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Abstract
This paper studies the numerical solution of strictly convex unconstrained optimization
problems by linesearchNewton-CGmethods.We focus onmethods employing inexact
evaluations of the objective function and inexact and possibly random gradient and
Hessian estimates. The derivative estimates are not required to satisfy suitable accuracy
requirements at each iteration but with sufficiently high probability. Concerning the
evaluation of the objective function we first assume that the noise in the objective
function evaluations is bounded in absolute value. Then, we analyze the case where the
error satisfies prescribed dynamic accuracy requirements. We provide for both cases a
complexity analysis and derive expected iteration complexity bounds.We finally focus
on the specific case of finite-sum minimization which is typical of machine learning
applications.
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1 Introduction

In this paper we consider globally convergent Inexact Newton methods for solving the
strictly convex unconstrained optimization problem

min
x∈Rn

f (x). (1)

We focus on the Newton method where the linear systems are solved by the Conju-
gate Gradient (CG) method [25], usually denoted as Newton-CG method, and on the
enhancement of its convergence properties by means of Armijo-type conditions.

The literature on globally convergent Newton-CG methods is well established as
long as the gradient and the Hessian matrix are computed exactly or approximated
sufficiently accurately in a deterministic way, see e.g., [15, 20, 31]. On the other hand,
the research is currently very active for problems with inexact information on f and its
derivatives and possibly such that the accuracy cannot be controlled in a deterministic
way [1–11, 13, 14, 17, 19, 22, 23, 26, 32, 33, 35].

This work belongs to the recent stream of works and addresses the solution of
(1) when the objective function f is computed with noise and gradient and Hessian
estimates are random. Importantly, derivative estimates are not required to satisfy
suitable accuracy requirements at each iteration but with sufficiently high probability.
Concerning the evaluation of f we cover two cases: estimates of f subject to noise
that is bounded in absolute value; estimates of f subject to a controllable error, i.e.,
computable with a prescribed dynamic accuracy. Such a class of problems has been
considered in [4, 10] and our contribution consists in their solution with linesearch
Newton-CG method; to our knowledge, this case has not been addressed in the litera-
ture.We provide two linesearchNewton-CGmethods suitable for the class of problems
specified above and provide bounds on the expected number of iterations required to
reach a desired level of accuracy in the optimality gap.

The paper is organized as follows. In Sect. 2 we give preliminaries on Newton-
CG and on the problems considered. In Sect. 3 we present and study a linesearch
Newton-CG algorithmwhere function estimates are subject to a prefixed deterministic
noise. In Sect. 4 we propose and study a linesearch Newton-CG algorithm where
function estimates have controllable accuracy. In Sect. 5 we consider the specific case
where f is a finite-sumwhich is typical of machine learning applications and compare
our approach with the Inexact Newton methods specially designed for this class of
problems given in [7, 12, 33].

In the rest of paper ‖ · ‖ denotes the 2-norm. Given symmetric matrices A and B,
A � B means that B − A is positive semidefinite.

2 Our setting

In this section we provide preliminaries on the solution of problem (1) and the assump-
tions made. Our methods belong to the class of the Inexact Newton methods [18]
combined with a linesearch strategy for enhancing convergence properties. A key fea-
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ANNALI DELL’UNIVERSITA’ DI FERRARA

ture is that function, gradient and Hessian evaluations are approximated and the errors
in such approximations are either deterministic or stochastic, as specified below.

The Inexact Newton methods considered here are iterative processes where, given
the current iterate xk , a random approximation gk to ∇ f (xk) and a random approxi-
mation Hk to ∇2 f (xk), the trial step sk satisfies

Hksk = −gk + rk, ‖rk‖ ≤ ηk‖gk‖, (2)

for some ηk ∈ (0, η̄), 0 < η̄ < 1, named forcing term.
With sk and a trial steplength tk at hand, some suitable sufficient decrease Armijo

condition is tested on xk + tksk . Standard linesearch strategies are applied using the
true function f . On the other hand, here we assume that the evaluation of f is subject
to an error.

If Hk is positive definite we can solve inexactly the linear systems Hks = −gk
using the Conjugate Gradient (CG) method [25]. The resulting method is denoted as
Newton-CG. If the initial guess for CG is the null vector, the following properties
hold.

Lemma 2.1 Suppose that Hk is symmetric positive definite and sk is the vector in
(2) obtained by applying the CG method with null initial guess to the linear system
Hks = −gk. Let 0 < λ1 ≤ λn such that

λ1 I � Hk � λn I . (3)

Then, there exist constants κ1, κ2, β > 0, such that:

κ1‖gk‖ ≤ ‖sk‖ ≤ κ2‖gk‖, −gTk sk ≥ β‖sk‖2, ∀k > 0, (4)

which satisfy

1 − η̄

λn
≤ κ1 ≤ κ2 ≤ 1

λ1
, β ≥ λ1. (5)

As a consequence

βκ1 ≤ −gTk sk
‖sk‖2

‖sk‖
‖gk‖ = |gTk sk |

‖gk‖‖sk‖ ≤ 1, (6)

λnκ1 ≥ 1 − η̄, (7)

κ1λ1 ≤ κ2λ1 ≤ 1, (8)

−gTk sk ≥ βκ2
1‖gk‖2. (9)

Proof Lemma 7 in [21] guarantees that any step ŝ returned by the CG method applied
to Hks = gk with null initial guess satisfies ŝT Hk ŝ = −ŝT gk . Then, it holds

sTk Hksk = −sTk gk, (10)
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and by (3) we have

− gTk sk = sTk Hksk ≥ λ1‖sk‖2 (11)

which provides the lower bound on β in (5).
By (11) it also follows that

‖sk‖ ≤ λ−1
1 ‖gk‖, (12)

which provides the upper bound on κ2 in (5).
Moreover, using (2)

‖gk − rk‖ ≥ ‖gk‖ − ‖rk‖ ≥ (1 − ηk)‖gk‖ ≥ (1 − η̄)‖gk‖

while (2) and (3) give

‖gk − rk‖ = ‖Hksk‖ ≤ ‖Hk‖‖sk‖ ≤ λn‖sk‖

and consequently

‖sk‖ ≥ ‖gk − rk‖
λn

≥ 1 − η̄

λn
‖gk‖, (13)

which provides the lower bound on κ1 in (5).
Inequalities (6)–(9) are direct consequences of (4) and (5). 	


2.1 Assumptions

We introduce the assumptions on the problem (1) and on the approximate evaluations
of functions, gradients and Hessians.

Assumption 2.2 (smoothness and strong convexity of f ) The function f is twice con-
tinuously differentiable and there exist some λn ≥ λ1 > 0 such that the Hessianmatrix
∇2 f (x) satisfy

λ1 I � ∇2 f (x) � λn I , ∀x ∈ R
n . (14)

As a consequence, f is strongly convex with constant λ1, i.e.,

f (x) ≥ f (y) + ∇ f (y)T (x − y) + λ1

2
‖x − y‖2 for all x, y ∈ R

n

and the gradient of f is Lipschitz-continuous with constant λn , i.e.,

‖∇ f (x) − ∇ f (y)‖ ≤ λn‖x − y‖ for all x, y ∈ R
n . (15)
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Further, letting x∗ be the unique minimizer of the function f , for all x ∈ R
n we have

λ1‖x − x∗‖ ≤ ‖∇ f (x)‖ ≤ λn‖x − x∗‖, (16)

and

λ1

2
‖x − x∗‖2 ≤ f (x) − f (x∗) ≤ 1

2λ1
‖∇ f (x)‖2, (17)

see [29, Theorem 2.10].
As for approximated evaluations of the objective function, we consider two possible

cases. The first one is such that the value f (x) is approximated with a value f̃ (x) and
the corresponding error is not controllable but its upper bound ε f is known.

Assumption 2.3 (boundness of noise in f ) There exists a positive scalar ε f such that

| f (x) − f̃ (x)| ≤ ε f , ∀x ∈ R
n . (18)

The second case concerns a controllable error between f (x) and f̃ (x) at the current
iteration xk and at the trial iteration xk + tksk .

Assumption 2.4 (controllable noise in f ) For all k > 0 and some given positive θ

| f (xk) − f̃ (xk)| ≤ −θ tks
T
k gk,

| f (xk + tksk) − f̃ (xk + tksk)| ≤ −θ tks
T
k gk . (19)

The methods we are dealing with are globalized Inexact Newton methods employ-
ing random estimates gk and Hk of the gradient and the Hessian and noisy values of
the objective function. Then, they generate a stochastic process.We denote the random
variables of our process as follows: the gradient estimator Gk , the hessian estimator
Hk , the step size parameter Tk , the search direction Sk , the iterate Xk . Their realiza-
tions are denoted as gk = Gk(ωk), Hk = Hk(ωk), tk = Tk(ωk), sk = Sk(ωk) and
xk = Xk(ωk), respectively, with ωk taken from a proper probability space. For brevity
we will omit ωk in the following. We let Ek−1 denote all noise history up to itera-
tion k − 1 and we include Ek−1 in the algorithmic history for completeness. We use
Fk−1 = σ(G0, . . . ,Gk−1,H0, . . . ,Hk−1, Ek−1) to denote the σ -algebra generated
by G0, . . . ,Gk−1,H0, . . . ,Hk−1 and Ek−1, up to the beginning of iteration k.

We assume that the random gradient estimators Gk are (1 − δg)-probabilistically
sufficiently accurate.

Assumption 2.5 (gradient estimate) The estimator Gk is (1 − δg)-probabilistically
sufficient accurate in the sense that the indicator variable

Ik = 1{‖Gk − ∇ f (Xk)‖ ≤ tkηk‖Gk‖} (20)

satisfies the submartingale condition

P (Ik = 1|Fk−1) ≥ 1 − δg, δg ∈ (0, 1). (21)
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Iteration k is called true (iteration) if Ik = 1, false otherwise. Trivially, if kth iteration
is true then the triangle inequality implies

‖∇ f (xk)‖ ≤ (1 + tkηk) ‖gk‖. (22)

Finally, at each iteration and for any realization, the approximation Hk is supposed
to be positive definite.

Assumption 2.6 For all k ≥ 0, Hk is symmetric positive definite and

λ1 I � Hk � λn I , (23)

with λ1, λn as in (14).

We remark that assuming f strictly convex, (14) and (23) hold,with suitable choices
of the scalar λ1, λn , as long as the sequence {Hk} is symmetric positive definite and
has eigenvalues uniformly bounded from below and above.

Some comments on Assumptions 2.3, 2.4, 2.5 and 2.6 are in order. They appear
in a series of papers on unconstrained optimization where the evaluation of function,
gradient and Hessian are inexact, either with a controllable or a random noise. Con-
trolling the noise in a deterministic way, as in Assumptions 2.3 and 2.4 is a realistic
request in applications such as those where the accuracy of f -values can be enforced
by the magnitude of some discretization parameters or f is evaluated in variable preci-
sion or approximated by using smoothing operators [24, 27, 28, 30]. Probabilistically
sufficient accurate gradients, as in Assumption 2.5, occur when the gradients are esti-
mated by finite difference and some computation fails to complete, in derivative-free
optimization or when the gradient are estimated by sample average approximation
methods [1, 6, 16, 17]. Finally, Assumption 2.6 amounts to building a convex random
model and is trivially enforced if f is the sum of strongly convex functions and the
Hessian is estimated by sample average approximation methods. In literature, uncon-
strained optimization with inexact function and derivative evaluations covers many
cases: exact function and gradient evaluations and possibly random Hessian [3, 13,
35], exact function and random gradient and Hessian [1, 2, 16], approximated function
and random gradient and Hessian [4, 10], random function gradient and Hessian [5, 8,
11, 17, 32]. In the class of Inexact Newton method with random models we mention
[7, 12, 14, 19, 26].

3 Bounded noise on f

In this section we present and analyze an Inexact Newton method with line-search
where the function evaluation is noisy in the sense of Assumption 2.3.

At iteration k, given xk and the steplength tk , a non-monotone Armijo condition
given in [10] is used. It employs the known upper bound ε f introduced in Assump-
tion 2.3 and has the form

f̃ (xk + tksk) ≤ f̃ (xk) + c tks
T
k gk + 2ε f , (24)
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c ∈ (0, 1). If xk + tksk satisfies (24) we say that the iteration is successful, we accept
the step and increase the step-length tk for the next iteration. Otherwise the step is
rejected and the step-length tk is reduced; at the next iterate gk and Hk are supposed to
be computed from scratch. Our procedure belongs to the framework given in Section
4.2 of [10] and it is sketched in Algorithm 3.1.

Algorithm 3.1: k-th iteration of Algorithm

Given xk, gk ∈ R
n, Hk ∈ R

n×n c ∈ (0, 1), η̄ ∈ (0, 1) , τ ∈ (0, 1), tmax > 0,
tk ∈ (0, tmax].

Step 1. Choose ηk ∈ (0, η̄).
Step 2. Starting from the null vector, use CG to compute an approximate solution

sk of Hks = −gk satisfying (2).
Step 3. If tk satisfies condition (24) (successful iteration) then

xk+1 = xk + tksk , tk+1 = min{tmax, τ
−1tk}, k = k + 1.

else xk+1 = xk , tk+1 = τ tk , k = k + 1.

Similarly to [10, 16], Algorithm 3.1 generates a stochastic process. Given xk and
tk , the iterate xk+1 is fully determined by gk , Hk and the noise in the function value
estimation during iteration k.

Concerning the well definiteness of the linesearch strategy (24), we now prove that
if the iteration is true and tk is small enough, the linesearch condition is satisfied.

Lemma 3.1 Suppose that Assumptions 2.2, 2.3, 2.5 and 2.6 hold. Suppose that iteration
k is true and consider any realization of Algorithm 3.1. Then the iteration is successful
whenever tk ≤ t̄ = 2βκ1(1−c)

κ1λn+2 .

Proof Let k be an arbitrary iteration. Inequalities (15) and (18) imply, using the stan-
dard arguments for functions with bounded Hessians,

f̃ (xk + tksk) − ε f ≤ f (xk + tksk)

= f (xk) +
∫ 1

0
[∇ f (xk + ζ tksk)]T (tksk)dζ

= f (xk) +
∫ 1

0
tk

(
[∇ f (xk + ζ tksk)]T sk ± ∇ f (xk)

T sk
)
dζ

= f (xk) +
∫ 1

0
tk[∇ f (xk + ζ tksk) − ∇ f (xk)]T skdζ + tk∇ f (xk)

T sk

≤ f (xk) +
∫ 1

0
tk‖∇ f (xk + ζ tksk) − ∇ f (xk)‖‖sk‖dζ + tk∇ f (xk)

T sk

≤ f (xk) + λn

2
t2k ‖sk‖2 + tk∇ f (xk)

T sk

≤ f̃ (xk) + ε f + λn

2
t2k ‖sk‖2 + tk∇ f (xk)

T sk .
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Since iteration k is true by assumption then ‖∇ f (xk)− gk‖ ≤ tkηk‖gk‖ holds, and
using Lemma 2.1 we obtain

f̃ (xk + tksk) ≤ f̃ (xk) + 2ε f + λn

2
t2k ‖sk‖2 + tk∇ f (xk)

T sk ± tkg
T
k sk

= f̃ (xk) + 2ε f + λn

2
t2k ‖sk‖2 + tk[∇ f (xk) − gk]T sk + tkg

T
k sk

≤ f̃ (xk) + 2ε f + λn

2
t2k ‖sk‖2 + t2k

ηk

κ1
‖sk‖2 + tkg

T
k sk . (25)

Then, the linesearch condition (24) is clearly enforced whenever

f̃ (xk) + 2ε f + λn

2
t2k ‖sk‖2 + t2k

ηk

κ1
‖sk‖2 + tkg

T
k sk ≤ f̃ (xk) + ctks

T
k gk + 2ε f

which gives

tk‖sk‖2
(

λn

2
+ ηk

κ1

)
≤ −(1 − c)gTk sk .

Using (4) we have −(1 − c)gTk sk ≥ (1 − c)β‖sk‖2. Since ηk < η̄ < 1, if

tk‖sk‖2
(

λn

2
+ 1

κ1

)
≤ (1 − c)β‖sk‖2,

then (24) holds and this yields the thesis. 	


3.1 Complexity analysis of the stochastic process

In this section we carry out the convergence analysis of Algorithm 3.1. To this end
we provide a bound on the expected number of iterations that the algorithm takes
before it achieves a desired level of accuracy in the optimality gap f (xk) − f ∗ with
f ∗ = f (x∗) being the minimum value attained by f . Such a number of iteration is
defined formally below.

Definition 3.2 Let x∗ be the global minimizer of f and f ∗ = f (x∗). Given some
ε > 0, Nε is the number of iterations required until f (xk) − f ∗ ≤ ε occurs for the
first time.

The number of iterations Nε is a random variable and it can be defined as the hitting
time for our stochastic process. Indeed it has the property σ(1{Nε > k}) ⊂ Fk−1.

Following the notation introduced inSect. 2we let Xk , k ≥ 0, be the randomvariable
with realization xk = Xk(ωk) and consider the following measure of progress towards
optimality:

Zk = log

(
f (X0) − f ∗

f (Xk) − f ∗

)
. (26)
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Further, we let

Zε = log

(
f (X0) − f ∗

ε

)
(27)

be an upper bound for Zk for any k < Nε . We denote with zk = Zk(ωk) a realization
of the random quantity Zk .

A theoretical framework for analyzing a generic line search with noise has been
developed in [10]. Under a suitable set of conditions, it provides the expected value
for Nε . We state a result from [10] and will exploit it for our algorithm.

Theorem 3.3 Suppose that Assumptions 2.2, 2.3, 2.5, 2.6 hold. Let zk a realization of
Zk in (26) and suppose that there exist a constant t̄ > 0, a nondecreasing function
h(t) : R+ → R, which satisfies h(t) > 0 for any t ∈ (0, tmax], and a nondecreasing
function r(ε f ) : R → R, which satisfies r(ε f ) ≥ 0 for any ε f ≥ 0, such that for any
realization of Algorithm 3.1 the following holds for all k < Nε:

(i) If iteration k is true and successful, then zk+1 ≥ zk + h(tk) − r(ε f ).
(ii) If tk ≤ t̄ and iteration k is true then iteration k is also successful, which implies

tk+1 = τ−1tk .
(iii) zk+1 ≥ zk − r(ε f ) for all successful iterations k and zk+1 ≥ zk for all unsuc-

cessful iteration k.
(iv) The ratio r(ε f )/h(t̄) is bounded from above by some γ ∈ (0, 1).

Then under the condition that the probability δg in Assumption 2.5 is such that δg <
1
2 −

√
γ

2 , the stopping time Nε is bounded in expectation as follows

E[Nε] ≤ 2(1 − δg)

(1 − 2δg)2 − γ

[
2Zε

h(t̄)
+ (1 − γ ) logτ

t̄

t0

]
. (28)

Proof See [10, Assumption 3.3 and Theorem 3.13]. 	

We show that our algorithm satisfies the assumptions in Theorem 3.3 if the magni-

tude of ε fulfills the following condition.

Assumption 3.4 Let c ∈ (0, 1) as in (24), β, κ1 as in Lemma 2.1, λ1 as in Assump-
tion 2.2, t̄ as in Lemma 3.1, tmax as in Algorithm 3.1. Assume that ε in Definition 3.2
is such that

ε >
4ε f

(1 − M)−γ − 1
(29)

where M = cβκ21λ1 t̄
(1+tmax)2

, for some γ ∈ (0, 1) such that (1 − M)−γ < 2.

Note that M ∈ (0, 1) due to the definition of t̄ in Lemma 3.1 and the smaller M is, the
larger is ε with respect to ε f .

First, we provide a relation between zk and zk+1 of the form specified in item (i),
Theorem 3.3.
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Lemma 3.5 Suppose that Assumptions 2.2, 2.3, 2.5, 2.6 and 3.4 hold. Consider any
realization of Algorithm 3.1. If the k-th iterate is true and successful, then

zk+1 ≥ zk − log

(
1 − cβκ2

1λ1
tk

(1 + tmax)2

)
− log

(
1 + 4ε f

ε

)
, (30)

whenever k < Nε .

Proof By (17), f (xk) − f ∗ ≤ 1
2λ1

‖∇ f (xk)‖2. Using (22)

‖gk‖2 ≥
(

1

1 + tkηk

)2

‖∇ f (xk)‖2 ≥ 2λ1

(
1

1 + tkηk

)2

( f (xk) − f ∗). (31)

Combining condition (18), (24) and Lemma 2.1 it holds

f (xk) − f (xk+1) + 2ε f ≥ f̃ (xk) − f̃ (xk+1) ≥ −ctkg
T
k sk − 2ε f

≥ ctkβκ2
1‖gk‖2 − 2ε f , (32)

and thus, using (31),

f (xk) − f (xk+1) ± f ∗ ≥ 2ctkβκ2
1λ1

(
1

1 + tkηk

)2

( f (xk) − f ∗) − 4ε f .

Then it holds

f (xk+1) − f ∗ ≤
(
1 − 2cβκ2

1λ1
tk

(1 + tkηk)2

)
( f (xk) − f ∗) + 4ε f .

We define �
f
k = f (xk) − f ∗. Because of f (xk) − f ∗ > ε, we have

�
f
k+1 ≤

(
1 − 2cβκ2

1λ1
tk

(1 + tkηk)2
+ 4ε f

ε

)
�

f
k

≤
(
1 − cβκ2

1λ1
tk

(1 + tkηk)2
− 4ε f

ε
cβκ2

1λ1
tk

(1 + tkηk)2
+ 4ε f

ε

)
�

f
k

=
(
1 − cβκ2

1λ1
tk

(1 + tkηk)2

) (
1 + 4ε f

ε

)
�

f
k

≤
(
1 − cβκ2

1λ1
tk

(1 + tmax)2

) (
1 + 4ε f

ε

)
�

f
k

where the second inequalities holds thanks to Assumption 3.4, because 4ε f < ε and
the last one holds since tk ≤ tmax and ηk < 1.
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Notice that since
(
1 + 4ε f

ε

)
> 0, �

f
k > 0 and �

f
k+1 ≥ 0, it holds(

1 − cβκ2
1λ1

tk
(1+tmax)2

)
≥ 0. Now, taking the inverse and then the log of both sides,

adding log�
f
0 , we have

log

(
�

f
0

�
f
k+1

)
≥ log

(
�

f
0

�
f
k

)
− log

(
1 − cβκ2

1λ1
tk

(1 + tmax)2

)
− log

(
1 + 4ε f

ε

)
,

which completes the proof.
	


The next lemma analyzes item (ii) of Theorem 3.3

Lemma 3.6 Suppose that Assumptions 2.2, 2.3, 2.5 and 2.6 hold. Consider any real-
ization of Algorithm 3.1. For every iteration that is false and successful, we have

zk+1 ≥ zk − log

(
1 + 4ε f

ε

)
.

Moreover zk+1 = zk for any unsuccessful iteration.

Proof For every false and successful iteration, using (18), (24) and (4) we have

f (xk+1) ≤ f (xk) + ctks
�
k gk + 4ε f

≤ f (xk) + 4ε f ,

thus, because of f (xk) − f ∗ > ε,

f (xk+1) − f ∗ ≤ f (xk) − f ∗ + 4ε f

≤
(
1 + 4ε f

ε

)
( f (xk) − f ∗).

So it holds �
f
k+1 ≤

(
1 + 4ε f

ε

)
�

f
k . Now taking the inverse and then the log of both

sides, adding log�
f
0 we have

log

(
�

f
0

�
f
k+1

)
≥ log

(
�

f
0

�
f
k

)
− log

(
1 + 4ε f

ε

)

which completes the first part of the proof. Finally, for any unsuccessful iteration
zk+1 = zk follows by Step 3 of Algorithm 3.1 that provides xk+1 = xk and hence
f (xk+1) = f (xk). 	
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We can now summarize our results. First, note that
(
1 − cβκ2

1λ1
tk

(1+tmax)2

)
≥ 0 for

all tk ∈ [0, tmax], due to (6) and (8). Second, let

h(t) = − log

(
1 − cβκ2

1λ1
t

(1 + tmax)2

)
and r(ε f ) = log

(
1 + 4ε f

ε

)
. (33)

It is easy to see that h(t) is monotone and non increasing if t ∈ [0, tmax].
Combining Lemmas 3.1, 3.5 and 3.6 , we have that for any realization of Algo-

rithm 3.1 and k < Nε with ε as in Assumption 3.4:

(i) (Lemma 3.5) If iteration k is true and successful, then zk+1 ≥ zk +h(tk)−r(ε f ).
(ii) (Lemma 3.1) If tk ≤ t̄ and iteration k is true then iteration k is also successful,

which implies tk+1 = τ−1tk .
(iii) (Lemma 3.6) zk+1 ≥ zk − r(ε f ) for all successful iterations k and zk+1 = zk for

all unsuccessful iteration k.
(iv) (Assumption 3.4) The ratio r(ε f )/h(t̄) is bounded from above by some

γ ∈ (0, 1).

Hence, we can use Theorem 3.3 and get the following boun on E[Nε],

E[Nε] ≤ 2(1 − δg)

(1 − 2δg)2 − γ

[
2 log1/(1−M)

(
f (x0) − f ∗

ε

)
+ (1 − γ ) logτ

t̄

t0

]

with M given in Assumption 3.4. This result is valid under Assumption 3.4, namely
for sufficiently large values of ε. The fact that ε cannot be arbitrarily small is consistent
with the presence of noise ε f in f -evaluations. Trivially, if ε f = 0 then the optimality
gap f (xk) − f ∗ can be made arbitrarily small.

4 Decreasing noise on f

In this section we present an Inexact Newton algorithm suitable to the case where
f -evaluations can be performed with adaptive accuracy. Letting c ∈ (0, 1

2 ), we use
the linesearch condition

f̃ (xk + tksk) ≤ f̃ (xk) + ctks
T
k gk, (34)

where f̃ (xk) and f̃ (xk + tksk) satisfy Assumption 2.4 with θ < c
2 . In fact, (34) has

the form of the classical Armijo condition but the true f is replaced by the approxi-
mation f̃ .

The resulting algorithm is given below.
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Algorithm 4.1: k-th iteration of Algorithm

Given xk, gk ∈ R
n, Hk ∈ R

n×n , c ∈ (0, 1
2 ), θ ∈ (0, c

2 ), η̄ ∈ (0, 1), τ ∈ (0, 1),
tmax > 0, tk ∈ (0, tmax].

Step 1. Choose ηk ∈ (0, η̄).
Step 2. Starting from the null vector, use CG to compute an approximate solution

sk of Hks = −gk satisfying (2).
Step 3. Compute f̃ (xk) and f̃ (xk + tksk) satisfying (19).
Step 4. If tk satisfies condition (34) (successful step) then

xk+1 = xk + tksk , tk+1 = min{tmax, τ
−1tk}, k = k + 1.

else xk+1 = xk , tk+1 = τ tk , k = k + 1.

The following Lemma shows that a successful iteration is guaranteed whenever it
is true and tk is sufficiently small.

Lemma 4.1 Suppose that Assumptions 2.2, 2.4 with θ < c
2 , 2.5 and 2.6 hold. Suppose

that iteration k is true and consider any realization of Algorithm 4.1. Then the iteration
is successful whenever tk ≤ t̄ = 2κ1β

κ1λn+2 (1 − c − 2θ).

Proof Using the same arguments as in Lemma 3.1, using (19) and (34), rather than
(18) and (24) we obtain

f̃ (xk + tksk) ≤ f̃ (xk) − 2θ tks
T
k gk + λn

2
t2k ‖sk‖2 + t2k

ηk

κ1
‖sk‖2 + tkg

T
k sk .

The linesearch condition (34) is clearly enforced whenever

f̃ (xk) − 2θ tks
T
k gk + λn

2
t2k ‖sk‖2 + t2k

ηk

κ1
‖sk‖2 + tkg

T
k sk ≤ f̃ (xk) + ctks

T
k gk

which gives

tk‖sk‖2
(

λn

2
+ ηk

κ1

)
≤ −(1 − c − 2θ)gTk sk .

Note that 1 − c − 2θ > 0 by c ∈ (0, 1/2) and θ ∈ (0, c
2 ). Using (4) we have

−(1 − c − 2θ)gTk sk ≥ (1 − c − 2θ)β‖sk‖2. Then, since ηk < η̄ < 1, (34) holds if

tk‖sk‖2
(

λn

2
+ 1

κ1

)
≤ (1 − c − 2θ)β‖sk‖2,

and this yields the thesis. 	
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4.1 Complexity analysis of the stochastic process

The behaviour of the method is studied analyzing the hitting time Nε in Definition 3.2.
In particular, we first show the following two results on the realization zk of the variable
Zk in (26).

Lemma 4.2 Suppose that Assumptions 2.2, 2.4with θ < c
2 , 2.5 and 2.6 hold. If the k-th

iterate of Algorithm 4.1 is true and successful, for any realization of the Algorithm 4.1
we have

zk+1 ≥ zk − log

(
1 − 2βκ2

1λ1 (c − 2θ)
tk

(1 + tmax)2

)
, (35)

whenever k < Nε .

Proof Using the same arguments as in Lemma 3.5, using (19) and (34), rather than
(18) and (24) we obtain

f (xk) − f (xk+1) ≥ −(c − 2θ)tkg
T
k sk

≥ tkβκ2
1 (c − 2θ) ‖gk‖2,

where the second inequality comes from (4). Thus

f (xk+1) − f ∗ ≤ f (xk) − f ∗ − tkβκ2
1 (c − 2θ)‖gk‖2

and using (31) we get

f (xk+1) − f ∗ ≤
(
1 − 2βκ2

1λ1 (c − 2θ)
tk

(1 + tmax)2

)
( f (xk) − f ∗).

Now proceeding as in Lemma 3.5 we have the thesis. 	

Lemma 4.3 Suppose that Assumptions 2.2, 2.4 with θ < c

2 , 2.5 and 2.6 hold. For any
realization of Algorithm 4.1 we have

zk+1 > zk,

if the iteration k is false and successful,

zk+1 = zk,

if the iteration k is unsuccessful.

Proof For every false and successful iteration, using (19) and (34),we have

f (xk+1) ≤ f (xk) + ctks
T
k gk − 2θ tkg

T
k sk

= f (xk) + (c − 2θ)tks
T
k gk < f (xk),
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and in case of unsuccessful iteration Step 4 of the algorithm provides xk+1 = xk .
Then, due to the definition of Zk in (26) the thesis follows.

	

Now we can state the main result on the expected value for the hitting time.

Theorem 4.4 Suppose that Assumptions 2.2, 2.4with θ < c
2 , 2.5 and 2.6 hold and let t̄

given in Lemma 4.1. Then under the condition that the probability δg in Assumption 2.5
is such that δg < 1

2 , the stopping time Nε is bounded in expectation as follows

E[Nε] ≤ 2(1 − δg)

(1 − 2δg)2

[
2 log1/(1−M)

(
f (x0) − f ∗

ε

)
+ logτ

t̄

t0

]

with M = 2(c−2θ)βκ21λ1 t̄
(1+tmax)2

.

Proof Let

h(t) = − log

(
1 − 2βκ2

1λ1 (c − 2θ)
t

(1 + tmax)2

)
, (36)

and note that h(t) is non decreasing for t ∈ [0, tmax] and that h(t) > 0 for t ∈ [0, tmax].
For any realization zk of Zk in (26) of Algorithm 4.1 the following hold for all k < Nε :

(i) If iteration k is true and successful, then zk+1 ≥ zk + h(tk) by Lemma 4.2.
(ii) If tk ≤ t̄ and iteration k is true then iteration k is also successful, which implies

tk+1 = τ−1tk by Lemma 4.1.
(iii) zk+1 ≥ zk for all successful iterations k (zk+1 = zk for all unsuccessful iteration

k), by Lemma 4.3.

Moreover, our stochastic process {Tk, Zk} obeys the expressions below. ByLemma 4.1
and the definition of Algorithm 4.1 the update of the random variable Tk such that
tk = Tk(ωk) is

Tk+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

τ−1Tk if Ik = 1, Tk ≤ t̄ (i.e., successful iteration)
τ−1Tk if the iteration is successful, Ik = 0, Tk ≤ t̄
τ Tk if the iteration is unsuccessful, Ik = 0, Tk ≤ t̄
τ−1Tk if the iteration is successful, Tk > t̄
τ Tk if the iteration is unsuccessful, Tk > t̄,

where the event Ik is defined in 20. By Lemmas 4.1, 4.2 and 4.3 the random variable
Zk obeys the expression

Zk+1 ≥
⎧⎨
⎩

Zk + h(Tk) if the iteration is successful and Ik = 1
Zk if the iteration is successful and Ik = 0
Zk if the iteration is unsuccessful

Then Lemma 2.2–Lemma 2.7 and Theorem 2.1 in [16] hold which gives the thesis. 	
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4.2 Local convergence

We conclude our study analyzing the local behaviour of the Newton-CG method
employing gradient estimates (1− δg)-probabilistically sufficiently accurate, i.e. sat-
isfying Assumption 2.5 and Hessian estimates satisfying the following assumption.

Assumption 4.5 The Hessian of the objective function f is Lipschitz-continuous with
constant LH > 0,

‖∇2 f (x) − ∇2 f (y)‖ ≤ LH‖x − y‖, ∀x, y ∈ R
n . (37)

Given a constantC > 0, theHessian estimator is (1−δH )-probabilistically sufficiently
accurate in the sense that the indicator variable

Jk = 1{‖Hk − ∇2 f (Xk)‖ ≤ Cηk}

satisfies the submartingale condition

P(Jk = 1|Fk−1) ≥ 1 − δH , δH ∈ (0, 1). (38)

We let tmax = 1, so that the maximum step-size gives the full CG step sk .
The following lemma shows that if the full CG step sk is accepted then the error

linearly decreases with a certain probability. Further, the same occurrence over �

successive iterations is analyzed.

Lemma 4.6 Suppose that Assumptions 2.2, 2.4 with θ < c
2 , 2.5, 2.6 and 4.5

hold. Let xk̄ be a realization of Algorithm 4.1 with tk̄ = 1. Assume that
the iteration is successful and ‖xk̄ − x∗‖ and ηk̄ are sufficiently small so that
1
λ1

[
LH
2 ‖xk̄ − x∗‖ + Cηk̄ + 2λnηk̄

1−η̄

]
< C̃ < 1. Then, at least with probability

p = (1 − δg)(1 − δH ), it holds

‖xk̄+1 − x∗‖ < C̃‖xk̄ − x∗‖.

If {ηk} is a non-increasing sequence and the iterations k̄, . . . , k̄ + �−1 are successful
with tk = 1 for k = k̄, . . . , k̄ + � − 1, then it holds ‖xk+1 − x∗‖ < ‖xk − x∗‖ for
k = k̄, . . . , k̄ + � − 1, at least with probability pl .

Proof

‖xk+1 − x∗‖ = ‖xk + sk − x∗‖
= ‖xk − H−1

k gk + H−1
k rk − x∗‖

= ‖H−1
k [∇2 f (xk)(xk − x∗) − ∇2 f (xk)(xk − x∗)

+Hk(xk − x∗) − gk ± ∇ f (xk) + rk]‖
≤ ‖H−1

k ‖(‖∇2 f (xk)(xk − x∗) − ∇ f (xk)‖
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+‖(∇2 f (xk) − Hk)(xk − x∗)‖ + ‖gk − ∇ f (xk)‖ + ‖rk‖)
≤ 1

λ1

(
‖∇2 f (xk)(xk − x∗) − ∇ f (xk)‖

+‖(∇2 f (xk) − Hk)(xk − x∗)‖ + ‖gk − ∇ f (xk)‖ + ‖rk‖
)
.

Thanks to (37) it holds

‖∇2 f (xk)(xk − x∗) − ∇ f (xk)‖
=

∥∥∥∥
∫ 1

0
[∇2 f (xk) − ∇2 f (x∗ + ζ(xk − x∗))](xk − x∗)dζ

∥∥∥∥
≤

∫ 1

0

∥∥∥∇2 f (xk) − ∇2 f (xk − (1 − ζ )(xk − x∗))
∥∥∥ dζ

∥∥xk − x∗∥∥

≤
∫ 1

0
LH (1 − ζ )dζ

∥∥xk − x∗∥∥2 = LH

2
‖xk − x∗‖2.

Let us assume that both the events Ik and Jk are true. Then, ‖gk−∇ f (xk)‖ ≤ ηk‖gk‖,

‖(∇2 f (xk) − Hk)(xk − x∗)‖ ≤ ‖∇2 f (xk) − Hk‖‖xk − x∗‖
≤ Cηk‖xk − x∗‖,

and by (2)

‖gk − ∇ f (xk)‖ + ‖rk‖ ≤ 2ηk‖gk‖.

Moreover,

‖gk‖ ≤ ‖gk − ∇ f (xk)‖ + ‖∇ f (xk)‖ ≤ ηk‖gk‖ + ‖∇ f (xk)‖

i.e, ‖gk‖ ≤ 1
1−ηk

‖∇ f (xk)‖. Then combining with (16) we have

‖gk‖ ≤ 1

1 − ηk
‖∇ f (xk)‖ ≤ λn

1

1 − ηk
‖xk − x∗‖ ≤ λn

1

1 − η̄
‖xk − x∗‖.

Therefore

‖gk − ∇ f (xk)‖ + ‖rk‖ ≤ 2ηkλn
1 − η̄

‖xk − x∗‖.

Then, since P(Ik ∩ Jk) ≥ p it follows

‖xk+1 − x∗‖ ≤ 1

λ1

[
LH

2
‖xk − x∗‖2 + Cηk‖xk − x∗‖ + 2λnηk

1 − η̄
‖xk − x∗‖

]

at least with probability p.
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Therefore, since at iteration k̄, 1
λ1

[
LH
2 ‖xk̄ − x∗‖ + Cηk̄ + 2λnηk̄

1−η̄

]
< C̃ < 1 by

assumption, it follows ‖xk̄+1 − x∗‖ < C̃‖xk̄ − x∗‖.
At iteration k̄ + 1, tk̄+1 = 1 and the iteration is successful by hypothesis. Then, we
can repeat the previous arguments and the thesis follows. 	


5 Finite sum case

In this section we consider the finite-summinimization problem that arises in machine
learning and data analysis:

min
x∈Rn

f (x) = 1

N

N∑
i=1

fi (x). (39)

The objective function f is the mean of N component functions fi : Rn → R and
for large values of N , the exact evaluation of the function and derivatives might be
computationally expensive. We suppose that each fi is strongly convex.

Following [1, 2, 16] f is evaluated exactly while the approximations gk and Hk to
the gradient and the Hessian respectively satisfy accuracy requirements in probability.

The evaluations of gk and Hk can be made using subsampling, that means pick-
ing randomly and uniformly chosen subsets of indexes Ng,k and NH ,k from N =
{1, . . . , N } and define

gk = 1

|Ng,k |
∑

i∈Ng,k

∇ fi (xk), and Hk = 1

|NH ,k |
∑

i∈NH ,k

∇2 fi (xk). (40)

If gk and Hk are required to be probabilistically sufficiently accurate as in Defini-
tion 2.5 and in Assumption 4.5 respectively, the sample sizes |Ng,k | and |NH ,k | can
be determined by using the operator-Bernstein inequality introduced in [34]. As shown
in [6], gk and Hk are (1 − δg) and (1 − δH ) -probabilistically sufficiently accurate if

|Ng,k | ≥ min

{
N ,

4κ f ,g(xk)

γg,k

(
κ f ,g(xk)

γg,k
+ 1

3

)
log

(
n + 1

δg

)}
, (41)

|NH ,k | ≥ min

{
N ,

4κ f ,H (xk)

Cηk

(
κ f ,H (xk)

Cηk
+ 1

3

)
log

(
2n

δH

)}
, (42)

where γg,k is an approximation of the required gradient accuracy, namely γg,k ≈ tkηk
‖Gk‖ and under the assumption that, for any x ∈ R

n , there exist non-negative upper
bounds κ f ,g and κ f ,H such that

max
i∈{1,...,N } ‖∇ fi (x)‖ ≤ κ f ,g(x),

max
i∈{1,...,N } ‖∇

2 fi (x)‖ ≤ κ f ,H (x).
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A practical version of the procedure is shown in Algorithm 5.1. Gradient approx-
imation requires a loop since the accuracy requirement is implicit; such a strategy is
Step 2 of the following algorithm.

Algorithm 5.1: k-th iteration of Algorithm

Given xk, ∈ R
n, c, η̄, τ, κγ ∈ (0, 1), γ0 > 0, tmax > 0, tk ∈ (0, tmax], C > 0.

Step 1. Choose ηk ∈ (0, η̄).
Step 2. Gradient approximation. Set i = 0 and initialize γ

(i)
k = γ0.

2.1 compute gk with (40) and (41) with γg,k = γ
(i)
k ;

2.2 if γ
(i)
k ≤ tkηk‖gk‖, go to Step 3;

else, set γ (i+1)
k = κγ γ

(i)
k , i = i + 1, go to Step 2.1.

Step 3. Compute Hk with (40) and (42).
Step 4. Starting from the null vector, use CG to compute an approximate solution

sk of Hks = −gk satisfying (2).
Step 5. If tk satisfies

f (xk + tksk) ≤ f (xk) + ctks
T
k gk . (43)

then xk+1 = xk + tksk , tk+1 = min{tmax, τ
−1tk}, k = k + 1

(successful iteration)
else xk+1 = xk , tk+1 = τ tk , k = k + 1 (unsuccessful iteration).

Inexact Newton methods for the finite-summinimization problems are investigated
also in [7, 12, 33]. In [7] it is analyzed a linesearch Newton-CG method where the
objective function and the gradient are approximated by subsampling with increasing
samplesizes determined by a prefixed rule. Random estimates of the Hessian with
adaptive accuracy requirements as in Assumption 4.5 are employed and local conver-
gence results in the mean square are given. In [12] the local convergence of Inexact
Newton method is studied assuming to use prefixed choice of the sample size used to
estimate by subsampling both the gradient and the Hessian. The paper [33] studies the
global as well as local convergence behavior of linesearch Inexact Newton algorithms,
where the objective function is exact and the Hessian and/or gradient are sub-sampled.
A high probability analysis of the local convergence of the method is given, whereas
we prove complexity results is expectation with noise in the objective function. More-
over, the estimators gk and Hk are supposed to be (1− δg) and (1− δH ) -probabilistic
sufficiently accurate as in our approach but with different accuracy requirements.
Predetermined and increasing accuracy requirements are used in [33] rather than the
adaptive accuracy requirements in Assumption 2.5 and in Assumption 4.5.
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6 Conclusion

In this paper we presented three Inexact Newton-CGmethods with linesearch suitable
for strongly convex functions with deterministic noise. Two type of noise, bounded
noise and controllable noise on the objective function were considered. Regarding
gradients, random approximationswere allowed and their accuracywas supposed to be
sufficiently high with a certain probability. The Hessians were possiby approximated
by means of positive definite matrices.

We presented algorithms for the above two cases of noise on the objective function
and analyzed the iteration complexity of the stochastic processes generated. In partic-
ular, we established a bound on the expected number of iterations that the algorithms
take until the optimality gap reaches a desired accuracy for the first time. Successively,
we studied the local behavior of the algorithm with controllable noise on the objec-
tive function and random approximations of the Hessian sufficiently accurate with a
certain probability. Finally, the discussion was specialized to the case where f is a
finite-sum of strongly convex function.
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