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Background. We investigated cerebral structural connectivity and its relationship to symptoms in never-medicated

individuals with first-onset schizophrenia using diffusion tensor imaging (DTI).

Method. We recruited subjects with first episode DSM-IV schizophrenia who had never been exposed to

antipsychotic medication (n=34) and age-matched healthy volunteers (n=32). All subjects received DTI and

structural magnetic resonance imaging scans. Patients’ symptoms were assessed on the Positive and Negative

Syndrome Scale. Voxel-based analysis was performed to investigate brain regions where fractional anisotropy (FA)

values significantly correlated with symptom scores.

Results. In patients with first-episode schizophrenia, positive symptoms correlated positively with FA scores in

white matter associated with the right frontal lobe, left anterior cingulate gyrus, left superior temporal gyrus, right

middle temporal gyrus, right middle cingulate gyrus, and left cuneus. Importantly, FA in each of these regions

was lower in patients than controls, but patients with more positive symptoms had FA values closer to controls.

We found no significant correlations between FA and negative symptoms.

Conclusions. The newly-diagnosed, neuroleptic-naive patients had lower FA scores in the brain compared with

controls. There was positive correlation between FA scores and positive symptoms scores in frontotemporal tracts,

including left fronto-occipital fasciculus and left inferior longitudinal fasciculus. This implies that white matter

dysintegrity is already present in the pre-treatment phase and that FA is likely to decrease after clinical treatment or

symptom remission.
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Introduction

Diffusion tensor imaging (DTI) is a novel research

approach to assess the amount and preferred direction

of diffusion of water molecules in vivo (Basser et al.

1994 ; Basser, 1995). In the brain, water molecules tend

to diffuse along the direction of the axonal fibres

wrapped by myelin sheathes ; thus, DTI serves as a

proxy measure of the orientation and structure of

white matter comprising millions of axonal fibres

grouped together in myelinated sheaths (Basser, 1995).

Fractional anisotropy (FA) is a measure of the di-

rectional diffusion of water, values range from 0

(completely anisotropic or randomly directed) to 1

(completely isotropic or uni-directional). FA scores

increase in healthy children with better reading and

spelling skills (Deutsch et al. 2005) and cognitive per-

formance (Schmithorst et al. 2005) and decrease in

adults with multiple sclerosis (Horsfield et al. 1998),

traumatic brain injury (Gupta et al. 2005) and normal

and abnormal ageing (Moseley, 2002). This makes it a

useful tool to detect and quantify dynamic changes

in white matter microstructure during neurodevel-

opment and degeneration of the brain. Since

schizophrenia can be regarded as a disorder of neu-

rodevelopment (Bullmore et al. 1997 ; Rapoport et al.

2005), DTI presents a safe and convenient tool to study

how brain connectivity in patients differs from healthy

individuals.

Using DTI, our group was the first to report wide-

spread white matter disruption in individuals newly
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diagnosed with schizophrenia prior to treatment with

antipsychotic medication (Cheung et al. 2008). We

found that a range of white matter FA decreases ad-

jacent to frontotemporal and striatolimbic regions in

patients relative to healthy controls. Almost without

exception, we and other groups have reported lower

FA in patients compared with healthy controls

(Kanaan et al. 2009). Most often implicated are the

prefrontal and temporal lobes (Ardekani et al. 2003 ;

Szeszko et al. 2005 ; Ellison-Wright & Bullmore, 2009)

and their interconnecting white matter tracts : uncinate

fasciculus ; cingulum bundle (Kubicki et al. 2003, 2005 ;

Sun et al. 2003 ; Hubl et al. 2004 ; Zetzsche et al. 2007) ;

arcuate fasciculus (Hubl et al. 2004 ; Kubicki et al.

2005) ; inferior longitudinal fasciulus (Ashtori et al.

2007) (for a review, see Kanaan et al. 2005, 2009 ;

Kubicki et al. 2007 ; Kyriakopoulos et al. 2008). We

also reported lower FA in the splenium of the corpus

callosum (Cheung et al. 2008) and previous groups

have also described reduced diffusivity in this princi-

pal interhemispheric tract (Foong et al. 2000, 2002 ;

Ardekani et al. 2003 ; Hubl et al. 2004 ; Kalus et al. 2005)

as well as in the striatum (Hubl et al. 2004 ; Kubicki

et al. 2005, Szeszko et al. 2005) and the hippocampal/

parahippocampal region (Ardekani et al. 2003 ; Kalus

et al. 2004, 2005).

Few studies have examined the relationship be-

tween white matter connectivity and symptoma-

tology. Hubl et al. (2004) first explored this by

comparing 13 chronically auditorily hallucinating

patients with 13 non-auditorily hallucinating patients

and 13 healthy controls. They reported significantly

higher FA scores in the hallucinators versus the other

two groups in the lateral parts of the temporo-parietal

section of the arcuate fasciculus and in parts of

the anterior corpus callosum. The lateral part of the

arcuate fasciculus links Broca’s area in the frontal lobe

to Wernicke’s area in the temporal lobe and is dis-

rupted in aphasia. The hallucinating group also had

greater FA than the non-hallucinating group in the

left cingulum bundle, which may represent aberrant

emotional circuitry. Others have failed to replicate

these results. Seok and co-workers, in a group of like-

wise intractably hallucinated patients as compared

with non-hallucinators and healthy controls, found

only a positive correlation between severity of audi-

tory hallucinations and FA score in the left frontal part

of the superior longitudinal fasciculus (Seok et al.

2007). Fujiwara and co-workers also used DTI based

on a region-of-interest analysis restricted to the

anterior and posterior cingulate bundles and found

that positive symptoms in chronically psychotic

patients were positively correlated with FA scores

in the posterior cingulate bundle (Fujiwara et al. 2007).

In contrast, Skelly and co-workers used voxel-based

DTI to show lower FA in 25 patients with chronic

schizophrenia compared with 25 healthy controls.

They reported that positive symptoms were inversely

correlated with FA scores in diverse regions, including

the left uncinate fasciculus, right sagittal striatum

and left superior longitudinal fasciculus (Skelly et al.

2008).

Thus, there is discrepancy in the literature and it

may be useful to clarify the direction of the relation-

ship between white matter FA and symptom severity

using a first-episode sample. A handful of DTI studies

have recruited such patients (Price et al. 2007a, b ;

Cheung et al. 2008 ; Friedman et al. 2008 ; Peters et al.

2008) and while there have been negative findings

(Friedman et al. 2008 ; Peters et al. 2008), others noted

deep frontotemporal white matter connections

(Kyriakopoulos et al. 2008), especially the inferior

fronto-occipital fasciculus (Ellison-Wright & Bullmore,

2009), uncinate fasciculus (Price et al. 2007b) as well as

callosum (Price et al. 2007a ; Kyriakopoulos & Frangou,

2009) and cerebellar tracts (Kyriakopoulos & Frangou,

2009). These findings appear weaker than those

described above in chronic populations, in which

dose-dependent FA increase may have contributed

(Okugawa et al. 2004 ; Shergill et al. 2007). The tend-

ency to step up medication afflicts chronically

relapsing samples and this in turn can confound

the interpretation of results (Kanaan et al. 2005 ;

Kyriakopoulos et al. 2008). In addition, the issue of

sample size and heterogeneity in data processing

(Zetzsche et al. 2007 ; Ellison-Wright & Bullmore,

2009) may have contributed to inconsistencies across

studies. For example, antipsychotic medication can

increase basal ganglia volume (Chakos et al. 1994 ;

Sigmundsson et al. 2001; Chua et al. 2008 ; Deng et al.

2009 ; Leung et al. 2009) and even just a few days of

antipsychotic treatment can modulate FA (Kanaan

et al. 2009). Therefore, we conceived a study to address

the role of symptoms on white matter organization in

a voxel-by-voxel basis in patients presenting for the

first time with schizophrenia, who had never pre-

viously been exposed to antipsychotic medication. The

aim of the study is to address the issues of chronicity

and medication exposure as potential confounders.

We sought to limit their effect by ensuring that our

sample consists of individuals newly diagnosed with

schizophrenia presenting in their first episode of ill-

ness and all neuroleptic-naive.

Method

Subjects

All subjects recruited were aged between 18 and

45 years. They had 6–18 years of education, were
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Chinese and had given fully informed written consent

to participate in a study approved by the Hong Kong

West Cluster Institutional Review Board of the hospi-

tal. Subjects were excluded if they had a history of

neurological illness (such as epilepsy, strokes or

meningitis), head injury that required hospitalization,

persistent headaches, genetic disorder (such as tuber-

ous sclerosis, fragile X syndrome), electroconvulsive

therapy, history of drug and/or alcohol abuse, hyper-

activity, mental retardation, suspension from school

for >6 months. They were also excluded if they had

taken medication for any chronic medical condition in

the previous week.

Patients were recruited from the teaching hospital

of The University of Hong Kong. Inclusion criteria

were no previous antipsychotic treatment, first

experience of psychotic symptoms (i.e. hallucinations,

and/or delusions and/or thought disorder), no sig-

nificant mood/organic disorder, with decline in daily

functioning and fulfilling criteria for a diagnosis of

DSM-IV schizophrenia (APA, 1994) after assessments

by specialist clinician investigators in psychiatry

(C.P.Y.C., C.W.L.). Healthy controls from the local

community were recruited by advertisement.

Patients were screened on the first day of presen-

tation to hospital and gave full informed written con-

sent to participate. Symptoms were rated by a

specialist psychiatrist with clinical responsibility for

the care of the patients using the Positive and Negative

Syndrome Scale (PANSS; Kay et al. 1987, 1988), with

intra-class correlation coefficients 0.73–0.83 (Chen et al.

2005) based on a 30-item scale with positive, negative

and general psychopathology items demonstrating

high reliability and validity (Kay et al. 1988 ; Kay,

1990). A magnetic resonance imaging (MRI) scan was

performed according to the protocol below before

initiating antipsychotic medication.

MRI data acquisition

DTI and T2/PD datasets were acquired by GE Signa

1.5 T system (General Electric, USA). A 5-min DTI se-

quence followed the protocol of Leung et al. (2004) and

comprised single-shot spin-echo echo-planar imaging

with TR=10 000 ms, TE=100 ms, acquisition matrix=
128r128, and field of view=28 cm, slice thickness of

5- with 1.5 mm gap. In total, 25 volumes had diffusion-

sensitizing gradient encoding (Basser et al. 1994 ;

Basser, 1995) applied along 25 directions with a

diffusion-weighted factor b=1200 s/mm2 and one

volume, B0, without a diffusion gradient, b=0 s/mm2

(see Cheung et al. 2008). A dual-echo fast spin echo

sequence provided T2/PD datasets aligned to AC-PC

across the whole brain, 3 mm thick, Nex=0, TR 5–6 s,

TE 20/80 ms, matrix 256r192 (see McAlonan et al.

2005).

Imaging processing and analysis

Image pre-processing was performed using SPM2

(Wellcome Department of Cognitive Neurology,

Institute of Neurology, UK) and the Diffusion II tool-

box (http://sourceforge.net/projects/spmtools) run-

ning in MATLAB 6.5 (The MathWorks, Inc., USA). The

DTI pre-processing sequence was based upon the op-

timized voxel-based morphometric approach of Good

et al. (2001) and Cheung et al. (2008).

To examine the relationship between symptoms and

FA, whole brain FA maps of the patient group were

correlated separately with positive and negative

PANSS scores in a voxel-by-voxel manner using a

standard linear regression model (Genovese et al.

2002) with results thresholded at a false discovery rate

(FDR) of p<0.05 (two tailed, corrected). As in our

previous study (Cheung et al. 2008), we used the FDR

threshold of p<0.05 (two tailed, corrected), where

FDR is the proportion of false positives (incorrect re-

jections of the null hypothesis) among those tests for

which the null hypothesis is rejected (Genovese et al.

2002). We relied upon the FDR method to control for

multiple comparisons leading to type 1 error under

the null hypothesis (Bullmore et al. 1999) as opposed to

the Bonferroni correction, which is regarded as overly

strict, where neighbouring pixels are interdependent

(Genovese et al. 2002). All MNI coordinates were con-

verted to Talairach using a standard non-linear algor-

ithm (Brett, 2002).

Results

Subjects with schizophrenia (n=34) had a mean age of

25.4 (S.D.=7.5) years. There were 17 females, who were

all right-handed. They had a PANSS positive symp-

tomatology mean score of 19.9 (S.D.=4.2), PANSS

negative symptomatology mean score of 15.0 (S.D.=
7.2). The healthy controls had a mean age of 27.6

(S.D.=8.5) years and did not differ significantly from

the patients (p>0.03), 15 were female and all were

right-handed and did not differ significantly with the

patients (p=0.9). In this study, all subjects were right-

handed and are extended from a previous sample

(25 patients, 26 healthy controls) from Cheung et al.

(2008).

Voxel-wise correlation of FA scores and PANSS

In total, 34 never-medicated patients with first-episode

schizophrenia and 32 healthy controls successfully

underwent a MRI scan. Altogether, 31 patients with

Symptoms and DTI in never-medicated first episode schizophrenia 1711



never-medicated first-episode schizophrenia who had

PANSS data for positive and negative PANSS scores

were entered into the analysis. We then compared

all 34 patients with the 32 healthy controls on mean

FA values for 11 clusters that showed significant cor-

relation with PANSS scores (Table 1).

We found that FA values in 11 frontal (Figs 1 and 2)

and temporal-limbic (Figs 1 and 3) clusters were

positively associated with high positive symptom

scores [voxel level p<0.05 (FDR-corrected), cluster

size 100, cluster level p<0.05 (uncorrected)]. Notwith-

standing this, for all 11 clusters, the FA values were

lower in patients than in healthy controls, significantly

so around the left anterior cingulate and superior

temporal regions (see Table 1). Thus, the closer FA

values in the patient group were to control measures,

the greater the number of positive symptoms. There

were no brain regions showing negative correlation

with positive PANSS. There were also no brain regions

showing any correlation with negative PANSS.

Discussion

Our principal finding is that in antipsychotic-naive

patients newly diagnosed with schizophrenia, positive

symptoms showed a significant positive correlation

with widespread regions, including fronto-occipital

and temporo-limbic white matter FA scores. Speci-

fically, these regions included the right frontal lobe,

left anterior cingulate gyrus, left body of cingulum, left

superior temporal gyrus, right middle temporal gyrus,

right inferior parietal gyrus, left cuneus, left genu of

corpus callosum, right extension of posterior internal

capsule. However, in all of these regions FA scores

were lower in patients than healthy controls. Our

present study extends our previous DTI work on

never-medicated patients in their first episode of

schizophrenia (Cheung et al. 2008), indicating that

patients with FA values approaching control levels in

fronto-occipital and temporo-limbic tracts have the

greatest number of positive symptoms.

In our previous study (Cheung et al. 2008), we re-

ported decreased FA in patients compared with heal-

thy controls in a widespread pattern, which included

the fronto-occipital and temporo-limbic regions cor-

responding to the left fronto-occipital fasciculus and

inferior longitudinal fasciculus, white matter adjacent

to right precuneus, splenium of corpus callosum, right

posterior limb of internal capsule, white matter adjac-

ent to right substantia nigra and left cerebral peduncle.

The current study found that, despite lower FA in the

patient group relative to controls, there was a positive

correlation between positive symptoms and FA en-

compassing a widespread network including fronto-

occipital and temporo-limbic pathways. This result

may be considered rather counter-intuitive in that

more florid positive symptoms of schizophrenia are

associated with white matter FA values very similar to

control levels. We note that FA relatively increased

with positive symptoms even though, overall, the ab-

solute FA scores were all lower in the group with

schizophrenia.

Widespread cortical thinning has been described

both in first-episode schizophrenia in the frontopolar,

cingulate and occipital regions (Narr et al. 2005). The

same group had earlier reported that very early onset

individuals followed up over 5 years showed striking

grey matter loss originating in the parietal cortex

dynamically moving to temporal then frontal cortices

(Thompson et al. 2001). They noted that this grey

matter loss correlated with psychotic symptom sev-

erity as well as sensorimotor (including visuo-spatial

and auditory functions) and executive function im-

pairments (Thompson et al. 2001). Cortical thinning is

believed to reflect underlying reduced neuropil and

neuronal size with alterations in synaptic, dendritic

and axonal organization (Harrison, 1999) and, if pro-

gressive, may imply that dyconnectivity gets worse

over time. Hence, our data in newly diagnosed and

never-medicated subjects with schizophrenia support

the position that there is already widespread cortical

dysconnectivity with lower FA scores in patients

compared with controls across the board.

When we examined the overlap in spatial distri-

bution of ‘signature ’ between our previous study

(Cheung et al. 2008) and the current one, we noted that

three regions in the present study overlapped with

the previous one, in which seven regions had been

reported. All showed significantly reduced FA in

patients as compared with controls. These three re-

gions in the present study are left anterior cingulate

gyrus (anterior to fronto-occipital fasciculus), left

superior temporal gyrus (adjacent to inferior longi-

tudinal fasciculus) and right extension from posterior

limb of internal capsule. Since these regions are

dopamine-rich, we believe that they resonate with

the propensity for antipsychotics to modulate positive

symptoms and may be evidence of state- rather than

trait-related dysconnectivity. Hubl et al. (2004) had

reported higher white matter directionality in the

temporo-parietal region in auditorily hallucinated

patients versus non-auditorily hallucinated controls.

Other studies have also reported findings in this di-

rection (Fujiwara et al. 2007 ; Seok et al. 2007), although

they are not directly comparable to ours since all as-

sessed chronically ill patients with persistent symp-

toms and possibly lengthy exposure to antipsychotics.

Our findings are in keeping with those from three re-

cent DTI studies, which have also reported a positive

correlation between positive symptoms and FA.

1712 V. Cheung et al.



Table 1. White matter fractional anisotropy (FA) differences in patients compared with healthy controls

Brain regionsa showing significant correlation

with symptoms

Cluster

p value

Cluster size

(voxel)

Talairach coordinates (mm)

Voxel

Z valueb

FA mean (S.D.)

x y z Control (n=32) Patient (n=34)

Positive correlation with positive PANSS scores

Frontal lobe

R pre-central sulcus

(above arcuate/superior longitudinal fasiculus)

0.028 400 34 5 27 4.55 0.2988 (0.029) 0.2929 (0.037) N.S.

R post-central gyrus

(adjacent to fronto-occipital fasciculus)

<0.0005 1770 23 35 16 4.47 0.3250 (0.025) 0.3132 (0.038) N.S.

R inferior frontal gyrus

(fronto-occipital fasciculus)

0.016 751 16 30 1 3.78 0.4312 (0.036) 0.4187 (0.048) N.S.

L body of cingulum

(adjacent to fronto-occipital fasciculus)

0.001 1114 x15 2 29 4.45 0.3667 (0.030) 0.3635 (0.053) N.S.

L anterior cingulate gyrus

(anterior to fronto-occipital fasciculus)

0.004 784 x19 38 12 4.02 0.3699 (0.031) 0.3398 (0.041) *

Temporo-parietal

R middle temporal gyrus

(adjacent to inferior longitudinal fasciculus)

0.007 649 45 x50 4 4.05 0.3641 (0.051) 0.3421 (0.062) N.S.

L superior temporal gyrus

(adjacent to inferior longitudinal fasciculus)

0.016 498 x38 x33 6 3.63 0.3699 (0.050) 0.3398 (0.058) **

R inferior parietal gyrus 0.038 349 29 x31 37 3.53 0.3662 (0.030) 0.3584 (0.052) N.S.

Occipital

L cuneus 0.006 703 x19 x75 16 3.99 0.3117 (0.025) 0.2987 (0.047) N.S.

Subcortical

L genu of corpus callosum 0.030 392 x5 18 21 3.92 0.3551 (0.041) 0.3477 (0.057) N.S.

R extension from posterior internal capsule to central

sulcus, along fronto-occipito fasciculus

0.010 594 18 x5 22 4.61 0.3617 (0.039) 0.3447 (0.052) N.S.

PANSS, Positive and Negative Syndrome Scale ; R, right ; L, left ; N.S., non-significant group difference in mean FA.
a Brain regional labels are suggested for guidance only.
b p<0.05 (false discovery rate-corrected).

* Significant group difference in mean FA; p<0.05, uncorrected.

** Significant group difference in mean FA; p<0.005, uncorrected.
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Delusions/hallucinations positively correlated with

FA in the left inferior fronto-occipital fasciculus

(Szeszko et al. 2008). A positive correlation was also

noted between delusions of passivity and FA in the

frontocingulate region (Sim et al. 2009) and between

auditory hallucinations with FA in the arcuate/

superior longitudinal fasciculi and anterior cingulum

(Shergill et al. 2007). These sites of white matter dys-

connectivity are extensive (for review, see Catani et al.

2002), comprising the inferior fronto-occipital tract

(connects the frontal cortex with posterior temporal

and occipital cortex), the superior longitudinal fascu-

lus (links the frontal with parietal and temporal

cortices, the cingulum (joins the inferior temporal pole

with the subrostral frontal lobe, cingulate gyrus and

genu of corpus callosum). We believe that this myriad

of white matter deficits is in keeping with evidence

in the literature of established cortical thinning in

first-episode, minimally treated (Narr et al. 2005), as

well as very early onset, schizophrenia (Thompson

et al. 2001). Conceivably, some discrepancy in the ex-

tant literature may arise from sample characteristics,

such as effects of medication and chronicity, since

these are difficult to disentangle from pathology. For

example, of the three studies cited above, the Szeszko

group included the youngest patients (mean age=25

years), who were newly diagnosed but many already

in receipt of medication. They noted that medication

effects are still not well understood but that FA scores

inversely correlated with the duration of antipsychotic

treatment in the left superior longitudinal fasciculus

(Szeszko et al. 2008). Our study was conducted with

neuroleptic-naive individuals and our findings, taken

with these recent studies, argue for the presence of

frontotemporo-limbic dysconnectivity. This parsi-

monious interpretation is also propounded in a recent

meta-analysis by Ellison-Wright & Bullmore (2009).

However, for patients on treatment it is worth bearing

in mind the possible contribution from neuroleptic

treatment, since there is a duration- (Szeszko et al.

2008) and dosage- (Okugawa et al. 2004) dependent

relationship between antipsychotic treatment and FA

score. Our finding that positive symptoms are posi-

tively correlated with FA appears at odds with the

study by Skelly et al. (2008). The latter group reported

that chronically treated patients (mean age=34 years)

had lower brain FA in association tracts (including left

superior longitudinal fasciculus), which inversely

correlated with positive symptoms. This discrepancy

with our own results deserves to be carefully ad-

dressed. One possibility is that younger patients with

minimal or no exposure to medication experience FA

lowering further over time, i.e. an inverse relationship

with positive symptoms may emerge as the illness

progresses or as a consequence of medication ex-

posure (Szeszko et al. 2008). However, as our study

was cross-sectional, we anticipate that a future longi-

tudinal follow-up of our patients would be an ideal

approach to try to reconcile results from samples of

patients at different stages of illness.

Our cross-sectional analysis cannot speak to ‘cau-

sal ’ mechanisms but does prompt some interpretation.

Mild variation in FA may not reflect serious pathology

in neurotypical individuals but here potentially re-

veals vulnerability in those with psychosis. For ex-

ample, positive symptoms could be generated via

aberrant activation of white matter pathways, which

remain reasonably ‘ intact ’. Classically, symptoms in

schizophrenia aggregate into distinct symptom com-

plexes, suggesting that a distinct neural substrate

can be investigated by neuroimaging (Buchanan &

Carpenter, 1997). ‘Positive ’ symptoms (hallucinations,

delusions, thought disorder) are thought to reflect

+2

+15+13

+24 +30 +32

+39

+19

+5+3

Fig. 1. Functional anisotropy (FA) score correlates of

positive symptoms in schizophrenia. Red clusters show

significant positive correlations of white matter FA with

positive symptom scores in never-medicated patients with

first-episode schizophrenia (n=31). There were no significant

negative correlations of white matter FA with negative

symptom scores. The maps are orientated with the right

side of the brain shown on the right side of the panel. The

z coordinate for each axial slice in the standard space of

Talairach and Tournoux is given in mm.
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‘ state ’ and are more treatment-responsive (Buchanan

& Carpenter, 1997), ‘negative ’ symptoms represent

‘ trait ’ (Buchanan & Carpenter, 1997) and are regarded

as having a likely brain structural basis (Crow, 1985).

Persistently untreated positive (Flaum et al. 1995 ;

Sumich et al. 2005) or negative (Chua et al. 1997 ; Wible

et al. 2001) symptoms may well increase the likelihood

of brain structural abnormality but, at first episode, the

extent of white matter pathophysiology is still limited.

We cautiously suggest that our results indicate that

such limited brain structural pathology at first pres-

entation might provide a substrate for expression of

positive symptoms, characteristic of the early phase of

illness. There is some evidence to support this in the

literature. For example, the duration of untreated ill-

ness is associated with worse prognosis (Barnes et al.

2008) and more extensive brain structural differences

(Lappin et al. 2006). Positive symptoms are less

prominent over time (Arndt et al. 1995) and, with each

relapse, prognosis worsens and treatment dosages of-

ten escalate (Lieberman et al. 1993). Our data concur

with others (Hubl et al. 2004 ; Fujiwara et al. 2007 ;

Seok et al. 2007), which imply that disease progression

and symptomatology are related to changes in the or-

ganization of white matter circuitry. The corollary of

our finding of a positive correlation between FA scores

and positive symptoms in the left fronto-occipital and

temporo-limbic tracts is that, over time (as symptoms

abate with treatment), FA may decline and this

can represent a marker for treatment or prognosis.

Addressing this question in a longitudinal follow-up

study may help to determine the extent to which

positive and negative symptoms reflect white matter

pathology and whether FA can serve as a marker for

treatment or prognosis. Perhaps one way forward

would be to evaluate future treatment outcome based

on symptoms and/or functioning at 1 year or 2, and

then to enter this as covariate into the baseline scan in
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R post-central gyrus 
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Fig. 2. Scatter plot of the relationship between functional anisotropy (FA) of significant frontal clusters with positive symptom

subscale on the Positive and Negative Syndrome Scale (PANSS). A best-fitted least square line was plot for each of the five

frontal areas and their corresponding R2 given next to each of the best-fitted lines.
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order to determine if baseline FA score may be used to

help predict future outcome.

The brain pathology in schizophrenia is suggested

to arise from dysregulation of the normal dendritic

organization that accompanies a critical surge in white

matter growth from adolescence to early adulthood

(Sowell et al. 1999), when prodrome symptoms typi-

cally begin. Harrison (1999) has argued cogently that

key susceptibility genes (such as catechol-O-methyl-

transferase, neuregulin, dysbindin) converge toward

the risk of schizophrenia by their role in synaptic

plasticity/function (Frankle et al. 2003) so as to impair

higher order information processing. In other words,

this disorder appears, in its fundamental form, to

be one of impaired stabilization and development of

cortical micro-circuitry (Harrison, 1999 ; Winterer and

Weinberger, 2004). Consequently, the directionality of

neuroimaging findings in schizophrenia may be quite

difficult to predict, but DTI evidence for disruption

of white matter connections linked to a multiplicity

of symptoms fits with asynchronization of neural cir-

cuitry during neurodevelopment, resulting in synaptic

misconnections (Andreasen et al. 1999 ; Frankle et al.

2003 ; Whitefield-Gabrieli et al. 2009).

Strengths and weaknesses of study

The study involved a never-medicated, first-episode

group of patients with schizophrenia and aimed to

investigate how their symptoms are related to system

of white matter connectivity. It employed a voxel-

based approach not constrained by prior hypotheses.

Patients with schizophrenia were carefully diagnosed

and ethnically homogeneous and well balanced with

the healthy controls. Although missing data meant

that we were not able to enter the duration of un-

treated psychosis as a covariate to explore the possi-

bility of a relationship between duration of psychosis

and FA score, we observed that the duration of psy-

chosis for many subjects was approximately 1 year.

This is a potential limitation of the study, together

with the DTI sequence used, which could be improved

in power with thinner slices and a more powerful

magnet, which, fortunately, will become accessible to

our patients for future studies.

A between-group analysis followed by exploration

of symptom correlates of regions showing significant

differences would arguably have been the statistically

more powerful and conventional approach. However,

we previously published cross-sectional data on a

sample including many of the patients and controls

from the present study (Cheung et al. 2008). We con-

sidered that the regions uncovered in a cross-sectional

study might encompass aspects of the illness not

exclusively pertaining to symptoms, such as predis-

position/vulnerability to disorder. Therefore, since

the main thrust of the current study was to examine

the symptom–FA interaction, we decided to perform

whole-brain correlational analysis. As discussed ear-

lier, the FA correlates of positive symptoms coincided

with fewer than half the regions of group difference

identified in the cross-sectional analysis. We interpret

this finding as pointing towards a difference in the

white matter pathways contributing to more ‘static ’
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Fig. 3. Scatter plot of the relationship between functional anisotropy (FA) of significant temporal clusters with positive symptom

subscale on the Positive and Negative Syndrome Scale (PANSS). A best-fitted least square line was plotted for each of the five

frontal areas and their corresponding R2 given next to each of the best-fitted lines.
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disease traits responsible for group differences and

those that are involved in generation of positive

symptoms.

In conclusion, fronto-occipital and temporo-limbic

white matter connectivity positively correlates with

positive symptom scores in first-episode schizo-

phrenia. These effects on white matter connections are

not influenced by pharmacotherapy and therefore

appear to be disease-related. Future work will focus

on mapping the progression of illness using FA, to-

gether with other neuroimaging markers, to investi-

gate how the administration of antipsychotic agents

can modify brain structure and symptoms.
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