factors ηj were all set to unity, since a pre- 
homogenisation step over replicated species measured by different in
struments was performed before inserting data into the input matrix X. 
Thus, replicated species concentrations measured at high time resolu
tion (1 and 2-h) were averaged over 24-h and compared with the cor
responding daily sample concentrations. Overall, a good agreement was 
found and the homogenisation factor (HF) was applied only to a few 
variables (see Table 1). For such cases, concentrations sampled at 24-h 
were considered the benchmark since their concentrations are usually 
far from MDL and determined with high accuracy; therefore, HF was 
used as the multiplying factor applied to high-time resolution species 
concentrations. 

The signal-to-noise ratio (S/N) criterion (Norris et al., 2014) was 
used to classify variables and weak variables (S/N < 1) were excluded 
from the analysis with the exception of summertime levoglucosan (S/N 
= 0.6, see Table S2). Indeed, the latter is a well-known tracer for biomass 
burning emissions with significant ambient air concentrations in winter 
(largely ascribed to domestic heating) while, as expected, during the 
summer its concentrations were close to or lower than MDLs due to the 
reduced biomass burning impact and its depletion due to photochemical 
processing (Hennigan et al., 2010). Aiming at detecting possible small 
contributions from this source, it was included in the input dataset 
although strongly downweighed by multiplying the associated un
certainties by a factor of 4. The same downweighting was applied to Ca 
concentrations otherwise it was very spread in all chemical profiles and 
gave large scaled residuals (not shown). 

SO4
2− , NO3

− , NH4
+, and OA measured at high time resolution by HR- 

AMS were inserted in the model with uncertainties reported in Table S1. 
A variable selection to avoid double counting for SO4

2− /S, K+/K, 
Ca2+/Ca, and OC/OA was also carried out (see Table 1 for details about 
the final input dataset). 

PM1 mass concentrations were strongly downweighed (4 times their 
value) (Kim et al., 2003). 

The selected variables were pre-treated following Polissar et al. 
(1998) although for missing values a different approach has been 
adopted. In previous works (e.g., Forello et al., 2019, 2020; Zhou et al., 
2004) missing values were substituted by linear interpolation and then 
downweighed otherwise artificial peaks in the G contributions could be 
observed. This issue might arise when the time coverage of the high time 
resolution data is low compared to the one of low time resolution data. 

Table 1 
Selected species for this study and time resolutions for each season.  

Season Species at 1-h 
resolution 

Species at 2-h 
resolution 

Species at 24-h resolution 

Winter NO3
− , SO4

2− , NH4
+, 

OA, 
Al, Si, K (HF =
1.5), Ca, Fe, Cu, 
Zn (HF = 1.9), Pb 

EC PM1 mass, Levoglucosan, 
NO3

− , SO4
2− , NH4

+, Al, Si, K, 
Ca, Mn, Fe, Cu, Zn, Pb, EC 

Summer NO3
− , SO4

2− , NH4
+, 

OA 
Al, Si, K (HF =
1.7), Ca, Fe, Cu 
(HF = 1.5), Zn 

PM1 mass, Levoglucosan, 
NO3

− , SO4
2− , NH4

+, Al, Si, K, 
Ca, Mn, Fe, Cu, Zn, Pb, EC  
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In the dataset used in this work, only few high-time resolution data were 
missing (<9% in winter, <12% in summer); therefore, missing data 
were considered as empty cells in the input matrix and the related 
equations were not written for them. To check the validity of this 
approach, a comparison between the two methodologies for treating 
missing data was also performed obtaining a good agreement (on 

average differences less than 10% on temporal patterns). 
The final input matrix X consisted of 3145 samples distributed over 

2208 time units; winter and summer datasets were inserted together into 
the model as data available from different seasons allow a better sepa
ration among species with similar seasonal features (for instance nitrate 
and biomass burning emissions) and therefore lead to more robust 
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Fig. 1. Overview of PM1 components and atmospheric parameters related to dilution detected in BO. The left panels refer to winter and right panels to summer. 
Panels a) and b) show concentrations of major species measured at high time resolution (winter: 1 h resolution, EC at 2 h resolution; summer: 2 h resolution) and on 
daily filters, respectively. Panels c), d), and e) show mixing layer heights (MLH), mean wind speeds (v), and ventilation coefficient (VC) at hourly resolution. Vertical 
grey lines indicate 8 a.m. (LT) of each day. 
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results (Paatero et al., 2005). The error model em = − 14 was used for 
the main equation with c1 = input uncertainty (obtained as described 
above), c2 = 0, c3 = 0.1 (Paatero, 2012) (see Section S1 for further de
tails); all the analyses were performed in the robust mode (Brown et al., 
2015). 

The same methodology was applied to the DN-MT modelling 
approach, where the input matrix XDN was the same used in the REG-MT 
but concentrations and uncertainties were multiplied by VC* (Equation 
(3)), as explained in Section 2.2.2. 

3. Results and discussion 

3.1. Overview of measured data 

Fig. 1a and b shows species concentrations at high- and low-time 
resolution, respectively, for the winter and summer campaigns. For 
high resolution data (Fig. 1a), PM1 estimated from size distribution data 
is reported as a proxy for hourly mass concentrations. During winter, BO 
was strongly impacted by organic aerosol and nitrate accounting on 
average for about 35% and 19% of PM1 mass, respectively; in summer 
the dominant components were organic aerosol (on average 56%) and 
sulphate (on average 20%). 

Episodes of Saharan dust transport occurred during both seasons 
with peaks in the period 24–27 February and 19–22 June (as confirmed 
by satellite images reported in Costabile et al., 2022). Interestingly, huge 
increases in mineral dust concentrations (about 11 and 8 times higher in 
winter and summer episodes, respectively) were also clearly detected in 
the sub-micron sized fraction. 

A few short-lasting peaks dominated by organic aerosol (see Fig. 1a) 
were due to an emergency usage of a diesel generator close to the 
sampling area but they must be considered an exceptional source 
contribution due to failure in the main energy supply system. PM1 
average mass concentration measured on filters was 18.3 ± 12.1 μg m− 3 

in winter and 8.5 ± 2.5 μg m− 3 in summer (standard deviations repre
sent the concentration variability). Wintertime average value is 
considerably lower than what was reported from other works in the Po 
Valley (Masiol et al., 2014; Squizzato et al., 2013, 2016; Valotto et al., 
2014; Vecchi et al., 2004, 2008); this was somehow expected because of 
the lockdown stringency measures imposed in that period, mainly 
regarding mobility limitation (night curfews, prohibition on movements 
between regions and/or municipalities, prohibition on travels to visit 
private homes and to reach second homes, etc.), and the closure of 
commercial and leisure activities. 

The mass closure on daily filters was retrieved by computing mineral 
dust and heavy metal oxides following Marcazzan et al. (2004), and by 
including major inorganic ions (NO3

− , SO4
2− , NH4

+), EC, and OC 
(Figure SF1). The average unaccounted mass was about 30% and 28% 
for winter and summer, respectively. It is noteworthy that in the mass 
closure performed replacing OC with OA, the unaccounted mass de
creases to 17% and 11% for low- and high-time resolution samples, 
respectively. It can thus be assumed that approximately half of the un
accounted mass is due to the OC-to-OA conversion factor, and the un
detected components (mainly water) contribute slightly less during 
summer and this behaviour can be related to reduced relative humidity 
values (average RH was about 71% in winter and 51% in summer). 

Fig. 1c, 1d, and 1e display meteorological parameters useful to 
describe atmospheric dilution, i.e., MLH, mean wind speed, and VC. At 
the investigated site, median values of MLH maxima ranging from 384 m 
to 500 m and minima from 63 to 74 m in winter and summer, respec
tively. Wind speed is often very low, with a median value of 0.56 m s− 1 

in winter and 0.72 m s− 1 in summer. Therefore, during the monitoring 
campaigns stable atmospheric conditions typical of the Po Valley were 
detected very often. Exceptions can be observed during limited periods 
when stronger winds enhanced the atmospheric dilution (e.g., around 
14 March and 30 June) and a drop of PM1 concentrations was registered; 
opposite, an accumulation of PM1 concentration can be seen in 

correspondence of lower MLH and wind speeds (e.g., 16–23 February). 
In Fig. 1c the mixing layer showing shallow height during the night and 
increased thickness during daytime can be observed in both seasons. 
Mean wind speed values (Fig. 1d) show a similar temporal pattern and 
the same obviously holds for VC (Fig. 1e). 

3.2. Regular multi-time resolution model results 

Starting from the application of REG-MT, solutions from 3 to 7 fac
tors were explored; the number of model runs was set at 30, and the 
base-case solutions corresponding to the minimum Q values (see Section 
S1) were analysed in detail. The most robust base-case solution was the 
5-factors one (minimum Q = Qmain + Qaux = 7511.68); the factors were 
assigned to nitrate-dominated, sulphate-dominated, biomass burning, 
mineral dust, and urban aerosol. The chosen solution was characterised 
by a good agreement between the values predicted by the model and the 
measured ones (R2 > 0.7 for all variables but Ca and Pb with and R2 =

0.6). The PM1 mass concentrations inputted as 24-h values were 
reconstructed hourly by the MT model; it is noteworthy that these 
hourly values compare well with the estimates given by particle number 
size distribution data, used as external check (see Figure SF3). Moreover, 
when averaging on 24-h the predicted hourly PM1 values, the agreement 
with mass concentrations measured on daily samples was very good (R2 

= 0.89). The unexplained variation of the F matrix (EVF) was lower than 
0.10 for all the variables. Finally, the uncertainty-scaled residuals 
(Norris et al., 2014) were randomly and symmetrically distributed in the 
interval [-3,3] (see Figure SF4). BS and DISP analyses were performed; 
overall, the main tracers and contributors in each profile were charac
terised by narrow BS and DISP intervals (Figure SF5), thus confirming 
the solution robustness. In the following, a detailed description of the 
REG-MT source-to-factor assignment is given. 

Two factors associated with secondary aerosol were identified and 
labelled as nitrate-dominated and sulphate-dominated aerosol. Indeed, 
in both chemical profiles, organic aerosol was among the most 
contributing species together with sulphate, nitrate, and ammonium; the 
presence of organics with secondary species such as ammonium nitrate 
and ammonium sulphate is very commonly observed in the Po Valley (e. 
g., Farao et al., 2014; Forello et al., 2019, 2020; Larsen et al., 2012; 
Masiol et al., 2020; Paglione et al., 2020; Scotto et al., 2021; Tositti et al., 
2014; Venturini et al., 2014). 

The factor identified as nitrate-dominated aerosol (Fig. 2a) is char
acterised by very high EVFs for NO3

− and NH4
+. NO3

− is also the main 
contributor in the profile (59%), followed by OA (22%) and NH4

+ (18%). 
These features suggest the presence of ammonium nitrate, i.e., second
ary inorganic aerosol typically originated from gaseous precursors. The 
mass contribution of this factor is the most significant during winter, 
accounting for about 38% of the PM1 mass (see Fig. 3a and Table 2); this 
is very typical of the Po Valley (Forello et al., 2019; Scotto et al., 2021; 
Vecchi et al., 2018; and therein cited references), which is largely 
impacted by gaseous pollutants like NOx and NH3 emitted by activities 
such as traffic, residential heating, industrial emissions, agricultural 
field fertilisation, livestock settlements, etc., and by atmospheric sta
bility. On the opposite, nitrate-dominated factor concentrations drasti
cally drop during summer giving a negligible contribution (about 6%) as 
the ammonia and nitric acid chemical equilibrium is shifted towards the 
gaseous phase due to the higher temperatures (Seinfeld and Pandis, 
2016). The trace concentrations of potassium in the chemical profile 
suggest that likely biomass burning emissions are mixed to a small 
extent with this factor due to the similarity in seasonal temporal pat
terns, as already observed in the literature (e.g., Forello et al., 2020; 
Scotto et al., 2021; Venturini et al., 2014). 

The factor identified as sulphate-dominated aerosol (Fig. 2b) ac
counts for the largest EVF value of SO4

2− and quite high EVF are also 
associated with OA. In the chemical profile, the most significant 
contribution is given by OA (59%), followed by SO4

2− (28%), NH4
+ (8%), 

and EC (8%). The significant concentrations of SO4
2− and NH4

+ in the 
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profile suggest the formation of ammonium sulphate from gaseous 
precursors; due to the very low local SO2 emissions the presence of 
ammonium sulphate in the Po Valley is often related to regional aerosol 
formation (Crosier et al., 2007) or to long-range air masses transport 
episodes as already observed in the same area as reported by e.g., Vecchi 

et al. (2009). The average absolute contribution of this source was about 
50% higher in summer (Table 2), and its shares in PM1 were about 19% 
in winter and 60% in summer indicating the relevance of enhanced 
photochemical activity during warmer months promoting the formation 
of sulphates in the atmosphere (Seinfeld and Pandis, 2016). The 
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presence of EC and other trace metals suggests, a partial mixing with 
primary source contributions that can occur for example when sulphate 
condenses on primary particles previously emitted in the atmosphere; 
this is in agreement with previous studies at urban sites (see e.g., Amato 
et al., 2016; Forello et al., 2019). 

The factor assigned to biomass burning (Fig. 2c) is characterised by 
EVF equal to unity for levoglucosan, which is a very well-known tracer 
for biomass combustion formed by the pyrolysis of cellulose (Li et al., 
2021; Vincenti et al., 2022); high EVF values - although with very low 
mass contributions - are also observed for Zn, K, Pb, and EC. The most 
contributing species in the chemical profile are OA (29%) and EC (13%), 
while smaller contributions are given by levoglucosan and K (4% each). 
As concerns the presence of heavy metals, notably Zn and Pb, in the 
biomass burning profile is not unusual in the Po Valley (see e.g., Ber
nardoni et al., 2011; Larsen et al., 2012; Masiol et al., 2020; Scotto et al., 
2021) but also reported at different sites (e.g., Amato et al., 2016; Anttila 
et al., 2008; Hansen et al., 2001; Hovorka et al., 2015; Narodoslawsky 
and Obernberger, 1996; Ozgen et al., 2017; Tissari et al., 2008; Yao 
et al., 2023). This factor is the second major contributor to PM1 (26%, 
see Table 2) during the coldest months (Fig. 3c) as it is mainly ascribed 
to the widespread use of biomass fuel for domestic heating (Scotto et al., 
2021) while, as expected, in summer its relative contribution is much 
less (6%). As for the temporal patterns, the higher contribution of 
biomass burning during nocturnal hours at the same site was related to 
residential heating by previous literature studies (see e.g., Paglione 
et al., 2020) and explained as a combination of more intense emissions 
and lower MLHs during those hours. Interestingly, in this work an 
additional contribution to PM1 concentrations was detected during 
morning hours (see Fig. 4e) likely pointing at the effect of the change in 
house heating needs due to the widespread smart working activities 
during the partial lockdown measures. 

The factor associated with mineral dust (Fig. 2d) shows the highest 
EVFs for Al and Si, which are typical crustal elements (Mason, 1966) and 
the major contributors to PM1 mass in this source (34%). Also Ca, Fe, 
and Mn have not negligible EVFs but they account for a 5% share each at 
maximum. The temporal pattern (Fig. 3d) clearly shows that Saharan 
dust transport events occurred in both seasons (see Section 3.1) giving 
the most relevant mass contribution in this factor, with peak concen
trations about 18 and 8 times higher (in winter and summer, 

respectively) than the rest of the campaign, which is more impacted by 
local soil dust resuspension. The small amount of SO4

2− in the chemical 
profile can be ascribed to sulphate enrichment of mineral dust, as 
already reported in the literature (see e.g., Sullivan et al., 2007). The 
mass apportioned by this factor is the lowest in winter (about 3%, see 
Table 2; it decreases to about 1% by excluding the transport episode), 
while during summer the relative contribution becomes larger (about 
10%, decreased to about 5% when excluding the Saharan dust transport 
episode), because in this season drier meteorological conditions pro
mote dust resuspension. 

Finally, the factor associated with urban aerosol (Fig. 2e) shows 
higher EVF values for some heavy metals such as Cu, Fe, Mn, and for EC 
providing the typical signature of traffic emissions (Thorpe and Harri
son, 2008; Viana et al., 2008). OA and EC contribute mostly to the 
chemical profile (28% and 15%, respectively); other very small contri
butions are given by Fe (2%), NO3

− , SO4
2− , and Ca (1% each). As already 

mentioned, secondary species may derive from their condensation on 
primary particles, indicating a partial mixing with secondary compo
nents. Soil-related elements can be associated with road dust resus
pension (Amato et al., 2009; Thorpe and Harrison, 2008). 

Overall, the retrieved sources are often characterised by mixed 
chemical properties; this was partially expected due to the high resi
dence times of PM1 (higher than 1 day for fine aerosols in the Po Valley, 
as estimated by Crova et al., 2021) and the reprocessing of atmospheric 
aerosol favoured by the poor atmospheric dilution typical of the Po 
Valley. Moreover, it is also worth stressing that PM1 features - in terms of 
concentrations, composition, and emissions - can be different than usual 
since lockdown stringency measures were still active (especially during 
the winter campaign) to limit the spread of COVID-19 pandemic. 

3.3. Dispersion normalised multi-time resolution model results 

3.3.1. DN-MT versus REG-MT 
As already mentioned, the aim of this work was to explore the po

tentiality of the dispersion-normalised multi-time approach (DN-MT) to 
better comprehend the causes of high PM levels in the Po Valley by 
disentangling the effects of poor atmospheric dilution from emissions. 

By exploiting the availability of MLH estimates and mean wind speed 
data, DN-MT was run and a 5-factor solution (minimum Q = Qmain +

Table 2 
Average (mean [95% CI]) absolute and percentage source estimated contributions for winter and summer given by different modelling approaches (REG-MT stands for 
regular multi-time model, and DN-MT is for dispersion normalised multi-time model) and calculated by averaging G matrix temporal series (DN-MT results refer to the 
de-normalised matrix GdeDN). The percentage difference was calculated as (DN-MT – REG-MT)/REG-MT using the mass contribution apportioned by the two ap
proaches. (*) indicates when the differences are statistically significant according to the Mann-Whitney test performed with the R ‘stats’ package (Bauer, 1972; R Core 
Team, 2021), p-value<0.01. Slope and R2 are the parameters of the linear regression (OLS) of DN-MT versus REG-MT temporal patterns.  

Factors Winter Summer 

Nitrate-dominated REG-MT: 6.50 [6.16,6.84] μg m− 3 (38%) REG-MT: 0.50 [0.44,0.57] μg m− 3 (6%) 
DN-MT: 6.62 [6.27,6.96] μg m− 3 (37%) DN-MT: 0.55 [0.47,0.63] μg m− 3 (6%) 
Difference = 2% Difference = 9% 
Slope = 0.98; R2 = 0.94 Slope = 0.97; R2 = 0.67 

Sulphate-dominated REG-MT: 3.25 [3.11,3.40] μg m− 3 (19%) REG-MT: 4.88 [4.69,5.08] μg m− 3 (60%) 
DN-MT: 3.19 [3.05,3.33] μg m− 3 (18%) DN-MT: 4.76 [4.56,4.96] μg m− 3 (53%) 
Difference = − 2% Difference = − 3% 
Slope = 0.95; R2 = 0.93 Slope = 0.95; R2 = 0.86 

Biomass burning REG-MT: 4.39 [4.22,4.56] μg m− 3 (26%) REG-MT: 0.49 [0.45,0.52] μg m− 3 (6%) 
DN-MT: 4.26 [4.09,4.42] μg m− 3 (24%) DN-MT: 0.54 [0.50,0.59] μg m− 3 (6%) 
Difference = − 3% Difference = 12% 
Slope = 0.97; R2 = 0.95 Slope = 1.00; R2 = 0.65 

Mineral dust REG-MT: 0.48 [0.42,0.54] μg m− 3 (3%) REG-MT: 0.84 [0.74,0.93] μg m− 3 (10%) 
DN-MT: 0.37 [0.33,0.42] μg m− 3 (2%) DN-MT: 0.81 [0.69,0.93] μg m− 3 (9%) 
Difference = − 23% (*) Difference = − 3% (*) 
Slope = 0.75; R2 = 0.98 Slope = 0.95; R2 = 0.60 

Urban REG-MT: 2.30 [2.18,2.41] μg m− 3 (14%) REG-MT: 1.43 [1.36,1.50] μg m− 3 (18%) 
DN-MT: 3.36 [3.19,3.52] μg m− 3 (19%) DN-MT: 2.28 [2.15,2.40] μg m− 3 (25%) 
Difference = 46% (*) Difference = 59% (*) 
Slope = 1.46; R2 = 0.94 Slope = 1.49; R2 = 0.73  
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Qaux = 8435) was selected; indeed, it was consistent with REG-MT 
outcomes and the solution consistency and robustness was checked 
with satisfactory results. It is important to recall that in DN-MT the 
source-to-factor assignments are the same as REG-MT, while differences 
are related to source temporal patterns and contributions which might 

be impacted by the atmospheric dilution conditions. 
Indeed, as can be noted from Fig. 2, SF5, and SF6 factor chemical 

profiles given by the FDN matrix and EVF values in the DN-MT approach 
are overall very similar to the ones provided by the REG-MT, as ex
pected. Diel variations are reported in Fig. 4 (panels a-h) for all the 

Hour of the day (LT)

s egarevA
[ noitubirtnoc deta

mitse ecruo
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Fig. 4. Factors diel variations. Cyan solid lines: diel profiles from G matrix (REG-MT). Orange dashed lines: diel profiles from GDN matrix (DN-MT). Blue dotted lines: 
diel profiles from GdeDN matrix (DN-MT). Left panels (a,c,e,g): winter diel variations. Right panels (b,d,f,h): summer diel variations. Lines represent mean values, 
shaded areas are the 95% confidence interval in the mean (‘openair’ package, Carslaw, 2013; Carslaw and Ropkins, 2012; R Core Team, 2021). Diel variations of the 
episodic contributions from the mineral dust factor are not displayed as not meaningful. 
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factors retrieved by the model (except for the mineral dust factor since 
diel variation are dominated by the Saharan dust transport episodes and 
thus are not significant). 

In Table 2, average (mean [95% CI]) absolute and percentage source 
contributions are reported for winter and summer; they were computed 
by averaging G matrix temporal series obtained by both REG- and DN- 
MT approach. The percentage difference was calculated as (DN-MT – 
REG-MT)/REG-MT using the mass contribution apportioned by the two 
approaches. It is important to remember that here the DN-MT results 
refer to the de-normalised matrix GdeDN because - as reported in Section 
2.2.2 - a de-normalisation of the gDN

ik values must be applied to the output 
values to keep the consistency with the measured ambient PM 
concentrations. 

The similarity between the factor contributions obtained by REG- 
and DN-MT is particularly evident for the secondary aerosol related ones 
(i.e. nitrate- and sulphate-dominated) and the biomass burning, with 
percentage differences in the major contributing species in the mass- 
scaled profiles are smaller than 4%. Opposite, statistically different 
values were observed for mineral dust and for urban aerosol. The sim
ilarity among the chemical profiles (see Fig. 2) retrieved with the REG- 
and DN-MT suggests that source identification and the contributions 
quantification performed in this study are robust and reliable. 

Time series of factor contributions obtained by the de-normalised 
matrix GdeDN in the DN-MT are almost overlapping (at 95% CI) with 
those given by the G matrix in the REG-MT for secondary aerosol- 
dominated factors and biomass burning; differences between the two 
approaches are not statistically significant. Indeed, nitrate and sulphate 
aerosol mixtures originate from multiple atmospheric processes and 
reactions on different time scales; moreover, in the Po Valley the sec
ondary aerosol production is largely observed at a regional scale (i.e., 
basin-based). The same behaviour was observed for biomass burning 
diel patterns, which did not seem to be affected by the VC-normalisation. 
The non-local character of these factors was also confirmed by the 
Conditional Probability Function (CPF) plots (see Figs. S2, S3, and S4) 
which showed that for these factors the contributions are never coming 
from the city (located to the south of the investigated site); opposite, 
they are coming from the north-western sector, indicating that these 
contributions are originated in the Po Valley basin. 

As concerns the other factors, the DN-MT time patterns are very 
similar to the REG-MT ones but with different average contributions. 
Mineral dust contribution is more largely decreased in winter of about 
23% while remains comparable during summer. The urban aerosol 
factor is the one experiencing the larger variation with the DN-MT 
approach, its contribution being increased by about 46% and 59% in 
winter and summer, respectively; moreover, it is the only factor with the 
non-overlapping contributions at 95% CI. This is also very clear 
considering diel variation patterns, where peaks likely due to traffic- 
rush hours present in the urban factor are strongly enhanced (Fig. 4g 
and h), while mineral dust pattern is flattened especially in winter after 
the VC-normalisation (not shown). In our work, secondary aerosol 
components (i.e. mainly nitrate- and sulphate-dominated aerosol) 
together with biomass burning temporal patterns are not expected to be 
so much affected by atmospheric dilution and local meteorology. Such 
results are in accordance with what was observed in other works (Dai 
et al., 2020; Sofowote et al., 2021), where peaks of primary emissions 
related to local sources (e.g., traffic) were sharpened by the DN 
approach, while contributions from non-local sources (e.g., soil dust and 
sea salt) were lowered. 

3.3.2. Interpretation of GDN matrix results 
The temporal patterns given by the GDN matrix, giving information 

about the actual emission strength (including possible atmospheric 
chemical transformations) of the identified sources independently from 
atmospheric dilution effects, were analysed in detail, as an original 
contribution to future DN-PMF applications. These outputs exhibit 

strongly modulated patterns for all the sources in both seasons (Fig. 3) 
and the minimum values are set to almost constant values. By comparing 
G and GdeDN patterns with GDN, it is very straightforward to identify the 
periods where G and GdeDN concentration increase is mainly caused by 
PM accumulation due to atmospheric stability as can be clearly seen 
during periods 1-8 and 17–23 February, which correspond to very poor 
dilution conditions as indicated by the very low VC values (see Fig. 1). 
Considering diel variations (Fig. 4, panels a-h), it can be noted that 
almost all the sources are majorly active during diurnal hours. The 
common features shown by sulphate- and nitrate-dominated aerosol as 
well as by biomass burning suggest that the slow modulation of regional- 
based emissions in the DN-MT is masked by the strong daily evolution of 
the mixing layer which overwhelms any other variation in these factors; 
indeed, the GDN shape resembles very much the MLH one. 

In winter, secondary aerosol factors are characterised by a very 
similar diel pattern, presenting a maximum around 11:00, about 4 h 
after the sunrise (typically occurring around 7:00 during the winter 
campaign); this morning peak is likely due to an enhancement of 
photochemical reactions in the first hours of solar radiation (Dai et al., 
2020). During summer, the patterns of these sources are different. The 
nitrate-dominated factor, similarly to wintertime behaviour, has a peak 
around 9:00, about 3–4 h after the sunrise (occurring on average at 
around 5:30 during the summer campaign); the concentrations then 
drop due to higher temperatures which favour the gaseous form. The 
sulphate-dominated factor reaches its maximum later in the afternoon at 
about 16:00 when high photochemical activity promotes the formation 
of sulphate. This factor in summer is the one exhibiting the most strongly 
modulated pattern. Biomass burning showed a very similar diurnal 
variation to nitrate- and sulphate-dominated factors in winter, with a 
peak slightly shifted forward at about 13:00 and an additional smaller 
peak during nocturnal hours around 1:00–2:00. This pattern was quite 
unexpected since biomass burning emissions are typically more intense 
during night-time, when there is an increased use of biomass combustion 
for residential heating. The features retrieved in this analysis emphasise 
the complexity of this source. Indeed, biomass burning is mainly traced 
by species typically emitted directly into the atmosphere (e.g., levo
glucosan and EC), but the high similarity with secondary 
aerosol-dominated factors highlighted by the DN-MT suggests a pre
vailing regional and secondary origin. This could be explained by 
considering that biomass burning emissions are subjected to rapid pro
cessing and ageing once released in the atmosphere (as reported by e.g., 
Kodros et al., 2020; Paglione et al., 2020); this is often promoted by 
wintertime conditions typical of the Po Valley when high concentration 
levels and scarce dilution produce a complex mixture of pollutants. 
During summer, biomass burning contribution is almost negligible so 
that it is not of interest commenting on it. 

As already mentioned, the observed diel variation of regional emis
sions is heavily affected by the MLH modulation; however in this case 
different biomass burning temporal patterns might also originate from 
lockdown measures that were still active during the winter field 
campaign and forced people to stay at home during daytime thus 
increasing the use of biomass burning for heating. It is noteworthy that a 
different behaviour was observed for the urban factor, which has a local 
origin. In winter, the urban factor was characterised by a sharp morning 
rise till maximum values in the time interval 9:00–11:00, followed by a 
slow decrease towards late afternoon at about 18:00. In summer, it was 
mainly active during the central hours of the day (8:00–18:00), with two 
peaks (one in the morning around 9:00 and in the evening around 
16:00–17:00). Hourly traffic volumes measured by the municipality of 
BO on a road which is not too far from our urban background monitoring 
site were downloaded from open data archives (Open Data – Comune di 
Bologna, https://opendata.comune.bologna.it, last visited on 10 March 
2023) and compared to the urban factor diel variations. It is very 
interesting to note that during summer, the urban factor diel variation 
shows a very good agreement with diel traffic volume (R2 = 0.88, see 
Figure SF7), even if the evening peak was slightly before the one 
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presented in the traffic volume. The same agreement was not found in 
winter, when although the traffic volume pattern behaved similarly to 
the summer one (even if with lower absolute values) the temporal 
pattern of the urban factor contributions completely missed the evening 
peak. This behaviour might be explained by considering that particles 
emitted by this emission source in wintertime conditions (i.e., frequent 
atmospheric stability conditions with high relative humidity, 
complexity of the mixture of gaseous and particulate pollutants) can 
undertake transformations that modify their nature, such as mixing with 
other existing particles, water vapour condensation upon particles, or 
ageing processes and it might be that these particles increase their size so 
that PM1 sampling inlet did not catch them. 

Lastly, mineral dust patterns (not shown) are dominated by the 
Saharan dust transport episodes; however, apart from those events, the 
diel pattern is characterised by daily peaks around 11:00–13:00 in 
winter and around 17:00–18:00 in summer, likely because the wind 
speed is maximum in those hours of the day (see Figure SF2d). 

4. Conclusions 

In this work, we explored the potentiality of DN-PMF in decoupling 
the effect of atmospheric dispersion from aerosol emission sources and 
atmospheric chemistry in the southern Po Valley, one of the major 
pollution hotspots in Europe. Indeed, it is worth assessing how much the 
strong atmospheric stability drives the observed atmospheric aerosol 
concentrations vs. the emission source strengths as this piece of infor
mation is key for air quality improvement plans. This is the first appli
cation of DN-MT at a European site where meteorological conditions 
play a crucial role in atmospheric aerosol concentrations. 

To achieve this goal, a dataset comprising PM1 well chemically 
characterised samples with multiple-time resolution was chosen as a 
challenging input for receptor modelling due to the relatively long 
residence time in the atmosphere of sub-micron sized particles and the 
huge contributions from secondary components of regional origin. 
These are features that make the Po Valley aerosol so complex and 
worthy of investigation. In addition, the monitoring campaigns were 
carried out when source emissions were not as usual because of some 
restrictions due to COVID-19 pandemics. 

The application of DN-MT to this dataset compared to the more 
conventional use of REG-MT pointed out some interesting features when 
looking at the differences in high-time resolution and diel patterns. The 
similarity observed for sulphate- and nitrate-dominated aerosol as well 
as for biomass burning revealed their regional origin as the DN-MT 
outputs (GDN) show a pattern which resembles the mixing layer evolu
tion thus suggesting that the latter dominates over the relatively slow 
modulation of components which are largely produced at the basin-scale 
of the Po Valley. Opposite, the urban aerosol - in this case the only 
source with a local origin - shows GDN values which appear to be much 
more related to the modulation of the emission source (like traffic vol
umes, in this case). 

As a perspective of this work, further studies applying the DN-PMF 
using datasets with different PM size fractions from the Po Valley are 
desirable to gain knowledge about the potentiality of this approach in 
retrieving useful information on the role of the atmospheric dilution on 
the observed concentrations to better tackle the pollution levels and to 
promote more effective abatement strategies. 
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D’Alessandro, A., Lucarelli, F., Mandò, P.A., Marcazzan, G., Nava, S., Prati, P., Valli, G., 
Vecchi, R., Zucchiatti, A., 2003. Hourly elemental composition and sources 
identification of fine and coarse PM10 particulate matter in four Italian towns. 
J. Aerosol Sci. 34, 243–259. https://doi.org/10.1016/S0021-8502(02)00172-6. 

Dai, Q., Ding, J., Song, C., Liu, B., Bi, X., Wu, J., Zhang, Y., Feng, Y., Hopke, P.K., 2021. 
Changes in source contributions to particle number concentrations after the COVID- 
19 outbreak: insights from a dispersion normalized PMF. Sci. Total Environ. 759, 
143548 https://doi.org/10.1016/j.scitotenv.2020.143548. 

Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., Hopke, P.K., 2020. 
Dispersion normalized PMF provides insights into the significant changes in source 
contributions to PM2.5 after the COVID-19 outbreak. Environ. Sci. Technol. 54, 
9917–9927. https://doi.org/10.1021/acs.est.0c02776. 

EEA, 2019. Air Quality in Europe—2019 Report. Copenhagen, Denmark.  
Farao, C., Canepari, S., Perrino, C., Harrison, R.M., 2014. Sources of PM in an industrial 

area: comparison between receptor model results and semiempirical calculations of 
source contributions. Aerosol Air Qual. Res. 14, 1558–1572. https://doi.org/ 
10.4209/aaqr.2013.08.0281. 

Forello, A.C., Amato, F., Bernardoni, V., Calzolai, G., Canepari, S., Costabile, F., Di 
Liberto, L., Gualtieri, M., Lucarelli, F., Nava, S., Perrino, C., Petralia, E., Valentini, S., 
Valli, G., Vecchi, R., 2020. Gaining knowledge on source contribution to aerosol 
optical absorption properties and organics by receptor modelling. Atmos. Environ. 
243, 117873 https://doi.org/10.1016/j.atmosenv.2020.117873. 

Forello, A.C., Bernardoni, V., Calzolai, G., Lucarelli, F., Massabò, D., Nava, S., Pileci, R.E., 
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