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We study a stochastic scheduling problem with a single machine subject to random
breakdowns+We address thepreemptive-repeatmodel; that is, if a breakdown oc-
curs during the processing of a job, the work done on this job is completely lost and
the job has to be processed from the beginning when the machine resumes its work+
The objective is to complete all jobs so that the the expected weighted flow time is
minimized+ Limited results have been published in the literature on this problem, all
with the assumption that the machine uptimes are exponentially distributed+ This
article generalizes the study to allow that~1! the uptimes and downtimes of the
machine follow general probability distributions, ~2! the breakdown patterns of
the machine may be affected by the job being processed and are thus job dependent;
~3! the processing times of the jobs are random variables following arbitrary dis-
tributions, and~4! after a breakdown, the processing time of a job may either remain
a same but unknown amount, or be resampled according to its probability dis-
tribution+We derive the necessary and sufficient condition that ensures the problem
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with the flow-time criterion to be well posed under the preemptive-repeat break-
down model+ We then develop an index policy that is optimal for the problem+
Several important situations are further considered and their optimal solutions are
obtained+

1. INTRODUCTION

Scheduling problems involving stochastic machine breakdowns have been the sub-
ject of extensive studies in the literature for over two decades+ Generally, these
problems may be categorized into two types, according to the effect of a machine
breakdown on the job being processed+One is featured by the so-calledpreemptive-
resume model, and the other by thepreemptive-repeat model,which differ from each
other as follows+ In the preemptive-resume model, if a machine breakdown occurs
during the processing of a job, the work done on the job prior to the breakdown is not
lost and the processing of the disrupted job can be resumed at the point where it was
interrupted once the machine becomes operable again+ In the preemptive-repeat
model, however, the work done on this job is lost if the machine breaks down before
it is completed, and so its processing will have to restart after the machine resumes
its operation+

A significant number of results have been published in the literature on the
preemptive-resume model; see Birge et al+ @2# , Cai and Zhou@3,4# , Glazebrook
@6,7# , Mittenthal and Raghavachari@8# , Pinedo@11#, Pinedo and Rammouz@10# ,
and Zhou and Cai@15#; to name just a few+ In contrast, little progress has been
reported on the preemptive-repeat model, although it is equally important in prac-
tice+One industrial example of the preemptive-repeat model is in a metal refinery in
which the raw material is to be purified by melting it in a very high temperature+ If
a breakdown~such as power outage! occurs before the metal is purified to the re-
quired level, it will quickly cool down and the heating process has to be started again
after the breakdown is fixed+ Other examples include running a program on a com-
puter, downloading a file from the Internet, performing a reliability test on a facility,
and so forth+Generally, if a job must be continuously processed with no interruption
until it is totally completed, then the preemptive-repeat formulation should be used
to model the processing pattern of the job in the presence of machine breakdowns+

Regarding the preemptive-repeat model, Birge et al+ @2# obtained an optimal
policy to minimize the expected weighted flow time when the processing time of
each job is deterministic+ Frostig@5# extended the model of Birge et al+ @2# to con-
sider~1! random processing times and~2! different patterns of breakdowns when the
machine processes different jobs, under the assumption that after a breakdown, the
processing time is resampled and hence independent of the previous time of pro-
cessing the same job+ Adiri , Frostig, and Rinnooy Kan@1# addressed the problem
involving a single machine breakdown, to minimize the number of tardy jobs with
due dates+ It has been widely recognized that when the work done on a job is com-
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pletely lost and the processing of the job must start over again after a machine
breakdown, the problem of deriving an optimal policy to process all jobs is quite
complicated and difficult+ It is observed that the results in the few works reviewed
above have all been derived under the assumption that the uptimes of the machine
follow exponential distributions, which substantially simplifies the analysis+

The purpose of this article is to tackle the stochastic scheduling problem with
the preemptive-repeat breakdown model+ Our study makes several progresses on
this model:

1+ The problem we consider is built in a general and unified setting, which
allows that~i! the uptimes and downtimes of the machine follow general
probability distributions, ~ii ! breakdown patterns of the machine are job de-
pendent, and~iii ! processing times of the jobs are random variables follow-
ing general probability distributions+

2+ We consider two different cases for the random processing time after a break-
down: ~i! the processing time remains thesame (but unknown) amountas
thatbeforethe breakdown with respect to the same job and~ii ! it is resampled
independently after each breakdown+ We will refer to case~i! as without
resamplingand case~ii ! aswith resampling+

3+ The necessary and sufficient condition to ensure a finite expected time that
a job occupies the machine is obtained, a result that is important for the
problem with the preemptive-repeat breakdown model to be well posed+The
optimal solution that minimizes the expected weighted flow time is derived,
which sequences the jobs to be processed by an index policy+

4+ Optimal solutions are further induced for a number of specific situa-
tions, including some that have interesting practical relevance, under the
preemptive-repeat breakdown model+

It is interesting to note that when the processing times are random, there is a
distinction between the case with resampling from that without, whereas there is no
such distinction with deterministic processing times+ In a practical sense, the case
without resampling may be used to model the situation in which the randomness of
the processing time isinternal to the job~such as the quality of raw material!,which
is not influenced by the condition of the machine and so does not vary between
machine breakdowns+ The case with resampling, on the other hand, considers ran-
dom factorsexternalto the job~such as the condition of the machine!, so that the
processing time varies independently each time when the same job is repeated, fol-
lowing a specific probability distribution+More discussions on this will be given in
Section 5+

The remainder of the article is organized as follows+ In Section 2, we formulate
the basic model with preemptive-repeat machine breakdowns+ Section 3 provides
the main results for processing times without resampling, and the case with resam-
pling is considered in Section 4+ Comparisons between the cases with and without
resampling are further discussed in Section 5+ Finally, some concluding remarks are
presented in Section 6+
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2. MODEL FORMULATION AND ASSUMPTIONS

Suppose that a set ofn independent jobs$1,2, + + + , n% are to be processed on a single
machine, which are all available at time 0+A processing time Pi is required to com-
plete a jobi on the machine+ Therefore, after job i starts being processed, it will
occupy the machine for an amount of timePi if it is not interrupted before its com-
pletion+Nevertheless, all jobs arepreemptive-repeat, in the sense that the processing
of any job will have to be started again if it is interrupted+ Let theoccupying timeof
job i on the machine bePi + Then, Pi may be longer thanPi , if job i is interrupted
before it is completed+ The machine can process one and only one job at a time+
Furthermore, once a job starts being processed by the machine, it cannot be pre-
empted by another job before its completion+

While job i is being processed, the machine may break down, with the break-
down process being characterized by a sequence of finite-valued, positive random
vectors$Yik ,Zik %k51

` ,whereYik andZik are the durations of thekth uptime and thekth
downtime, respectively, for job i + The distributions of both the uptimes and down-
timesYik andZik arejob dependent, to reflect the realistic situation when jobs have
different levels of impact on the machine during their processing+We assume that
the uptimesYik, k 5 1,2, + + + , are independent and identically distributed~i+i+d+! ran-
dom variables with an arbitrary distribution functionFi ~t ! and that the downtimes
Zik, k 5 1,2, + + + , are i+i+d+ random variables with a distribution functionGi ~t !+ It is
assumed that the stochastic processes$Yik ,Zik %k51

` for different jobsi 51,2, + + + , nare
mutually independent+

In the case wherePi remains the same random variable after each breakdown,
we assume that$Pi % , $Yik% , and$Zik% are mutually independent with finite means+
WhenPi is to be resampled after each breakdown~if job i is not completed!, let Pik

denote the time required to complete jobi ~without interruption! after thekth break-
down+ In such a case, it is assumed that$Pik, k 5 0,1,2, + + + % is an i+i+d+ sequence of
random variables for eachi and that$Pik% , $Yik% , and$Zik% are mutually independent
with finite means+ For the remainder of this section, we considerPi without resam-
pling+ The case with resampling will be considered in Section 4+

Define a counting process$Ni ~t ! : t $ 0% by

Ni ~t ! 5 sup$k $ 0 :Yi 0 , t,Yi1 , t, + + + ,Yik , t %, (2.1)

whereYi 0 5 0, i 5 1,2, + + + , n+ Then, the timePi that jobi occupies the machine can
be written as

Pi 5 Pi 1 (
k50

Ni ~Pi !

~Yik 1 Zik !, (2.2)

whereZi 0 5 0, i 5 1,2, + + + , n+
Letl5 ~l~1!,l~2!, + + + ,l~n!! denote asequenceto process the jobs,with l~k!5

i representing that jobi is thekth to be processed underl+ This is also referred to as
apolicy, or asolution, for the problem, which is the decision we seek to determine+
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We limit our study to static policies in this article, which is applicable to situations
in which altering a decision after it is implemented is very expensive or is even
prohibited+

It is easy to see that the completion time of jobi underl can be expressed as

Ci ~l! 5 (
j[Bi ~l!

Pj 5 (
j[Bi ~l!

FPj 1 (
k50

Nj ~Pj !

~Yjk 1 Zjk !G, (2.3)

whereBi ~l! denotes the set of jobs sequenced no later than jobi underl+
The problem is to determine an optimal sequencel* to minimize theexpected

weighted mean flow time, a criterion that has been widely studied in the scheduling
area:

EWMF~l! 5 EF(
i51

n

wi Ci ~l!G, (2.4)

wherewi . 0 is the weight associated with jobi + In other words, the objective is to
find an optimal sequencel* such that

EWMF~l* ! 5 min
l

EWMF~l!+ (2.5)

3. MAIN RESULTS FOR THE CASE WITHOUT RESAMPLING

We first give a result on the distribution of the counting processNi ~t ! defined by
~2+1!+

Lemma 1: For each t. 0, Ni ~t ! follows a geometric distribution with parameter
12 Fi ~t2!; that is,

Pr$Ni ~t ! 5 k% 5 Fi
k~t2!@12 Fi ~t2!# , k 5 0,1,2, + + + + (3.1)

As a result,

E @Ni ~t !# 5
Fi ~t2!

12 Fi ~t2!
+ (3.2)

Proof: By the definition ofNi ~t ! in ~2+1! and the assumptions on$Yik% , we have

Pr$Ni ~t ! 5 k% 5 Pr$Yi 0 , t,Yi1 , t, + + + ,Yik , t,Yi, k11 $ t %

5 Pr$Yi1 , t %{{{Pr$Yik , t %Pr$Yi, k11 $ t %

5 Fi
k~t2!@12 Fi ~t2!# , k 5 0,1,2, + + + ,

which gives~3+1!, and~3+2! then follows immediately+ n

Let µj 5 E @Yj1# , ` andnj 5 E @Zj1# , ` denote the means of the uptime and
downtime, respectively+ Theorem 1 gives a result on the expected timeE @Pj # a job
occupies the machine, in the situation that the machine is subject to stochastic break-
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downs, while the processing of the job follows the preemptive-repeat model after
each breakdown+ This is an important result for the analysis of problems with the
preemptive-repeat breakdown model and is crucial to solving the problem with the
mean flow-time criterion+

Theorem 1: For the timePj that job j occupies the machine,

E @Pj # 5 EF 1

12 Fj ~Pj2!SE0

Pj

~12 Fj ~ y!! dy1 nj Fj ~Pj2!DG+ (3.3)

Moreover, E@Pj # , ` if and only if

EF 1

12 Fj ~Pj2!G , `+ (3.4)

Proof: Given t . 0, asYj1,Yj 2, + + + are i+i+d+,

EF(
k50

Nj ~t !

Yjk*Nj ~t ! 5 nG 5 EF(
k50

n

Yjk*Yj 0 , t,Yj1 , t, + + + ,Yjn , t,Yj, n11 $ tG
5 (

k50

n

E @Yjk 6Yj 0 , t,Yj1 , t, + + + ,Yjn , t,Yj, n11 $ t #

5 (
k50

n

E @Yjk 6Yjk , t # 5 nE@Yj16Yj1 , t #

5
nE@Yj1 I~Yj1,t ! #

Pr~Yj1 , t !
5

n

Fj ~t2!
E

@0, t !
y dFj ~ y!+ (3.5)

Next, noting that the downtimes are independent of the uptimes for every job,we get

EF(
k50

Nj ~t !

Zjk*Nj ~t ! 5 nG5 EF(
k50

n

ZjkG5 nE@Zj1# 5 nnj + (3.6)

Thus, by the law of iterated expectation and~3+5!–~3+6!,

EF(
k50

Nj ~t !

~Yjk 1 Zjk !G 5 EFEF(
k50

Nj ~t !

~Yjk 1 Zjk !*Nj ~t !GG
5 EFNj ~t !S 1

Fj ~t2!
E

@0, t !
y dFj ~ y! 1 njDG

5 S 1

Fj ~t2!
E

@0, t !
y dFj ~ y! 1 njD Fj ~t2!

12 Fj ~t2!

5
1

12 Fj ~t2! SE@0, t !
y dFj ~ y! 1 nj Fj ~t2!D+
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Hence, by ~2+3!,

E @Pj # 5 EFESPj 1 (
k50

Nj ~Pj !

~Yjk 1 Zjk !*PjDG
5 EFPj 1

1

12 Fj ~Pj2!SE@0,Pj !

y dFj ~ y! 1 nj Fj ~Pj2!DG+ (3.7)

Furthermore, by Fubini’s theorem,

E
@0, t !

y dFj ~ y! 5E
@0, t !
E

@0, y!

dx dFj ~ y!

5E
@0, t !
E

~x, t !
dFj ~ y! dx

5E
@0, t !

@Fj ~t2! 2 Fj ~x!# dx

5 2t @12 Fj ~t2!# 1E
0

t

@12 Fj ~x!# dx+ (3.8)

Substituting~3+8! into ~3+7!, we get~3+3!+
Moreover, as*@0,Pj !

@12 Fj ~ y!# dy# *0
`@12 Fj ~ y!# dy5 µj , by ~3+3! we see that

~3+4! implies

E @Pj # # ~µj 1 nj !EF 1

12 Fj ~Pj2!G , `+

Conversely, if E @Pj # ,`, then by~3+3!, we must haveE @Fj ~Pj2!0~12 Fj ~Pj2!!# ,
`; hence,

EF 1

12 Fj ~Pj2!G 5 EF Fj ~Pj2!

12 Fj ~Pj2!
1 1G , `,

which completes the proof+ n

Remark 1:Theorem 1 provides~3+4! as the necessary and sufficient condition to
ensure a finite expectation for the time that jobj occupies the machine in the case
without resampling+ If Yjk andPj are exponentially distributed with meansE @Yjk# 5
10bj andE @Pj #510hj , then condition~3+4! becomesE @ebj Pj # ,`+This holds if and
only if bj , hj , or 10bj . 10hj ; that is, the average length of an uptime for jobj must
be greater than the average time needed to process that job in order to ensure that the
job can be completed within a finite expected time+ This is intuitive from a practical
point of view when the machine breakdowns are of preemptive-repeat nature and the
processing times are not resampled+ Furthermore, from Theorem 1, we can easily
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see that the necessary and sufficient condition for the expected weighted mean flow
time ~2+4! to be finite is that~3+4! holds for all jobs+

We can now derive the optimal sequence to minimize EWMF+

Theorem 2: Suppose that (3.4) holds for j5 1,2, + + + , n, so that the problem with
EWMF is well posed under the preemptive-repeat breakdown model. Then, the op-
timal sequence that minimizes E@(i wi Ci ~l!# is in nondecreasing order of$fi 0wi %,
where

fi 5 E @Pi # 5 E3 E0

Pi

~12 Fi ~ y!! dy1 ni Fi ~Pi2!

12 Fi ~Pi2!
4 , i 5 1, + + + , n+ (3.9)

Proof: From Theorem 1 and the first equality in~2+3!, it follows immediately that

E @Ci ~l!# 5 (
j[Bi ~l!

E @Pi # 5 (
j[Bi ~l!

fj +

Hence, by a straightforward application of the method of adjacent pairwise inter-
change, we can readily obtain Theorem 2+ The details are thus omitted+ n

The following are some special cases and applications of Theorem 2+

Example 1:Exponentially Distributed Uptimes+ An important case for the uptime
distribution is the exponential distribution, which is often considered in the litera-
ture~see, e+g+, Frostig@5# and Birge et al+ @2# !+ In this case, let 10bi denote the mean
of Yik, i 5 1, + + + , n, k 5 1,2, + + + + Then, we have 12 Fi ~t ! 5 e2bi t, so that

E
@0, t !

@12 Fj ~ y!# dy 5E
0

t

e2bj y dy5
1

bj

~12 e2bj t !+

Substituting these into~3+3!, we obtain

fj 5 EFebj Pj S12 e2bj Pj

bj

1 nj ~12 e2bj Pj !DG
5 S 1

bj

1 njD~E @ebj Pj # 2 1!+ (3.10)

Consequently, when the uptimesYik are exponentially distributed with mean 10bi ,
andE @ebi Pi # , `, i 5 1,2, + + + , n, the optimal sequence minimizing the expected
weighted mean flow time is in nondecreasing order of$fi 0wi % , with fi given by
~3+10!+

If Pj is also exponentially distributed with mean 10hj andhj . bj , then

E @ebj Pj # 2 1 5
hj

hj 2 bj

2 1 5
bj

hj 2 bj

+
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Thus, if Yik andPi are exponentially distributed with means 10bi and 10hi , respec-
tively, andhi . bi , i 5 1,2, + + + , n, then the optimal sequence minimizing the ex-
pected weighted mean flow time is in nondecreasing order of

H 11 bi ni

wi ~hi 2 bi !
, i 5 1, + + + , nJ +

Remark 2:Birge et al+ @2# obtained a similar result, but only in the case with deter-
ministic processing times and common distributions of uptimes and downtimes across
jobs+ Theorem 2 extends it to stochastic processing times and job-dependent up0
downtime distributions+

Example 2:Uniform Uptimes and Processing Times+ Suppose that the uptimesYjk

and the processing timesPj are uniformly distributed over the intervals@0,uj # and
@0, pj # , respectively, with 0 , pj , uj , j 5 1, + + + , n+ This corresponds to the case
where we only know the upper bounds for the uptimes and processing times+ In such
a case, Fj ~t2! 5 t0uj for 0 , t , uj and 0, pj , uj implies

EF 1

12 Fj ~Pj2!G 5 EF uj

uj 2 Pj
G5

1

pj
E

0

uj uj

uj 2 x
dx5

uj

pj

lnS uj

uj 2 pj
D, `+

The conditionpj , uj ~i+e+, the upper bound of the processing time for jobj is less
than that of the uptime! is necessary and sufficient for the above expectation to be
finite ~that ensures the problem is well posed!+ Assume this basic condition holds+
Then, it is easy to calculate

EF 1

12 Fi ~Pi2!
E

0

Pi

~12 Fi ~ y!! dyG
5 EF ui

ui 2 Pi
E

0

PiS12
y

ui
D dyG

5 EF ui

ui 2 Pi
SPi 2

Pi
2

2ui
DG

5
1

2
EFPi 2 ui 1

ui
2

ui 2 Pi
G

5
1

2pi
E

0

piSx 2 ui 1
ui

2

ui 2 xD dx

5
pi

4
2

ui

2
1

ui
2

2pi

lnS ui

ui 2 pi
D+
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Furthermore,

EF Fi ~Pi2!

12 Fi ~Pi2!G 5 EF ui

ui 2 Pi

2 1G5
ui

pi

lnS ui

ui 2 pi
D2 1+

Substituting these expectations into~3+3!, we get

fi 5
pi

4
2

ui

2
1

ui
2

2pi

lnS ui

ui 2 pi
D1 ni F ui

pi

lnS ui

ui 2 pi
D2 1G + (3.11)

Consequently, the optimal sequence to minimize the EWMF follows the nondecreas-
ing order of$fi 0wi % , with fi given by~3+11!+

Example 3:A Problem with Periodical Inspection+ This example represents the
problem with regular maintenance checkup and repair, which often occurs in prac-
tice, and can be described as follows: After starting processing a job, the machine
is checked periodically to monitor its condition+ The check determines whether
the machine needs to be shut down for repair, but the check itself does not inter-
rupt the processing+ If a shutdown is necessary, the job will have to start over
again after the machine resumes its operation; otherwise, the processing continues
without interruption+ The probability that a shutdown is necessary, as well as the
period between two consecutive checks, are job dependent, due to different impacts0
burdens to the machine created by the job being processed+ More specifically,
when job j is being processed, the machine undergoes a check everybj units of
time, and there is a probabilityuj ~0 , uj , 1! at each check that the machine has
to be shut down+ Other than these possible shutdowns, the machine works contin-
uously+ The problem is to determine the optimal sequence to process the jobs so
as to minimize the EWMF+

In this case, a breakdown occurs whenever a check determines to shut down the
machine, which is preemptive-repeat, and the repair time represents the downtime+
Under the above-described settings, the uptime to process jobj is a discrete random
variable with masses atmbj and Pr~Yjk 5mbj !5uj ~12uj !

m21,m51,2, + + + + It follows
thatFj ~x! 5 0 for x , bj , and

Fj ~x! 5 (
i51

m

uj ~12 uj !
i21 5 uj

12 ~12 uj !
m

12 ~12 uj !
5 1 2 ~12 uj !

m (3.12)

for mbj # x , ~m1 1!bj , m5 1,2, + + + +
Let mj 5 mj ~x! satisfymj bj , x # ~mj 1 1!bj + Then, by ~3+12!,

12 Fj ~x2! 5 ~12 uj !
mj ~x!+ (3.13)
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Furthermore, givenPj 5 x, let m5 mj ~x!; then, by ~3+12!,

E
0

x

@12 Fj ~ y!# dy 5 (
i50

m21

~12 uj !
ibj 1 ~12 uj !

m~x 2 mbj !

5
12 ~12 uj !

m

uj

bj 1 ~12 uj !
m~x 2 mbj !

5
bj

uj

1 ~12 uj !
mSx 2 mbj 2

bj

uj
D+

Substituting this and~3+13! into ~3+9!, we get

E @Pj 6Pj 5 x# 5
1

~12 uj !
m H bj

uj

1 ~12 uj !
mSx 2 mbj 2

bj

uj
D1 nj ~12 ~12 uj !

m!J
5

1

~12 uj !
mSbj

uj

1 njD1 x 2 mbj 2
bj

uj

2 nj

5 x 2 mj ~x!bj 1
bj 1 nj uj

uj

@~12 uj !
2mj ~x! 2 1# + (3.14)

Now, by ~3+13! and Theorem 1, E @Pj # , ` if and only if

E @~12 uj !
2mj ~Pj ! # , `,

or, equivalently,

E @~12 uj !
2Pj 0bj # , `+ (3.15)

Assume that condition~3+15! holds forj 51,2, + + + , n+ Then, by ~3+14! and the law of
iterated expectation, we get

fj 5 E @Pj # 5 E @Pj 2 mj ~Pj !bj # 1
bj 1 nj uj

uj

E @~12 uj !
2mj ~Pj ! 2 1# + (3.16)

Consequently, for the above-described maintenance problem, the optimal sequence
to minimize the EMWF, by Theorem 2, should follow the nondecreasing order of
$fj 0wj % , where thefj are given by~3+16!+ Moreover, because the distribution of
mj ~Pj ! is given by

Pr~mj ~Pj ! 5 m! 5 Pr$mbj , Pj # ~m1 1!bj %, m5 0,1,2, + + + ,

fj can also be calculated by

fj 5 E @Pj # 1 (
m50

` F bj 1 nj uj

uj ~12 uj !
m 2 mbjGPr$mbj , Pj # ~m1 1!bj % 2

bj 1 nj uj

uj

+

Let us now look at some special cases of Example 3+
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Case I: Uniform processing times+ Let Pj be uniformly distributed over~0,Mbj ! for
some integerM . 0+ Then,

Pr$mbj , Pj # ~m1 1!bj % 5
bj

Mbj

5
1

M
, m5 0,1,2, + + + ,M 2 1+

Hence, by either~3+15! or ~3+16!,

E @Pj # 5
Mbj

2
2 (

m51

M21 mbj

M
1

bj 1 nj uj

uj
F (

m50

M21 ~12 uj !
2m

M
2 1G

5
Mbj

2
2

M 2 1

2
bj 1

bj 1 nj uj

uj
F 1

M

~12 uj !
2M 2 1

~12 uj !
21 2 1

2 1G
5

bj

2
1

bj 1 nj uj

uj
F 12 ~12 uj !

M

Muj ~12 uj !
M21 2 1G +

Case II: Smallbj + If the check is made frequently so thatbj is relatively small, then
mj ~x!bj ' x+ Hence, by ~3+15!, E @Pj # can be approximated by

E @Pj # '
bj 1 nj uj

uj

E @~12 uj !
2Pj 0bj 2 1# + (3.17)

Case III: bj r 0 butuj 0bj remains stable+Note that frequent checks should result in
a small chance to shut down the machine at each check+ Let uj 5 bj bj andbj r 0,
wherebj is a constant+ Then, by ~3+17!,

E @Pj # ' S bj

bj bj

1 njDE @~12 bj bj !
2Pj 0bj 2 1# r S 1

bj

1 njDE @ebPj 2 1# ,

which is the same as~3+10! with exponential uptimes+Thus, exponential uptimes can
be regarded as a limiting case of the maintenance problem in Example 3+

Remark 3:Previous results on preemptive-repeat machine breakdowns are mainly
restricted to the case of exponential uptimes+ Our results, however, allow a general
distribution for the uptimes+ This broad coverage allows one to handle a variety of
interesting cases, as illustrated by Examples 2 and 3+

4. THE CASE WITH RESAMPLING

We now turn to the case with resampling; that is, each time when a job is repeated,
the processing time required is resampled according to its probability distribution+ In
this case, the counting process defined in~2+1! is no longer applicable and we define,
instead, the following random variable:

Ti 5 sup$k $ 0 :Yi1 , Pi 0,Yi 2 , Pi1, + + + ,Yi, k11 , Pik %+ (4.1)
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Then, the time that jobi occupies the machine is given by

Pi 5 Pi,Ti
1 (

k50

Ti

~Yik 1 Zik !, (4.2)

and the completion time still has the formCi ~l! 5 (j[Bi ~l! Pj + Furthermore, the
objective function to be minimized remains as the EWMF defined by~2+4!+

Let Pi 5 $Pik %k50
` andPi be a representative of$Pik% +With similar arguments as

in Section 2, we can derive the following results+

Lemma 2: Conditional onPi , the distribution of Ti is given by

Pr$Ti 5 k6P% 5 @12 Fi ~Pi, k112!# )
j50

k

Fi ~Pij2!, k 5 0,1,2, + + + , (4.3)

and unconditionally Ti follows a geometric distribution with parameter1 2
E @Fi ~Pi2!# , that is,

Pr$Ti 5 k% 5 $12 E @Fi ~Pi2!#%Ek @Fi ~Pi2!# + (4.4)

As a result,

E @Ti # 5
E @Fi ~Pi2!#

12 E @Fi ~Pi2!#
+ (4.5)

Proof: By the definition ofTi in ~4+1! and the assumptions on$Yik% , we have

Pr$Ti 5 k6P% 5 Pr$Yi1 , Pi1, + + + ,Yik , Pik ,Yi, k11 $ Pi, k116P%

5 Pr$Yik , Pik 6Pik %Pr$Yi, k11 $ Pi, k116Pi, k11%

5 @12 Fi ~Pi, k112!# )
j50

k

Fi ~Pij2!, k 5 0,1,2, + + + ,

which gives~4+3!+ Equations~4+4! and~4+5! then follow immediately+ n

Theorem 3: The mean ofPj is given by

E @Pj # 5
1

12 E @Fj ~Pj2!# SEFE
0

Pj

~12 Fj ~ y!! dyG1 nj E @Fj ~Pj2!#D, (4.6)

which is finite if and only if E@Fj ~Pj2!# , 1+

Proof: The proof is similar to that of Theorem 1, but by conditioning onPj andTj ,
as in the proof of Lemma 2+ Hence, the details are omitted+ n

Theorem 3 leads immediately to the following result on the optimal sequence+
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Theorem 4: Suppose that E@Fi ~Pi2!# , 1 for i 5 1, + + + , n. Then, the optimal se-
quence to minimize E@(i wi Ci ~l!# is in nondecreasing order of$fi 0wi %, wherefi 5
E @Pi # , i 5 1, + + + , n, are given by (4.6).

Remark 4:WhenYik are exponentially distributed with mean 10bi , similar to~3+10!,
we can see that~4+6! reduces to

E @Pi # 5
1

E @e2bi Pi # S 1

bi

E @12 e2bi Pi # 1 ni E @12 e2bi Pi #D
5 S 1

bj

1 njD 12 E @e2bi Pi #

E @e2bi Pi #
+ (4.7)

Thus, the optimal sequence minimizing the EWMF is in nondecreasing order of
$fi 0wi % ,with fi 5E @Pi # given by~4+7!,which coincides with the result of Frostig@5# +

From Theorem 4, it is not difficult to obtainfi 5 E @Pi # in specific situations+
For example, in Example 2 of Section 3, we can show that

fi 5
2ui

2ui 2 pi
H pi

2
2

pi
2

6ui

1
ni pi

2ui
J ,

which is finite as long aspi , 2ui + In Example 3 of Section 3, let ri 5
E @~12 ui !

mi ~Pi ! # + Then,

fi 5 Sbi

ui

1 niD 12 ri

ri

1
1

ri

E @~12 uj !
mi ~Pi ! ~Pi 2 mi ~Pi !bi !# ,

which is finite provided 0, ui , 1+

5. COMPARISONS BETWEEN WITH AND WITHOUT RESAMPLING

We have seen in the last two sections that the results differ between the case with
resampling and that without+We now attempt to draw some comparisons between
these two cases in terms of the expected mean flow time+

First, let us look at an intuitive example+ Suppose that the processing time of a
job can take any value between 5 and 10 min, say+Assume that a breakdown occurs
after the job has been processed continuously for 7 min, but before it is completed+
Then in case~i! ~without resampling!, the job will need at least another 7 min to
complete and so the processing time after the machine resumes operation must be
between 7 and 10 min+ In case~ii ! ~with resampling!, on the other hand, the infor-
mation from previous experience is lost and the processing time may still take any
value between 5 and 10 min+ Therefore, in case~i!, the work done on a job is lost
when a breakdown occurs, but not the information from the previous experience,
whereas in case~ii !, all is lost once the machine breaks down+ Interestingly, this
yields the phenomenon that the overall occupying time of a job in case~i! tends to be
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longer than that in case~ii !+ This is confirmed, theoretically, in the following
proposition+

Proposition 1: Denote the expected occupying time E@Pi # of job i by E1@Pi # in the
case without sampling and by E2@Pi # in the case with sampling. If Pi does not de-
generate in the support of Fi ~t !, then E1@Pi # . E2@Pi # .

Proof: Define

Hi ~t ! 5E
0

t

@12 Fi ~ y!# dy1 ni Fi ~t2!+ (5.1)

Then, by Theorems 1 and 3,

E1 @Pi # 5 EF Hi ~Pi !

12 Fi ~Pi2!G, E2 @Pi # 5
E @Hi ~Pi !#

E @12 Fi ~Pi2!#
+ (5.2)

It is easy to see thatHi ~t ! is strictly increasing and 12 Fi ~t2! is strictly decreasing,
so thatHi ~t !0@1 2 Fi ~t2!# is strictly increasing, in the support ofFi ~t !+ Hence, it
follows from Lemma A~b! in the Appendix that

E @Hi ~Pi !# 5 EF~12 Fi ~Pi2!!
Hi ~Pi !

12 Fi ~Pi2!G , E @12 Fi ~Pi2!#EF Hi ~Pi !

12 Fi ~Pi2!G ,
which is equivalent toE2@Pi # , E1@Pi # by ~5+2!, provided thatPi does not degen-
erate in the support ofFi ~t !+ n

Another interesting difference between the two cases lies in the impact of a
breakdown on the remaining occupying time+ Let us now compare the expected
remaining occupying time of jobj conditional on the event that a breakdown occurs
before the job is completed~counted from the time that the machine resumes its
operation!; that is, E @Pj 2 Yj1 2 Zj16Pj . Yj1# , with the unconditional expected
occupying timeE @Pj # + Proposition 2 shows thatE @Pj 2 Yj1 2 Zj16Pj . Yj1# is gen-
erally greater thanE @Pj # in the case without resampling+

Proposition 2: In the case without resampling, suppose that condition (3.4) holds;
then, E@Pj 2 Yj1 2 Zj16Pj . Yj1# $ E @Pj # and the strict inequality holds as long as Pj

does not degenerate in the support of Fj ~t !.

Proof: We first modify the proof of Lemma 1 to obtain

Pr$Ni ~t ! 5 k6Yi1 , t % 5
Pr$Yi1 , t, + + + ,Yik , t,Yi, k11 $ t %

Pr~Yi1 , t !

5 Fi
k21~t2!@12 Fi ~t2!# , k 5 1,2, + + + ,
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and so

E @Ni ~t !6Yi1 , t # 5
1

12 Fi ~t2!
+ (5.3)

Similar to the proof of Theorem 1, we have

EF(
k52

Nj ~t !

Yjk*Nj ~t ! 5 n,Yj1 , tG 5 (
k52

n

E @Yjk 6Yjk , t # 5 ~n 2 1!E @Yj 26Yj 2 , t #

5
n 2 1

Fj ~t2!
E

@0, t !
y dFj ~ y!

and

EF(
k52

Nj ~t !

Zjk*Nj ~t ! 5 n,Yj1 , tG5 ~n 2 1!E @Zj 2# 5 ~n 2 1!nj +

Thus, by the law of iterated expectation together with~5+3!,

EF(
k52

Nj ~t !

~Yjk 1 Zjk !6Yj1 , tG 5 E3~Nj ~t ! 2 1! 1 E@0, t !
y dFj ~ y!

Fj ~t2!
1 nj 26Yj1 , t4

5 S 1

Fj ~t2!
E

@0, t !
y dFj ~ y! 1 njDS 1

12 Fj ~t2!
2 1D

5
1

12 Fj ~t2! SE@0, t !
y dFj ~ y! 1 nj Fj ~t2!D+ (5.4)

It follows from ~5+4! and~3+8! that

E @~Pj 2 Yj1 2 Zj1! I~Pj.Yj1! 6Pj 5 t #

5 E @~Pj 2 Yj1 2 Zj1! I~t.Yj1! 6Pj 5 t #

5 E @Pj 2 Yj1 2 Zj16Pj 5 t . Yj1# Pr~Yj1 , t !

5 EFt 1 (
k52

Nj ~t !

~Yjk 1 Zjk !*Pj 5 t . Yj1GFj ~t2!

5 Fj ~t2! Ht 1
1

12 Fj ~t2!SE@0, t !
y dFj ~ y! 1 nj Fj ~t2!DJ

5 Fj ~t2! H 1

12 Fj ~t2!SE0

t

@12 Fj ~ y!# dy1 nj Fj ~t2!DJ
5 Fj ~t2! EHj ~t !, (5.5)
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where EHj ~t ! 5 Hj ~t !0~12 Fj ~t2!!, with Hj ~t ! defined in~5+1!+ Consequently,

E @Pj 2 Yj1 2 Zj16Pj . Yj1# 5
E @~Pj 2 Yj1 2 Zj1! I~Pj.Yj1! #

Pr~Pj . Yj1!

5
E @Fj ~Pj2! EHj ~Pj !#

E @Fj ~Pj2!#
+ (5.6)

On the other hand, by ~3+3!,we haveE @Pj #5E @ EHj ~Pj !# +Comparing it with~5+6!,we
can see thatE @Pj 2 Yj1 2 Zj16Pj . Yj1# $ E @Pj # if and only if

E @Fj ~Pj2! EHj ~Pj !# $ E @Fj ~Pj2!#E @ EHj ~Pj !# + (5.7)

As Fj ~t2! and EHj ~t ! are nondecreasing functions, and strictly increasing in the sup-
port ofFj ~t !, by Lemma A~a! in the Appendix, the inequality in~5+7! is valid for any
nonnegative random variablePj , with the strict inequality holding providedPj does
not degenerate in the support ofFj ~t !+ n

For the case with resampling, arguments similar to those above~by condition-
ing onPj andTj ! show thatE @Pj 2 Yj12 Zj16Pj . Yj1# 5 E @Pj # ~see also Frostig@5# !+
Therefore, the expected remaining occupying time of a job increases after a
breakdown in the case without resampling, but remains the same in the case with
resampling+

6. CONCLUDING REMARKS

Stochastic scheduling subject to preemptive-repeat machine breakdowns is an im-
portant and challenging problem+ However, unlike the problem with preemptive-
resume breakdowns, progress achieved up to date on this problem is very limited+ In
this article, we have studied the problem in a fairly general and unified setting,
which allows the uptimes and downtimes of machine breakdowns to be job depen-
dent, the uptimes and downtimes to follow any general probability distributions, and
the processing times to follow any general probability distributions+We have further
considered two possible situations on the realization of a random processing time
after a machine breakdown, the case without resampling and the case with resam-
pling, and revealed some interesting phenomena on the differences between these
cases+We have investigated the optimal solutions under the criterion to minimize the
expected weighted flow time+We show that the optimal solutions can be constructed
under an index rule comprising the parameters of the model+ Results for some cases
of important practical relevance have also been developed+

The investigations on the problem with the preemptive-repeat model are, nev-
ertheless, far from being complete, and there are many important and interesting
questions to be further studied+ An interesting but difficult problem is to consider
multiple machines, configured in parallel or as a flowshop or jobshop+ Optimal
solutions with respect to other performance measures~such as those involving due
dates for the jobs! are also interesting topics for further investigation+
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APPENDIX

Lemma A: Let A be a subset of@0,`! and X be a nonnegative random variable which is not
degenerate in A.

(a) If f ~x! and g~x! are two nondecreasing functions on@0,`!, then

E @ f ~X !g~X !# $ E @ f ~X !#E @g~X !# (A.1)

and the strict inequality holds if f~x! and g~x! are strictly increasing in A.

(b) If f ~x! is strictly increasing and g~x! is strictly decreasing in A, then

E @ f ~X !g~X !# , E @ f ~X !#E @g~X !# +

Proof: Assume thatf ~x! andg~x! are two nondecreasing functions on@0,`!+ Defineµf 5
E@ f ~X !# anda 5 inf $x : f ~x! . µf % + Then, f ~x! $ µf for x . a and f ~x! # µf for x , a+
Hence,

@ f ~x! 2 µf #g~x! $ @ f ~x! 2 µf #g~a! for x . a

@µf 2 f ~x!#g~x! # @µf 2 f ~x!#g~a! for x , a+
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As a result,

@ f ~x! 2 µf #g~x! $ @ f ~x! 2 µf #g~a! for all x $ 0+ (A.2)

It follows that

E @ f ~X !g~X !# 2 E @ f ~X !#E @g~X !# 5 E @~ f ~X ! 2 µf !g~X !#

$ E @~ f ~X ! 2 µf !g~a!#

5 E @ f ~X ! 2 µf #g~a!

5 ~µf 2 µf !g~a!

5 0+ (A.3)

Thus, ~A+1! holds+ Furthermore, the equality in~A+3! can only hold if the equality in~A+2!
holds for allx in the support of the distribution ofX,which is not possible iff ~x! andg~x! are
strictly increasing inA+ This proves part~a!; part ~b! then follows immediately by applying
part~a! to f ~x! and2g~x!+ n
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