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Congestion and its uncertainty are big factors affecting customers’ decision to join
a queue or balk. In a queueing system, congestion itself is resulted from the aggre-
gate joining behavior of other customers. Therefore, the property of the whole group
of arriving customers affects the equilibrium behavior of the queue. In this paper,
we assume each individual customer has a utility function which includes a basic
cost function, common to all customers, and a customer-specific weight measuring
sensitivity to delay. We investigate the impacts on the average customer utility and
the throughput of the queueing system of different cost functions and weight dis-
tributions. Specifically, we compare systems where these parameters are related by
various stochastic orders, under different information scenarios. We also explore the
relationship between customer characteristics and the value of information.

1. INTRODUCTION

Delay, in most cases, is an unhappy experience for customers. But the degree of unhap-
piness may differ with customers’types. Facing the same delay, patient customers may
join the queue while impatient customers may balk. Thus, customers’ sensitivity on
delay is an important factor affecting their decision. Worse yet, to join a queue is
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usually risky, since customers don’t know exactly how long they will have to wait.
Therefore, customers’ attitude towards delay uncertainty also affects their decision to
join or to balk. For example, in a transportation system, some travelers need travel for
a conference or a meeting and they would prefer a safe route even though it may take
a longer time than a short cut; for other travelers with a large time flexibility, they may
prefer a risky route with a shorter average delay.

Nowadays there are increasing possibilities, enabled by new technologies, to
provide useful delay information to customers, to enhance the values of the services
they receive. Customers can thus make better-informed decisions upon arrival. For
example, in a transportation network, drivers can learn congestion information through
radio and Internet; in a call center, callers are sometimes informed about expected
waiting time.

Guo and Zipkin [10] (hereafter G-Z) describe numerous other examples on infor-
mation service in queues. They study a single-server queue with three levels of delay
information, none, partial (the system occupancy) and full (the exact waiting time).
Each customer decides whether to stay or leave, based on this information and his own
sensitivity to delays. They derive equilibrium behavior for the queues under different
information scenarios. They show that information’s impact on the whole system is
not always positive: It can reduce the server’s throughput and even hurt customers’
average utility. The most important factor determining these qualitative effects is the
shape of the distribution of customers’ delay-sensitivity weights. Specifically, they
show that more information always improve the server’s throughput if customers are
heterogeneous enough on the dimension of delay sensitivity.

However, it still remains unclear about the relationship between the equilibrium
behavior of the queueing system and customers’ characteristics. Neither are we clear
about the value of information and customers’ characteristics. Here, customers char-
acteristics include the distribution of delay-sensitivity parameter across the whole
group and an overall customers’ risk-aversion measure. In the former part, we aim to
answer questions such as: Is the system more congested with less patient customers?
or more-concentrated customers on the dimension of delay sensitivity? or less risk-
averse customers? In the latter part, we aim to answer questions such as: Is the value
of information greater for less patient customers? Is it larger for more risk-averse
customers? Such kind of analysis is called sensitivity analysis.

Intuitively, information should be more valuable to a more risk-averse decision
maker. This is true in a static sense, but it may not reflect dynamic behavior. See
Hilton [15], Freixas and Kihlström [8], Willinger [29] and Nadiminti, et al. [18].
For example, Freixas and Kihlström [8] show that the demand for information may
decrease with the level of risk aversion. Ex post, information reduces risk, however, ex
ante, information gathering itself is a risky activity that risk-averse decision makers
are less willing to bear. These works consider only a single decision maker facing an
exogenous risk. In our system, there is a group of decision makers (customers). Each
one’s joining decision affects the delays for later-arriving customers, so the system
exhibits negative externality. The delay risk here is endogenous. The relationship
between information and risk aversion is thus even more complex.
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The closest work on congestion, customers’ risk attitude and the value of infor-
mation is found in transportation literature. de Palma, et al. [5] consider information
service in a traffic system where drivers can choose between a safe route and a risky
route. They consider four information scenarios: No information, Free information
which is publicly available at no cost, Costly information which is publicly avail-
able for a fee, and Private information which is available free to a single individual.
They found that Private information is individually more valuable than either Free
and Costly information. Interestingly, they found that Free or Costly information
can decrease the expected utility of drivers who are sufficiently risk-averse. They
assume that drivers are heterogeneous on risk-aversion parameter without consider
drivers’ sensitivity towards delay while we assume customers are heterogenous on
delay-sensitivity parameter and there exists a common risk aversion parameter for all
customers.

Different from the conclusion in [5] that information hurts those most risk-averse
drivers, we show that if information hurts the server (reduces the throughput), infor-
mation benefits each individual customer. This conclusion strengthens the one in G-Z
where they show that if information hurts the server, it benefits the whole group of
customers. This disparity may come from the different settings in the two works: In
our system, customers can choose to balk if the system is too congested; while in [5],
drivers have to travel anyhow; information in [5] is an exogenous variable indicating
travel conditions of the risky route while information in our work is an endogenous
variable indicating congestion itself.

We show that when customers are more patient towards delay, the system becomes
more congested in equilibrium and the average utility for customers is larger under no
information and is so only with some special cost functions under partial or full infor-
mation. We also show that when customers are more concentrated on delay-sensitivity
dimension or are more risk-averse, the throughput of the system in equilibrium need
not increase. Finally, we show that the value of information is tremendously affected
by customers’ cost function itself, instead of the shape of cost function. There is no
monotone relationship between the value of information and the degree of customers’
risk aversion.

The literature on customers influenced by delay information begins with Naor
[19], who studies a system like ours with partial information, but with identical cus-
tomers and linear waiting cost. Subsequent research includes Gavish and Schweitzer
[9], Edelson and Hildebrandt [7], and Schroeter [23]. See Stidham [26] and Has-
sin and Haviv [13] for surveys. More recent work includes Whitt [27], Armony
and Maglaras [1,2], Armony, et al. [3], Shimkin and Mandelbaum [25], Guo and
Zipkin [11] and Hassin [12].

There has been much research on comparison of systems with different input
streams. Ross [22] conjectures that a more regular arrival process leads to better
performance. Some counter examples are provided by Heyman [14]. See Rolski [21],
Shaked and Shanthikumar [24] and Müller and Stoyan [17] for surveys. Chao and
Dai [6] and Dai and Chao [4] show that the conjecture holds for a single-server
loss system in random environment. Recently, Whitt [28] analyzes the sensitivity
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of performance to changes in model parameters in an M/M/s queue with customer
abandonment. He shows that performance can be quite sensitive to changes in the
arrival and service rates, but relatively insensitive to the abandonment rate.

In our context, the arrival process is formed by a stream of customers who make
their own individual decisions, based on their utilities and the available information
about the system’s state. The overall impact of customers’ characteristics is thus far
from clear. Understanding this matter is important for the design of systems in different
markets with different types of customers.

The remainder of the paper is organized as follows: Section 2 reviews the basic
formulation and stochastic orders, and briefly summarizes the three models in G-Z.
Section 3–4 develop the sensitivity analysis of system performance with respect
to the change of weight distribution and the change of cost function, respectively.
Section 5 studies the relationship between the value of information and customers’
characteristics. Section 6 concludes. All proofs are included in the Appendix.

2. FORMULATION AND PRELIMINARIES

2.1. Notation and Utility

As in G-Z, we assume a single-server queue with exponential service times. Potential
customers arrive in a Poisson process. We suppose that a customer’s utility equals
a reward for receiving service minus a waiting cost. This waiting cost depends on
a customer-specific delay-sensitivity parameter and the expectation of a (common)
function of the waiting time. Denote

• λ = arrival rate of potential customers

• μ = service rate

• W = waiting time in queue

• θ = customer sensitivity towards delay, θ ∈ [0, 1]
• H = cumulative distribution function of θ , assumed continuous on [0, 1], with

density h

• c(w) = basic cost to wait time w, a positive, increasing, unbounded, continuous
function

• r = reward to the customer for receiving service, r > 0

• u(w, θ) = utility for a customer with weight θ to wait time w

• u(θ |I) = expected utility for a customer with θ , given delay information I

• u = average utility for a whole group of customers

A customer with delay-sensitivity θ has a utility function for receiving service
but waiting time w, which is expressed as

u(w, θ) = r − θc(w).
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The service reward is the same for all customers (this assumption is convenient
but not essential). Customers differ in the importance of time. This difference is
expressed by the customer delay-sensitivity parameter θ . Each customer’s weight is
independent of all other events; it follows the common distribution function H(θ).
The shape of H(·) characterizes the heterogeneity of customers in delay sensitivity.
A very concentrated distribution indicates nearly identical customers and a dispersive
distribution means that customers are different: Some are patient while others are
impatient.

The waiting time w can be a random variable. The customer assesses the distri-
bution of this random variable, based on the available information. Let I denote the
information variable. The expected waiting cost cI = E[c(W)|I] is a function of that
information. The expected utility for the customer to remain in the system is thus
u(θ |I) = r − θcI . The customer remains in the system if u(θ |I) is non-negative and
otherwise balks. We assume that there is no reneging.

We normalize r = 1 and assume c(0) = 1. Under this assumption, a customer
seeing an empty system will always join. Define θI = 1/cI . The effective arrival rate
given delay I is hence λH(θI). Define the function

J(θ) =
∫ θ

0 H(φ)dφ

θ
.

G-Z show that the average utility for all customers in the system (including those
balking customers), u, equals EI [J(θI)]. Also they show that J(1/x) is decreasing and
convex in x.

2.2. Brief Summary of G-Z’sThree Information Models

G-Z consider three levels of delay information. With no information, customers
still estimate their waiting times, but these estimates are based only on long-term
(equilibrium) experience, not real-time information. The occupancy provides partial
information; the remaining uncertainty comprises the actual service times of the wait-
ing customers. The exact waiting time gives the customer full information. We briefly
summarize the models and solutions and then give our general stochastic comparison
results.

Let ‘-’ denote no information. Also, denote N as the system occupancy and V as
the workload at the moment of arrival.

Under no information, the resulting system is an M/M/1 queue with the
equilibrium arrival rate λ−, which solves

λ− = λH

(
1

E[c(W |−)]
)

. (1)

Here, E[c(W |−)] indicates the expected cost given λ−. Hence the equilibrium system
is still an M/M/1 queue with effective arrival rate λ−.
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Under partial information, N can be modeled as a birth-death process. The birth
rate in state n is λn = λH(θn), where θn = 1/cn = 1/E[c(W)|N = n], and the death
rate is μ. The equilibrium distribution of N can be expressed as

pn =
(

n−1∏
m=0

λm/μ

)
p0 = �n(λ/μ)np0,

where

�n =
n−1∏
m=0

H(θm), n > 0.

Let

� =
∑
n>0

�n(λ/μ)n.

Then,

p0 = 1

1 + �
.

Define the cumulative effective arrival rate �(v) = ∫ v
0 λ(v)dv. Under full infor-

mation, the pdf for the equilibrium workload V , f (v), v > 0, solves the integral
equation

f (v) = λp0e−μv +
∫ v

0
λH[1/c(w)]e−μ(v−w)f (w)dw (2)

with the normalization condition

p0 +
∫ ∞

0
f (v)dv = 1. (3)

The solution is

f (v) = λp0e�(v)−μv, (4)

where

p0 = 1

1 + λ
∫ ∞

0 e�(v)−μvdv
. (5)

Some auxiliary comparison results with different effective arrival rates are
included in the Appendix A.

3. IMPACT OF CUSTOMERS’ DELAY SENSITIVITY

Consider two systems, identical except for H and c. Use the superscript k = 1, 2
to index the systems. In this section, we assume c1 = c2 = c and consider specific
conditions on the Hk . We consider two situations. In one situation, customers in one
group are stochastically more patient than those in another group. In the other situation,
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customers in one group are more concentrated on delay-sensitivity dimension than
the other group. We are interested in the performance measures in equilibrium with
different groups of customers.

3.1. Impact of Average Delay Sensitivity

We first give the definition of two stochastic orders indicating the concept of stochas-
tically smaller. If H1(x) ≥ H2(x), x ∈ [0, 1], θ1 is stochastically smaller than θ2

(denoted θ1 �st θ2), or H2 is said to dominate H1 according to first-order stochas-
tic dominance. This means that system 1’s customers are stochastically more patient
than system 2’s. A stronger condition is that the ratio h1/h2 is monotonically decreas-
ing, a condition called monotone likelihood ratio. Then θ1 is said to to be smaller
than θ2 in the likelihood-ratio order (denoted θ1 �lr θ2). Detail discussions on
these concepts can be found in Shaked and Shanthikumar [24] and Müller and
Stoyan [17].

We have the following conclusion about the system occupancy and the
workload.

Proposition 1: If θ1 �st θ2, then N1 �lr N2 under no or partial information, and
V 1 �lr V 2 under full information.

The above proposition implies that when system 1’s customers are stochastically
more patient than system 2’s, system 1 becomes more congested than system 2.

Next, we compare the average utilities for the two systems.

Proposition 2: If θ1 �st θ2, then u1 ≥ u2 under no information.

Therefore, for no information, when customers become more patient, their aver-
age utility becomes larger in equilibrium. For partial and full information, first consider
the special case of the power distribution, H(θ) = θα for constant α > 0. Note that,
for two distributions of this form, α1 ≤ α2 implies H1 ≥ H2.

Proposition 3: If each Hk is a power distributions with α1 ≤ α2, then u1 ≥ u2 under
partial or full information.

Therefore, for a special case with power distribution of delay-sensitivity parame-
ter, when customers become more patient, their average utility is larger, under partial
and full information. Beyond this special case, the relation between u1 and u2 is not
clear. A stronger condition is needed to conclude that customers on average are better
off in one system than the other.

Condition θ1 �lr θ2 means that h1(x)/h2(x) is decreasing in x. This condition is
stronger than θ1 �st θ2. We now consider the relation between u1 and u2 under partial
and full information.
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Proposition 4: If θ1 �lr θ2, then

u1

u2
≥ J1(1)p1

0

J2(1)p2
0

,

under partial or full information.

Since p1
0 ≤ p2

0 and J1(1) ≥ J2(1), it is not necessarily true that [J1(1)p1
0]/[J2(1)p2

0] ≥ 1. But at least we obtain a lower bound on u1/u2.

3.2. Impact of Dispersion of Delay Sensitivity

We first provide some concepts on stochastic orders indicating the dispersion of the
distribution function H. If

∫ 1
v H̄1(x)dx ≤ ∫ 1

v H̄2(x)dx, for all v ∈ [0, 1], θ1 is smaller
than θ2 in the increasing convex order (denoted θ1 �icx θ2). If E[θ1] = E[θ2] and∫ 1

v H̄1(x)dx ≤ ∫ 1
v H̄2(x)dx, for all v ∈ [0, 1], θ1 is smaller than θ2 in the convex order

(denoted θ1 �cx θ2), or H1 is said to dominate H2 according to second-order stochastic
dominance. This condition implies that var[θ1] ≤ var[θ2]. Intuitively, it means that
system 1’s customers are less heterogeneous than system 2’s.

In this subsection, we discuss the relationship between the conditions θ1 �icx θ2

and �1(v) ≥ �2(v) and �1
n ≥ �2

n. First, the condition θ1 �icx θ2 is not a sufficient
condition for �1(v) ≥ �2(v). The condition θ1 �icx θ2 means that

∫ 1
x H1(y)dy ≥∫ 1

x H2(y)dy, x ∈ [0, 1]. Let y = 1/c(t), dy/dt = −c′(t)/(c(t))2. Then this condition
becomes∫ 0

v
H1(1/c(t))[−c′(t)/(c(t))2]dt ≥

∫ 0

v
H2(1/c(t))[−c′(t)/(c(t))2]dt.

This condition is very different from∫ v

0
H1(1/c(t))dt ≥

∫ v

0
H2(1/c(t))dt.

Hence, the condition θ1 �icx θ2 doesn’t imply �1(v) ≥ �2(v). Similarly, θ1 �icx θ2

is not a sufficient condition for �1
n ≥ �2

n. The former depends on the integrals of the
Hk on the whole interval [0, v], while the latter depends on the products of the discrete
values of the Hk on {θ0, θ1, θ2, . . .}.

Hence, more concentrated customers need not imply a larger cumulative effec-
tive arrival rate and therefore, the impact on throughput is unclear. Table 1 shows the
busy probability with two H functions. In this example, H1 is a beta distribution with
α = 2 and β = 2 and H2 is a beta distribution with α = 0.5 and β = 0.5. For such
two distributions, one can show that H1 �cx H2. We assume a linear cost function and
fix μ = 2 but change λ over {0.5, 1, 2, 3, 4, 5, 6, 7}. We can see that within each infor-
mation scenario, the busy probability with H1 is larger than the one with H2 when
utilization is small; smaller when utilization is large. Therefore, when customers are
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TABLE 1. Busy Probability with Different H Functions μ = 2

α = 2, β = 2 α = 0.5, β = 0.5

λ No Partial Full No Partial Full

0.5 0.2376 0.2311 0.2371 0.1965 0.2263 0.2320
1 0.4151 0.4187 0.4395 0.3482 0.4088 0.4249
2 0.6026 0.6716 0.7305 0.5669 0.6658 0.7062
3 0.6900 0.8105 0.8879 0.7062 0.8173 0.8722
4 0.7402 0.8864 0.9587 0.7943 0.9024 0.9550
5 0.7731 0.9292 0.9861 0.8508 0.9487 0.9878
6 0.7966 0.9542 0.9957 0.8882 0.9733 0.9976
7 0.8144 0.9694 0.9987 0.9137 0.9862 0.9997

TABLE 2. Average Utility with Different H Functions μ = 2

α = 2, β = 2 α = 0.5, β = 0.5

λ No Partial Full No Partial Full

0.5 0.4247 0.4485 0.4564 0.4562 0.4701 0.4741
1 0.3437 0.3995 0.4108 0.4197 0.4421 0.4482
2 0.2315 0.3194 0.3217 0.3555 0.3926 0.3960
3 0.1710 0.2635 0.2466 0.3015 0.3519 0.3444
4 0.1351 0.2252 0.1905 0.2575 0.3192 0.2954
5 0.1115 0.1983 0.1513 0.2224 0.2931 0.2519
6 0.0949 0.1787 0.1241 0.1944 0.2721 0.2158
7 0.0827 0.1640 0.1048 0.1720 0.2549 0.1871

more concentrated, the throughput of the system is larger in light traffic but smaller
in heavy traffic. We also compute the average utility for customers (see Table 2) and
observe that the average utility with H1 is always smaller than the one with H2. There-
fore, more concentrated customers obtain a smaller average utility. We tried quadratic
and square-root cost functions and obtained the same conclusions.

4. IMPACT OF CUSTOMERS’ COST FUNCTION AND RISK ATTITUDE

In this section, we fix H1 = H2 = H but consider different conditions on the ck .

4.1. Inequality

Condition c1 ≤ c2 means that customers in system 1 care less about waiting than those
in system 2. We have the following conclusion about the system occupancy and the
workload.

Proposition 5: If c1 ≤ c2, then N1 �lr N2 under no or partial information, and V 1 �lr

V 2 under full information.
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The above proposition implies that when customers’ cost function is smaller, the
system becomes more congested.

About average utilities, we have the following conclusions.

Proposition 6: If c1 ≤ c2, then u1 ≥ u2 under no information.

The above conclusion means that when customers have smaller cost function,
their average utility is larger. However, this conclusion need not hold for partial and
full information. On one hand, since c1 ≤ c2, θ1

i ≥ θ2
i and thus J(θ1

i ) ≥ J(θ2
i ) since

J(θ) is increasing in θ . On the other hand, since J(θi) is decreasing in i, I1 �st I2

implies E[J(θ k
I1)] ≤ E[J(θ k

I2)] for k = 1, 2. Thus, it is unclear whether E[J(θ1
I1)] or

E[J(θ2
I2)] is larger.

Intuitively, given information I , system 2 has larger expected utility, but its larger
arrival rate pushes the system to a more congested state, which decreases the utilities.
The overall effect is unclear. Tables 3 and 4 show that either effect can dominate the
other. All the cases considered have linear costs: ck(w) = 1 + γ kw. In Table 3 the
average utility decreases with ck , while in Table 4 it increases for partial and full
information.

In a system with no balking, where all customers stay, the distribution of W is
just that of the standard M/M/1 system with arrival rate λ. The average waiting cost
for system k is E[θ k]E[ck(W)], which is larger for system 1. Thus, the customers
in system 1 get lower average utility. In the system allowing balking but with no
information, this conclusion is still true, by Propositions 2 and 6. However, in the sys-
tem with balking and either partial or full information, the average utility in system 1
can be larger. Here, customers make their own decisions to maximize their expected

TABLE 3. Compare Linear Cost Functions with Beta H;
α = β = 2, λ = 2, μ = 2

Busy Probability Average Utility

γ No Partial Full No Partial Full

0.1 0.8601 0.8922 0.8959 0.3613 0.3956 0.4001
0.5 0.6972 0.7668 0.7848 0.2750 0.3324 0.3460
1.0 0.6026 0.6954 0.7259 0.2315 0.3038 0.3222

TABLE 4. Compare Linear Cost Functions with Beta H;
α = β = 2, λ = 8, μ = 2

Busy Probability Average Utility

γ No Partial Full No Partial Full

0.1 0.9768 1.0000 1.0000 0.0870 0.0893 0.0894
0.5 0.9002 0.9998 1.0000 0.0798 0.0899 0.0898
1.0 0.8284 0.9940 0.9996 0.0732 0.0908 0.0907
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utilities, and this leads to less congestion in system 1. Less congestion in turn increases
the average utility for those served customers.

4.2. Risk Aversion

In this subsection, we consider a different condition on ck which indicates the degree
of customers’risk aversion. For a utility function of one variable u(x) which is increas-
ing in x, the Arrow-Pratt measure of absolute risk aversion is A(x) = −u′′(x)/u′(x).
Here, customers have an increasing disutility function c(·), hence we use A(w) =
c′′(w)/c′(w) to measure risk aversion. Let Ak(w) denote the risk aversion of the cost
function ck. We suppose customers in system 1 are more risk averse than those of
system 2. As we shall see, this condition is related to others we have seen above.

Proposition 7: If A1(w) ≥ A2(w) for all w and c1′
(0) ≥ c2′

(0), then c1(w) ≥ c2(w);
if A1(w) ≥ A2(w) for all w and c1′

(0) < c2′
(0), then c1(w) crosses c2(w) once from

below on (0, ∞).

Thus, greater risk aversion implies either no crossing or single crossing of the
two cost functions, depending on their derivatives at 0. However, single crossing
of the two cost functions implies nothing about the relation between the through-
puts. Hence, a system with more risk-averse customers need not have a smaller
throughput.

For example, consider c1 to be a quadratic cost function, i.e., c1(w) = 1 + w2,
which represents risk-averse customers, and c2 to be a quare-root cost function, i.e.,
c2(w) = 1 + √

w which represents risk-seeking customers. It can be easily shown that
A1(w) > A2(w) and c1′

(0) < c2′
(0). c1(w) crosses c2(w) once from below. We assume

λ = 0.5 and μ = 1.5 and H to be a beta distribution with parameters (α, β). We fix
β = 4 and change α over {0.5, 1, 2, 4, 6, 8}. When α increases, the pdf of θ skews
to the right side, that is, there is a larger proportion of customers to be impatient.
Table 5 shows the busy probability with the two cost functions. Table We can see
that under no and partial information, the busy probability with square-root cost is
always larger than the one with quadratic cost. However, under full information, it is
larger when α is small, but smaller when α is larger than a certain level. Therefore,
under full information, when most of customers are patient, risk-seeking behavior
brings a larger throughput for the server while when most of customers are impatient,
risk-seeking behavior brings a smaller throughput for the server. Table 6 shows the
average utility with the two cost functions. We observe similar comparison result as
the one with busy probability. We tried other settings with different α, β, λ and μ

values and observe the same phenomena.

5. THE VALUE OF INFORMATION AND DELAY-RISK SENSITIVITIES

In this section, we discuss the relationship between the value of information and cus-
tomer characteristics, namely, the weight on delay and the degree of risk aversion. We
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TABLE 5. Busy Probability with Different-Shape Cost Func-
tions; λ = 0.5, μ = 1.5, β = 4

Quadratic Cost Square-Root Cost

α No Partial Full No Partial Full

0.5 0.3306 0.3264 0.3274 0.3331 0.3314 0.3316
1 0.3257 0.3193 0.3222 0.3324 0.3280 0.3279
2 0.3116 0.3062 0.3144 0.3298 0.3183 0.3183
4 0.2800 0.2847 0.3046 0.3184 0.2961 0.2988
6 0.2529 0.2693 0.2985 0.3016 0.2780 0.2841
8 0.2308 0.2596 0.2943 0.2833 0.2658 0.2742
10 0.2128 0.2544 0.2911 0.2657 0.2584 0.2676
12 0.1978 0.2519 0.2885 0.2495 0.2542 0.2632
14 0.1850 0.2508 0.2865 0.2349 0.2520 0.2602
16 0.1741 0.2503 0.2847 0.2219 0.2509 0.2581

TABLE 6. Average Utility with Different-Shape Cost Func-
tions; λ = 0.5, μ = 1.5, β = 4

Quadratic Cost Square-Root Cost

α No Partial Full No Partial Full

0.5 0.8171 0.8389 0.8527 0.8562 0.8576 0.8583
1 0.6756 0.7228 0.7475 0.7413 0.7460 0.7478
2 0.4800 0.5663 0.6029 0.5701 0.5860 0.5903
4 0.2781 0.3965 0.4369 0.3632 0.4058 0.4129
6 0.1832 0.3073 0.3430 0.2491 0.3116 0.3184
8 0.1310 0.2529 0.2827 0.1810 0.2548 0.2604
10 0.0989 0.2168 0.2414 0.1375 0.2177 0.2218
12 0.0776 0.1922 0.2127 0.1079 0.1926 0.1956
14 0.0626 0.1732 0.1905 0.0867 0.1734 0.1755
16 0.0516 0.1570 0.1716 0.0711 0.1570 0.1586

first give the expression of the value of information, then give two general conclusions
and at last we give numerical computation results.

A simple and direct measure of the value of information is the difference of the
average utilities under more and less information. We use superscripts no, part and full
to indicate the parameters and performance measures of the system under no, partial
and full information, respectively. Define VIfn(θ) = ufull(θ) − uno(θ). Then VIfn(θ)

measures the value of full over no information for a customer with weight θ . Similarly,
define VIpn(θ) = upart(θ) − uno(θ) and VIfp(θ) = ufull(θ) − upart(θ).

5.1. Value of Information and Delay Sensitivity

We have two propositions about the value of information.
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Proposition 8: If pfull
0 ≥ pno

0 , then for all θ , VIfn(θ) ≥ 0. Similarly, if ppart
0 ≥ pno

0 , then
for all θ , VIpn(θ) ≥ 0.

That is, information benefits every individual customer, if it hurts the server.
This conclusion is stronger than a similar conclusion in G-Z where they show that
information benefits the whole group of customers if it hurts the server.

Proposition 9: When θ > θ−, VIfn(θ) is decreasing in θ . That is, the value of informa-
tion is smaller for less patient customers. When θ ≤ θ−, if VIfn(θ) > 0, then VIfn(θ) is
increasing with θ . Otherwise, if VIfn(θ) < 0, VIfn(θ) is decreasing with θ . That is, the
value of information is larger for less patient customers, if it benefits those customers.
Similar conclusions hold for VIpn(θ).

Thus, the value of information is not necessarily larger for less patient customers.

5.2. Value of Information and Degree of Risk Aversion

In this subsection, we study the relationship between the value of information and the
degree of risk aversion. We assume H is a uniform distribution and consider the cost
function

c(w) = eγ w

for γ > 0. This function is increasing and convex. To guarantee the stability of the
no-information model, we restrict γ < μ.

Here, A(w) = c′′(w)/c′(w) = γ . Thus, a larger γ means a higher level of risk-
aversion. This risk aversion measure is independent of w, a property called constant
absolute risk aversion (CARA). Also, the cost function is increasing with γ .

For the numerical computation, we consider θ = 0.1, 0.5, 0.9, which represent
very patient, moderately patient and impatient customers, respectively. We fix μ = 2
and change λ over {0.5, 1, 2, 3}. Figures 1, 2 and 3 show the value of full versus no
information with θ = 0.1, 0.5, 0.9, respectively. Figures 4, 5 and 6 show the value of
partial versus no information, and Figures 7, 8 and 9 show the value of full versus
partial information.

First, we observe that the relationship between the value of information and the
level of customers’ risk aversion is not monotone. When θ = 0.1, the value of infor-
mation roughly increases with the level of risk aversion. However, for θ = 0.5 and
0.9, it doesn’t. For very patient customers, they join the system under no and full
information in most of time. What they care about is congestion. The cost function
c(w) = eγ w is increasing in γ . So, when γ increases, the system becomes less con-
gested with and without information. However, it is likely that the congestion in the
system with information is lessened more than the one without information. Hence,
for patient customers, the value of information tends to increase with γ , since they
usually join the system, and less congestion with information benefits them most.
However, customers with moderate to severe impatience often leave the system with
and without information, and thus the value of information is less promising to them.
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FIGURE 1. Full/no information with θ = 0.1.

FIGURE 2. Full/no information with θ = 0.5.
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FIGURE 3. Full/no information with θ = 0.9.

FIGURE 4. Partial/no information with θ = 0.1.
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FIGURE 5. Partial/no information with θ = 0.5.

FIGURE 6. Partial/no information with θ = 0.9.
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FIGURE 7. Full/partial information with θ = 0.1.

FIGURE 8. Full/partial information with θ = 0.5.
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FIGURE 9. Full/partial information with θ = 0.9.

In summary, information here not only helps one customer to make his decision,
but also affects the congestion of the system itself. Hence, the risk here is endogenous.
In this situation, the value of customers’ cost function, instead of the shape of it, is an
important factor deciding customers’delay risk.And there is no monotone relationship
between the value of information and the degree of risk aversion.

We also observe that the value of full versus no information, and that of partial
versus no information, decrease with the system’s utilization. However, the value of
full versus partial information need not behave in this way.

6. CONCLUSIONS

In this paper, we explore the impacts of customers’delay sensitivities and risk attitudes
on balking queues.

We first consider different stochastic orders on the distribution of delay-sensitivity
parameters of two systems. We show that when one system’s customers are stochasti-
cally more patient than those of the other system, the system becomes more congested
than the other. With no information, the average utility for customers in that system is
larger than the one in the other system. But this conclusion only holds for some special
cost function under partial or full information. We also numerically show that when
customers are more concentrated in one system than the other system, the throughput
of that system is larger in light traffic but smaller in heavy traffic than the other’s.
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We then discuss the relationship on customers’ cost functions of the two systems
and discuss the relationship between them and the effective arrival rates. When cus-
tomers’ cost function becomes smaller, the system becomes more congested. When
customers’ cost function is smaller, customers’ average utility is larger under no
information. However, this conclusion need not hold for partial and full informa-
tion. We also explore risk-aversion relations between cost functions. Our numerical
result shows that under no and full information, risk-seeking customers brings a larger
throughput for the server; however, under full information, customers’ risk-seeking
behavior brings a larger throughput for the server when most of customers in the
system are patient but it reduces throughput for the server when most of customers
are impatient.

Finally, we examine the relationship between the value of information and cus-
tomers’ characteristics. We show that, when information hurts the server, it always
benefits each individual customer. However, the value of information need not increase
with the weight on delay cost. We also explore numerically the value of information
for different risk-aversion customers. We show that there is no simple relationship
between the value of information and the degree of customers’ risk aversion.

In this paper, we consider the information service for all customers. Everyone
can react to the information and the aggregate behavior makes the value of infor-
mation not always positive. It is especially true in a traffic system: If everyone is
informed that one road is not crowed and everyone rushes to that road, soon that road
will become crowed and nobody benefits from the information. Therefore, one may
consider another case where information is only provided to some minority while
majority people are informed nothing. A further research on this direction could be
interesting.
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APPENDIX A

Auxiliary Comparison Results ofThree Information Models

Proposition 10: Under no information, if λ1− ≥ λ2−, then N1 �lr N2.

Proof: Whitt [27] (Theorem 4.1) shows that, for any pair of birth-death processes, N1 �lr N2,
provided

λ1
n

μ1
n+1

≥ λ2
n

μ2
n+1

, n ≥ 0.
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Here, each system k is an M/M/1 queue with arrival rate λk− and service rate μ. Hence the
above condition is satisfied. �

Define the cumulative effective arrival rate �n = λ
∏n

m=0 H(1/cm).

Proposition 11: Under partial information,

1. if �1
n ≥ �2

n, then p1
0 ≤ p2

0;

2. if λ1
n ≥ λ2

n for all n = 0, 1, 2, ..., then N1 �lr N2;

3. if λ1
n crosses λ2

n once from above (i.e., there exists n̂ > 0 such that λ1
n ≥ λ2

n, n ≤ n̂, and
the inequality is reversed for n > n̂), then N1 �uv N2;

4. if the ratio λ1
n/λ

2
n is decreasing in n, then N1 �lc N2.

Proof: For part 1, if �1
n ≥ �2

n for all n, then �1
n ≥ �2

n for all n, and hence p1
0 ≤ p2

0.
Part 2 follows by the same argument as in Proposition 10.
For part 3, if λ1

n crosses λ2
n once from above, consider the ratio

p1
n+1/p2

n+1

p1
n/p2

n
= λ1

n

λ2
n

.

For n ≤ n̂, this fraction is greater than 1, thus p1
n/p2

n is increasing; for n > n̂, similarly, p1
n/p2

n
is decreasing. Thus p1

n/p2
n is unimodal. Hence, N1 �uv N2.

Finally, for part 4, if λ1
n/λ

2
n is decreasing in n,

p1
n+1/p2

n+1

p1
n/p2

n
= λ1

n

λ2
n

.

is decreasing in n. So p1
n/p2

n is log-concave, and N1 �lc N2. �

Proposition 12: Under full information,

1. if �1(v) ≥ �2(v), then p1
0 ≤ p2

0;

2. if λ1(v) ≥ λ2(v) for all v ≥ 0, then V1 �lr V2;

3. if λ1(v) crosses λ2(v) once from above, then V1 �uv V2;

4. if the ratio λ1(v)/λ2(v) is decreasing in v, then

ln( f 1(v))′
ln( f 2(v))′

is decreasing in v.

Proof: Part 1 follows immediately from (5).
For part 2, if λ1(v) ≥ λ2(v) for all v ≥ 0, then �1(v) − �2(v) is positive and increasing.

So, p1
0 ≤ p2

0, and

f 1(v)

f 2(v)
= p1

0

p2
0

exp{[�1(v) − �2(v)]}

is increasing. Hence, V1 �lr V2.
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For part 3, ifλ1(v) crossesλ2(v)once from above,�1(v) − �2(v) is positive and increasing
for v ≤ v̂, but decreasing for v ≥ v̂. That is, �1(v) − �2(v) is unimodal, and therefore so is
f 1(v)/f 2(v).

Finally, for part 4, if the ratio λ1(v)/λ2(v) is decreasing in v, then

ln(f 1(v))′
ln(f 2(v))′ = �1′

(v)

�2′
(v)

= λ1(v)

λ2(v)

is decreasing in v. �

APPENDIX B

Proofs of Statements

Proof for Proposition 1: The condition θ1 �st θ2 means H1(θ) ≥ H2(θ), for all θ in [0, 1].
Hence, H1(1/c(v)) ≥ H2(1/c(v)) for all v ≥ 0 and H1(1/cn) ≥ H2(1/cn) for all n ≥ 0. So,
λ1(v) ≥ λ2(v), and λ1

n ≥ λ2
n. Also, λ1− ≥ λ2− from (1). From Propositions 10, 11 and 12, the

conclusion follows. �

Proof for Proposition 2: By the definition of Jk , we have J1 ≥ J2. By Proposition 1, θ1− ≥
θ2−. Thus, u1 = J1(θ1−) ≥ J1(θ2−) ≥ J2(θ2−) = u2. �

Proof for Proposition 3: In this case, suppressing k for the moment,

J(θ) = 1

α + 1
θα = 1

α + 1
H(θ).

so the average utility u = E[J(θI )] = 1
α+1 E[H(θI )] = 1

α+1 (1 − p0)μ/λ. Under either partial

or full information, 1 − p1
0 ≥ 1 − p2

0, by Proposition 1. Thus, u1 ≥ u2. �

Proof for Proposition 4: We demonstrate the result for partial information. The proof for
full information is similar.

The theory of total positivity (see, Karlin [16]) shows that monotone ratios are preserved
under integration. Thus, decreasing h1/h2 implies decreasing H1/H2. Decreasing H1/H2, in
turn, implies decreasing J1/J2. Hence J1(θn)/J2(θn) is increasing in n. From proposition 1,
we know that N1 �lr N2 under partial information, that is, p1

n/p2
n is increasing in n. Hence,

u1

u2 =
∑

n≥0 J1(θn)p1
n∑

n≥0 J2(θn)p2
n

≥ J1(θ0)p1
0

J2(θ0)p2
0

= J1(1)p1
0

J2(1)p2
0

. �

Proof for Proposition 5: From the condition c1 ≤ c2, we get H(1/c1(v)) ≥ H(1/c2(v)) for
all v ≥ 0 and H(1/c1

n) ≥ H(1/c2
n) for all n = 0, 1, 2.... Hence, λ1(v) ≥ λ2(v) and λ1

n ≥ λ2
n.

Also we can derive that λ1− ≥ λ2− from (1). From Proposition 10, 11 and 12, we obtain the
conclusion. �
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Proof for Proposition 6: By Proposition 5, λ1− ≥ λ2−, so θ1− ≥ θ2−. Also, Jk = J . Thus, since
J is increasing, u1 = J(θ1−) ≥ J(θ2−) = u2. �

Proof for Proposition 7: According to Pratt [20], the condition A1(w) ≥ A2(w) is equivalent
to the condition that function τ = c2 ◦ (c1)−1 be increasing and concave; that is, c2 is an
increasing and concave transform of c1. In out context, c2(0) = c1(0) = 1. Hence, τ(1) = 1.
Consider the derivative of τ ,

dτ

dx
= c2′ ◦ (c1)−1(x)

c1′ ◦ (c1)−1(x)
.

Condition c2′
(0) ≤ c1′

(0) is equivalent to c2′ ◦ (c1)−1(1) ≤ c1′ ◦ (c1)−1(1) or dτ
dx (1) ≤ 1.

Since τ(1) = 1 and τ is increasing and concave, it follows that τ(x) ≤ x. Insert x = c1(w), and
we get c2(w) ≤ c1(w), w ≥ 0.

Similarly, the condition c2′
(0) > c1′

(0) is equivalent to c2′ ◦ (c1)−1(1) > c1′ ◦ (c1)−1(1)

or dτ
dx (1) > 1. Since τ(1) = 1 and τ is increasing and concave, it follows that the graph of τ(x)

starts from (1, 1) and crosses the diagonal line y = x once from above. Insert x = c1(w), and
we get c2(w) crosses c1(w) once from above. �

Proof for Proposition 8: We prove the result for full versus no information. The proof for
partial versus no information is similar.

Under no information, if θ > θ−, the customer will balk and gets utility 0. Hence

uno(θ) = 0.

If θ ≤ θ−, the customer will join and obtain a nonnegative expected utility 1 − θE[c(Wno)]
and hence

uno(θ) = 1 − θE[c(Wno)].
Under partial information, the customer will join if 1 − θcn ≥ 0 or n ≤ c−1(1/θ). Denote

n∗ to be n satisfying cn∗ = 1/θ (n∗ may not be an integer). The expected utility for the customer
upart is

upart(θ) =
∑
n≤n∗

(1 − θcn)p
part
n .

Now define a new variable Ñpart such that p̃part
n = ppart

n for all n < n∗ and p̃part
n∗ = 1 −∑

n<n∗ pn. Then we can write

upart(θ) = 1 − θE[cÑpart ].

Under full information, if v ≤ c−1(1/θ), customer will join and obtain the utility 1 − θc(v);
otherwise, he will leave with utility 0. Hence, the customer’s expected utility is

ufull(θ) =
∫ c−1(1/θ)

0
(1 − θc(v))dFfull(v).

Define a new distribution F̃full such that F̃full(v) = Ffull(v), for v < c−1(1/θ) and F̃full(v) = 1,
for v ≥ c−1(1/θ). Denote a random variable with this distribution by Ṽ full . One can easily
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verify that

Ṽ full �st V full . (6)

Then we can write

ufull(θ) = 1 − θE[c(Ṽ full)]
G-Z show that Vfull �st Wno if pfull

0 ≥ pno
0 . From (6), we derive that Ṽ full �st Wno. Hence

E[c(Wno)] ≥ E[c(Ṽ full)], and thus uno(θ) ≤ ufull(θ) for θ ≤ θ−. For θ > θ−, the customer has
utility 0 under no information and nonnegative expected utility under full information, hence,
uno(θ) ≤ ufull(θ). �

Proof for Proposition 9: We present the proof for full versus no information. The case of
partial versus no information is similar.

When θ > θ−, let’s first write

VIfn = ufull(θ) =
∫ c−1(1/θ)

0
(1 − θc(v))f full(v)dv + (1 − θ)pfull

0 .

We have

dVIfn

dθ
= −

∫ c−1(1/θ)

0
c(v)f full(v)dv − pfull

0 < 0.

When θ ≤ θ−,

VIfn = ufull(θ) − uno(θ)

=
∫ c−1(1/θ)

0
(1 − θc(v))f full(v)dv + (1 − θ)pfull

0 − (1 − θE[c(Wno)]).

We have

dVIfn

dθ
= −

∫ c−1(1/θ)

0
c(v)f full(v)dv − pfull

0 + E[c(Wno)]

= −E[c(Ṽ full)] + E[c(Wno)].

When ufull(θ) > uno(θ), E[c(Ṽ full)] < E[c(Wno)] and hence dVIfn/dθ > 0; when
ufull(θ) ≤ uno(θ) then dVIfn/dθ ≤ 0. �


