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We study a stochastic scheduling problem with a single machine subject to random
breakdownsWe address thpreemptive-repeanodel that is if a breakdown oc-

curs during the processing of a jahe work done on this job is completely lost and

the job has to be processed from the beginning when the machine resumes its work
The objective is to complete all jobs so that the the expected weighted flow time is
minimized Limited results have been published in the literature on this prot#ém

with the assumption that the machine uptimes are exponentially distribTités
article generalizes the study to allow tHa) the uptimes and downtimes of the
machine follow general probability distribution&®) the breakdown patterns of

the machine may be affected by the job being processed and are thus job dependent
(3) the processing times of the jobs are random variables following arbitrary dis-
tributions and(4) after a breakdowjthe processing time of a job may either remain

a same but unknown amourdr be resampled according to its probability dis-
tribution. We derive the necessary and sufficient condition that ensures the problem
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with the flow-time criterion to be well posed under the preemptive-repeat break-
down model We then develop an index policy that is optimal for the problem
Several important situations are further considered and their optimal solutions are
obtained

1. INTRODUCTION

Scheduling problems involving stochastic machine breakdowns have been the sub-
ject of extensive studies in the literature for over two deca@nerally these
problems may be categorized into two typascording to the effect of a machine
breakdown on the job being process@de is featured by the so-callpceemptive-
resume modeénd the other by thereemptive-repeat modevhich differ from each
other as followsIn the preemptive-resume modéla machine breakdown occurs
during the processing of a jothe work done on the job prior to the breakdown is not
lost and the processing of the disrupted job can be resumed at the point where it was
interrupted once the machine becomes operable agraithe preemptive-repeat
model howeverthe work done on this job is lost if the machine breaks down before
it is completedand so its processing will have to restart after the machine resumes
its operation

A significant number of results have been published in the literature on the
preemptive-resume modedee Birge et al[2], Cai and ZhoU 3,4], Glazebrook
[6,7], Mittenthal and Raghavachdi8], Pinedo[11], Pinedo and RammoyZ.0],
and Zhou and Cdi15]; to name just a fewln contrast little progress has been
reported on the preemptive-repeat moadhough it is equally important in prac-
tice. One industrial example of the preemptive-repeat model is in a metal refinery in
which the raw material is to be purified by melting it in a very high temperatfire
a breakdowr(such as power outageccurs before the metal is purified to the re-
quired leve]it will quickly cool down and the heating process has to be started again
after the breakdown is fixe®ther examples include running a program on a com-
puter downloading a file from the Interngterforming a reliability test on a facility
and so forthGenerallyif a job must be continuously processed with no interruption
until it is totally completedthen the preemptive-repeat formulation should be used
to model the processing pattern of the job in the presence of machine breakdowns

Regarding the preemptive-repeat mqdgitge et al [2] obtained an optimal
policy to minimize the expected weighted flow time when the processing time of
each job is deterministi¢rostig[5] extended the model of Birge et 2] to con-
sider(1) random processing times a(®) different patterns of breakdowns when the
machine processes different jolomder the assumption that after a breakdpthie
processing time is resampled and hence independent of the previous time of pro-
cessing the same jodiri, Frostig and Rinnooy Karj1] addressed the problem
involving a single machine breakdowto minimize the number of tardy jobs with
due dateslt has been widely recognized that when the work done on a job is com-
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pletely lost and the processing of the job must start over again after a machine
breakdownthe problem of deriving an optimal policy to process all jobs is quite
complicated and difficultlt is observed that the results in the few works reviewed
above have all been derived under the assumption that the uptimes of the machine
follow exponential distributionswvhich substantially simplifies the analysis

The purpose of this article is to tackle the stochastic scheduling problem with
the preemptive-repeat breakdown modeur study makes several progresses on
this model!

1. The problem we consider is built in a general and unified settiviich
allows that(i) the uptimes and downtimes of the machine follow general
probability distributions(ii) breakdown patterns of the machine are job de-
pendentand(iii ) processing times of the jobs are random variables follow-
ing general probability distributions

2. We consider two different cases for the random processing time after a break-
downr (i) the processing time remains teame (but unknown) amouas
thatbeforethe breakdown with respect to the same job @ndt is resampled
independently after each breakdawhle will refer to case(i) aswithout
resamplingand caséii) aswith resampling

3. The necessary and sufficient condition to ensure a finite expected time that
a job occupies the machine is obtain@dresult that is important for the
problem with the preemptive-repeat breakdown model to be well pdéed
optimal solution that minimizes the expected weighted flow time is derived
which sequences the jobs to be processed by an index policy

4. Optimal solutions are further induced for a number of specific situa-
tions including some that have interesting practical relevaneceler the
preemptive-repeat breakdown model

It is interesting to note that when the processing times are rantt@re is a
distinction between the case with resampling from that withebereas there is no
such distinction with deterministic processing timksa practical sensehe case
without resampling may be used to model the situation in which the randomness of
the processing time isternalto the job(such as the quality of raw materialvhich
is not influenced by the condition of the machine and so does not vary between
machine breakdownd he case with resamplingn the other handonsiders ran-
dom factorsexternalto the job(such as the condition of the machjneo that the
processing time varies independently each time when the same job is refelated
lowing a specific probability distributiarMore discussions on this will be given in
Section 5

The remainder of the article is organized as folloimsSection 2we formulate
the basic model with preemptive-repeat machine breakdo8estion 3 provides
the main results for processing times without resamplimgl the case with resam-
pling is considered in Section £omparisons between the cases with and without
resampling are further discussed in SectioRiBally, some concluding remarks are
presented in Section 6
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2. MODEL FORMULATION AND ASSUMPTIONS

Suppose that a set ofindependent job§l, 2,..., n} are to be processed on a single
machinewhich are all available at time @ processing time Hs required to com-
plete a jobi on the machineTherefore after jobi starts being processeid will
occupy the machine for an amount of tifRgif it is not interrupted before its com-
pletion Neverthelessll jobs argpreemptive-repeain the sense that the processing
of any job will have to be started again if it is interruptéet theoccupying timef
jobi on the machine b@®;,. Then P may be longer tha®,, if job i is interrupted
before it is completedThe machine can process one and only one job at a time
Furthermoreonce a job starts being processed by the magliireannot be pre-
empted by another job before its completion

While jobi is being processedhe machine may break dowwith the break-
down process being characterized by a sequence of finite-yghesitive random
vectors{Yi, Zi }r=1, WhereY;, andz;, are the durations of thaéh uptime and théth
downtime respectivelyfor job i. The distributions of both the uptimes and down-
timesY,, andz;, arejob dependento reflect the realistic situation when jobs have
different levels of impact on the machine during their processivig assume that
the uptimesy;,, k=1,2,..., are independent and identically distribuigdld.) ran-
dom variables with an arbitrary distribution functiéf(t) and that the downtimes
Zi, k=12,..., are ii.d. random variables with a distribution functi@(t). It is
assumed that the stochastic proce$¥gsZ;, }r— for differentjobs =1,2,...,nare
mutually independent

In the case wherB; remains the same random variable after each breakdown
we assume thdtP;}, {Y}, and{Z,} are mutually independent with finite means
WhenP; is to be resampled after each breakddvfijob i is not completed let Py,
denote the time required to complete jolwithout interruption after thekth break-
down In such a casét is assumed thatP,, k = 0,1,2,...} is an ii.d. sequence of
random variables for ea¢tand tha{P,}, {Yi}, and{Z;} are mutually independent
with finite meansFor the remainder of this sectipwe consideP; without resam-
pling. The case with resampling will be considered in Section 4

Define a counting procegd\;(t):t = 0} by

N (t) =suplk=0:Yo<tY,<t..,6bY <t} (2.1)

whereY;o=0,i =1,2,...,n. Then the timeP, that jobi occupies the machine can
be written as

N; (P;)

Po=P+ > Y+ Zy), (2.2)
k=0

whereZ,=0,i=12,...,n.

LetA=(A(1),A(2),...,A(n)) denote sequenceo process the johwith A (k) =
i representing that jobis thekth to be processed undgrThis is also referred to as
apolicy, or asolution for the problemwhich is the decision we seek to determine
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We limit our study to static policies in this artiglehich is applicable to situations
in which altering a decision after it is implemented is very expensive or is even
prohibited

It is easy to see that the completion time of jobnder\ can be expressed as

N(R)
G = > B = > |:IDJ + > (Y + ij)], (2.3)
i€B () i€B () k=0

where5; (1) denotes the set of jobs sequenced no later than jolalerA.

The problem is to determine an optimal sequeiité minimize theexpected
weighted mean flow timea criterion that has been widely studied in the scheduling
area

EWMF(A) = E{E w, ci()\)}, (2.4)

wherew; > 0 is the weight associated with jobin other wordsthe objective is to
find an optimal sequencE such that

EWMF(A") = min EWMF(A). (2.5)

3. MAIN RESULTS FOR THE CASE WITHOUT RESAMPLING

We first give a result on the distribution of the counting procklg$) defined by
(2.2).

LemMa 1: For each t> 0, N, (t) follows a geometric distribution with parameter
1-F(t—); thatis,

Pr{N(t) = k} = F*(t—)[1— F(t-)], k=0,12,.... (3.1

As a result,
E[N ()] = Lt_) 3.2
(NI = = o (32)

Proor: By the definition ofN;(t) in (2.1) and the assumptions g}, }, we have
Pr{N;(t) = k} = Pr{¥io < t,Yis < t,..., Y < t,Y yr1 =t}
= PriYiy <t} Pr{Yy < tiPr{Y, .. = t}
=F(t)[1-F(t9)], k=012,...,
which gives(3.1), and(3.2) then follows immediately u

Lety; = E[Yj1] < oo andy; = E[Z;,] < oo denote the means of the uptime and
downtime respectivelyTheorem 1 gives a result on the expected tEi& | a job
occupies the machina the situation that the machine is subject to stochastic break-
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downs while the processing of the job follows the preemptive-repeat model after
each breakdownThis is an important result for the analysis of problems with the

preemptive-repeat breakdown model and is crucial to solving the problem with the
mean flow-time criterion

TueoreMm 1: For the time7; that job j occupies the machine,

E[R]:E{T(ID)(f (11— F(y))dy+VJF(P ))] (3.3)

Moreover, HR ] < oo if and only if

1
E{m} < 0. (3.4)

Proor: Givent > 0, asY4,Yj,,... are ii.d,

N (t)
k=0 k

n
= 2 EMidYo<tYi<t...Y <tYn1=t]
k=0

Ms

N (t) Yik

YjO < tijl < t?""an < t’Yj,nJrl = J[‘|
0

n
> EDYil Y < t1=nE[Y,y| Yy < t]
k=0

_ nE[lel(le<t)] _ n
Pr(Yj, <t) F(t—) Jion

ydR(y). (3.5)

Next, noting that the downtimes are independent of the uptimes for everwgpbet

N (1) 1 n
ELZO ZyINi(t) =n| = EL%ZJK] = nE[Z;;] = ny;. (3.6)

Thus by the law of iterated expectation af@l5)—(3.6),

wl

i 1
—EIND [ —— dR(y) + »,

I J()<Fj(t_) [o,t>y )+ Jﬂ
R Joo YY1 TR

1
1-F(tH) <~[[0,t) yaR(y) +uF (t_)>'

N (D) [N
E|: 2 (ij + ij)} =E E|: 2 (Ylk + ij)
k=0 | [ k=0
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)

1
= E[H-ﬁ-m(ﬁoﬂ)Ydﬁ(W‘l‘Tﬁ FJ(P]_)>:| (3-7)

Furthermoreby Fubini’s theorem

f deJ(y)=J f dx dR(y)
[0, t) [0,t) /[0, y)
=f j dF, (y) dx
[0,1) Y (x,1)

J[O Y [Fi(t—) — F(x)]dx

Hence by (2.3),

N (B
E[R]= E[E<PJ + 2 (it Zy)
k=0

—t[1 - F(t-)] +f0 [1-F (] dx (3.8)

Substituting(3.8) into (3.7), we get(3.3).
Moreoverasf[o,pj)[l —F(y)ldy= [5’[1 - F(y)]dy= W, by (3.3) we see that
(3.4) implies

1
E[R]= (i + VJ)E{—l_ Fj(Pj_)] < .

Converselyif E[R] < o, then by(3.3), we must hav&[F(P—)/(1—- F(B—))] <
o0; hence

| ras |- e e 1 <=
1-F(R-) 1-F(R-) ’

which completes the proof u

Remark 1: Theorem 1 provide$3.4) as the necessary and sufficient condition to
ensure a finite expectation for the time that joficcupies the machine in the case
without resamplinglf Y;, andP, are exponentially distributed with meaB$Y;.] =

1/B; andE[P,]=1/7;, then condition(3.4) become& [e”Fi | < co. This holds if and

only if B; < n;, or 1/8; > 1/n;; that is the average length of an uptime for jpimust

be greater than the average time needed to process that job in order to ensure that the
job can be completed within a finite expected tifiis is intuitive from a practical

point of view when the machine breakdowns are of preemptive-repeat nature and the
processing times are not resampl&drthermorefrom Theorem 1we can easily



474 X. Cai, X. Sun, and X. Zhou

see that the necessary and sufficient condition for the expected weighted mean flow
time (2.4) to be finite is thai3.4) holds for all jobs

We can now derive the optimal sequence to minimize EWMF

THEOREM 2: Suppose that (3.4) holds for5 1,2,...,n, so that the problem with
EWMF is well posed under the preemptive-repeat breakdown model. Then, the op-
timal sequence that minimize$ E; w; C; (A)] is in nondecreasing order éth; /w },

where

N RCEIEEPLICE
1-F(P)

Proor: From Theorem 1 and the first equality (&.3), it follows immediately that

E[CW]= 2 E[P]l= X ¢.

JEB; (M) JEB;(A)

¢ =E[P]= , i=21....,n. (3.9

Hence by a straightforward application of the method of adjacent pairwise inter-
changewe can readily obtain Theorem Bhe details are thus omitted u

The following are some special cases and applications of Theorem 2

Example 1: Exponentially Distributed Uptime#n important case for the uptime
distribution is the exponential distributipwhich is often considered in the litera-
ture(see e.g., Frostig[5] and Birge et al[2]). In this caselet 1/8; denote the mean
of Y, i =1,...,n, k=1,2,.... Then we have 1- F(t) = e #', so that

! 1
[ w-momay- [ emay- - a-en
[o,t) 0 B

Substituting these int(8.3), we obtain

—e AR
¢ = E[eﬁlﬂ (1% +v(1- e-ﬁﬂ))]

i
_ <i+,,j>(|;[eﬂ,a]_1), (3.10)
B;

Consequentlywhen the uptime¥, are exponentially distributed with meaygl,
andE[efiP] < oo, i = 1,2,...,n, the optimal sequence minimizing the expected
weighted mean flow time is in nondecreasing orde{@®f/w;}, with ¢; given by
(3.10).

If B is also exponentially distributed with meayw] and»; > B;, then
7; 1= B

E[efifi]—1= - .
n; — Bj M — B
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Thus if Y, andP; are exponentially distributed with meangland ¥/»;, respec-
tively, andn; > B;, i = 1,2,...,n, then the optimal sequence minimizing the ex-
pected weighted mean flow time is in nondecreasing order of

{—1+'Bivi i=1 n}
wi(m — Bi)’ B

Remark 2:Birge et al [2] obtained a similar resylbut only in the case with deter-
ministic processing times and common distributions of uptimes and downtimes across
jobs Theorem 2 extends it to stochastic processing times and job-dependent up
downtime distributions

Example 2: Uniform Uptimes and Processing Time&uppose that the uptimé
and the processing timé% are uniformly distributed over the intervdlg, u; ] and
[0, p;], respectivelywith 0 < p; < u;, j = 1,...,n. This corresponds to the case
where we only know the upper bounds for the uptimes and processing timsegh
acaseF;(t—) = t/u; for 0 <t < u; and 0< p; < u; implies

1 yj 1 (9 u U U
E| —— | =E =— dx= —1In < co.
1-FK{B-) U—=F] PJo U—X P\U =P

The conditionp; < u; (i.e., the upper bound of the processing time for jdb less
than that of the uptimes necessary and sufficient for the above expectation to be
finite (that ensures the problem is well poselssume this basic condition holds
Then it is easy to calculate

E ;in(l—F-( ) d
TG RE
_ u_ (f,_Y
= AL
i )

E Pi__
Ui—Pi 2Ui

1 u2
_E Pi_ui+
2 u — PR

1 ("~ u?
— X—u + dx
2p; Jo U — X

|
INJ ko]
|
N &
_|_
N
S |‘CN
=
VRS
<
| le
=)
N———
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Furthermore

[ F(P-) ] [ Ui ] Ui < u; >
E =E —1|=—In -1
1-FR(P—-) u — P pi U —p

Substituting these expectations irf{83), we get

S L Y - L 3.11
¢i_4 2 2p n<ui_pi> Vi[pi n<ui_pi> ] (311)

Consequentlythe optimal sequence to minimize the EWMF follows the nondecreas-
ing order of{¢; /w; }, with ¢; given by(3.11).

Example 3:A Problem with Periodical Inspectiomhis example represents the
problem with regular maintenance checkup and repdiich often occurs in prac-
tice, and can be described as followter starting processing a jothe machine
is checked periodically to monitor its conditiomhe check determines whether
the machine needs to be shut down for repaut the check itself does not inter-
rupt the processingf a shutdown is necessarthe job will have to start over
again after the machine resumes its operatatherwise the processing continues
without interruption The probability that a shutdown is necessay well as the
period between two consecutive check® job dependentlue to different impacis
burdens to the machine created by the job being proceddert specifically
when jobj is being processedhe machine undergoes a check evbrynits of
time, and there is a probabilitg, (0 < ¢, < 1) at each check that the machine has
to be shut downOther than these possible shutdowtie machine works contin-
uously The problem is to determine the optimal sequence to process the jobs so
as to minimize the EWMF

In this casea breakdown occurs whenever a check determines to shut down the
machinewhich is preemptive-repegind the repair time represents the downtime
Under the above-described settintjge uptime to process jghs a discrete random
variable with masses ath and P(Y;,=mb) =6,(1—6,)™ , m=1,2,.... Itfollows
thatF;(x) = 0 forx < b;, and

1-(1-6)"

m =1-(1-6)" (3.12)

FJ(X) = ;01(1— 0])i71 = 0]

formh=x<(m+1b,m=12,....
Letm; = m;(x) satisfym;b; < x = (m; + 1)b;. Then by (3.12),

1—F(x=) = (1— )™, (3.13)
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FurthermoregivenP = x, letm= m;(x); then by (3.12),
X m—1 )
[n-Romay="3 @)+ @-a)mx—my)
0 i=0

1—-(1-6)"
6,

by b
=—+1-6)"|x—mh——).
6, 0,

Substituting this an@3.13) into (3.9), we get

b+ (1—6,)"(x—mh)

1 by b
1 b by
—(1 0)m< +VJ>+x—mlq—;j—vj
b + 76 _
:X_mj(x)bi+T[(l_ej) me 1], (3.14)

i
Now, by (3.13) and Theorem IE[R] < o if and only if
E[(1-6) ™™ ] < o,
or, equivalently
E[(1-6) /"] <oo. (3.15)

Assume that conditiofB.15) holds forj =1,2,...,n. Then by (3.14) and the law of
iterated expectatigiwe get

bj + Vj 0] P
]
Consequentlyfor the above-described maintenance probldgra optimal sequence
to minimize the EMWEby Theorem 2should follow the nondecreasing order of

{9 /w;}, where theg; are given by(3.16). Moreover because the distribution of
m;(B) is given by
Prim(B) =m)=Pr{imh <B =(m+1)b}, m=012,...,
¢; can also be calculated by
b+ »;6,
b

0
=E[R]+ 2 [W—mq]m{mq <P =(m+1b}-

Let us now look at some special cases of Example 3
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Case I: Uniform processing times.et B be uniformly distributed ove(0, Mby) for
some integeM > 0. Then

b1
Pr{mh <P =(m+1)b}=— = . m=012..M-1

Mb,

Hence by either(3.15) or (3.16),

Mb] M-1 mq bl + VJ' 49] M—1 (1_ 9]')_m
E[Rl=— - > — + -1
[7)]] 2 mE=1 M 0] m=0 M

2 2 0, M (1-6)*-1

= — 4 —
2 0 | MgL—6)"?

Case Il: Smallb;. If the check is made frequently so thais relatively smallthen
m;(x)b; ~ x. Hence by (3.15), E[7 ] can be approximated by

E[R]~ TE[(l—ej)*Pi/bi —1]. (3.17)
i

Case lll: b — 0 but, /b remains stableNote that frequent checks should resultin

a small chance to shut down the machine at each chatlg; = g;b; andb; — 0,

wherep; is a constantThen by (3.17),

o) 1

E[R]~= <_Jb + VJ)E[(]-_:BJ' b) 8" —1] - <E + Vj> E[eff —1],
i i

which is the same &8.10) with exponential uptimed hus exponential uptimes can

be regarded as a limiting case of the maintenance problem in Example 3

Remark 3: Previous results on preemptive-repeat machine breakdowns are mainly
restricted to the case of exponential uptim@ar resultshowevey allow a general
distribution for the uptimesThis broad coverage allows one to handle a variety of
interesting casess illustrated by Examples 2 and 3

4. THE CASE WITH RESAMPLING

We now turn to the case with resampljrigat is each time when a job is repeated
the processing time required is resampled according to its probability distriblrtion
this casethe counting process defined(1) is no longer applicable and we define
instead the following random variable

Ti = suplk=0:Yi; <Pio,Yi2 <Py,...,Yi k1 < Puct (4.1)
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Then the time that joh occupies the machine is given by

T

7Di = Pi,Ti + E‘ (Ylk + Zik)’ (42)
k=0

and the completion time still has the for@(A) = Xjep 1) B. Furthermorethe
objective function to be minimized remains as the EWMF defined2»).

LetP = {Py }i—o andP; be a representative ¢P; }. With similar arguments as
in Section 2we can derive the following results

LeEMmMA 2: Conditional onP,, the distribution of Tis given by
k
PH{T, = k|P} =[1- F(P, xs17)] H Fi(P;—), k=0,12,..., (4.3)
j=0

and unconditionally T follows a geometric distribution with parametdr —
E[F (P,—)], that s,

PriT, = k} ={1- E[R(P)}E*[FR(P-)]. (4.4)
As a result,
_ E[R(P)]
= T ER e (45)

Proor: By the definition ofT; in (4.1) and the assumptions d¥; }, we have
PrT, = K|P} = Pr{Y;; < Pip,...,Yik < P, Y ki1 = P, k1| P}
= Pr{Yi < Pi|Pu}PrYi ki1 = Py wi1| Pk a)

Kk
= [1_ Fi(Pi,k+1_)] H Fi(Pij -), k=0,12,...,
i=0

which gives(4.3). Equationg4.4) and(4.5) then follow immediately u

Tueorem 3: The mean of] is given by

1 R
E[R]= TW(E{L (1-F(y) dY} + v E[F;(P;—)]>, (4.6)

which is finite if and only if EF;(B—)] < 1.

Proor: The proof is similar to that of Theorem but by conditioning o andT;,
as in the proof of Lemma.2Hence the details are omitted n

Theorem 3 leads immediately to the following result on the optimal sequence
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THEOREM 4: Suppose that B+ (P,—)] < 1fori =1,...,n. Then, the optimal se-
guence to minimize ; w; C; (A)] isin nondecreasing order &, /w; }, whereg; =
E[P],i=1...,n, are given by (4.6).

Remark 4: WhenY;, are exponentially distributed with meayBl, similar to(3.10),
we can see thdd.6) reduces to

:;<EE[1_eﬁipi]+ViE[1_eBiPi]>

I\ Bi

(L, \1-Ele®”] .
_(,8,- V‘) E[e AR] (4.7)

Thus the optimal sequence minimizing the EWMF is in nondecreasing order of
{&i /W }, with ¢b; = E[P; ] given by(4.7), which coincides with the result of Frosf{ig].

From Theorem d4it is not difficult to obtaing; = E[P, ] in specific situations
For examplein Example 2 of Section,3ve can show that

2i i |2 iMi
g =2 [P P mm]
2ui—p;i | 2 6y 2y;

which is finite as long ag; < 2u;. In Example 3 of Section 3let p; =
E[(1—6,)™®)]. Then

bi 1_p| 1 m(P.)
i = E+Vi + —E[1-6)™" (P — m(P)b)],

which is finite provided 0< 6, < 1.

5. COMPARISONS BETWEEN WITH AND WITHOUT RESAMPLING

We have seen in the last two sections that the results differ between the case with
resampling and that withowtVe now attempt to draw some comparisons between
these two cases in terms of the expected mean flow.time

First let us look at an intuitive exampl&uppose that the processing time of a
job can take any value between 5 and 10, may Assume that a breakdown occurs
after the job has been processed continuously for 7 mihbefore it is completed
Then in casdi) (without resampling the job will need at least another 7 min to
complete and so the processing time after the machine resumes operation must be
between 7 and 10 mirin case(ii) (with resampling, on the other handhe infor-
mation from previous experience is lost and the processing time may still take any
value between 5 and 10 mimherefore in case(i), the work done on a job is lost
when a breakdown occurbut not the information from the previous experience
whereas in caséi), all is lost once the machine breaks davimterestingly this
yields the phenomenon that the overall occupying time of a job in(@atends to be
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longer than that in caséi). This is confirmed theoretically in the following
proposition

ProrosiTION 1: Denote the expected occupying timgHe] of job i by E[P;]in the
case without sampling and by [P ] in the case with sampling. If;loes not de-
generate in the support of &), then E[P,] > E,[P,].

Proor: Define
M0 = [ [ Fldy+n o), (5.2)
0

Then by Theorems 1 and,3

Hi(R)
1-F(P-)

E[H:(P)]

ElL-F(P)] 2)

E1[7%]=E{ ] E[P]=

Itis easy to see thad; (t) is strictly increasing and 4 F;(t—) is strictly decreasing
so thatH;(t)/[1 — F;(t—)] is strictly increasingin the support of;(t). Hence it
follows from Lemma Ab) in the Appendix that

Hi(P)

E[H(P)] = E[(l_ Fi(Pi-)) T(P—)

Hi(P)
]<E[1—Fi(Pi—)]E[ ]

1-F(P-)

which is equivalent tde,[P; ] < E;[P;] by (5.2), provided thatP; does not degen-
erate in the support @ (t). [ ]

Another interesting difference between the two cases lies in the impact of a
breakdown on the remaining occupying timest us now compare the expected
remaining occupying time of jojpconditional on the event that a breakdown occurs
before the job is complete@ounted from the time that the machine resumes its
operation; that is E[B — Yj; — Zj1|B > V1], with the unconditional expected
occupying timeE[7 ]. Proposition 2 shows th&[7 — Yj; — Z;1|B > Y]] is gen-
erally greater thai [/ ] in the case without resampling

ProprosITION 2: Inthe case without resampling, suppose that condition (3.4) holds;
then, HA — Y1 — Zj1|B > Yj1] = E[R ] and the strict inequality holds as long as P
does not degenerate in the support ¢ftf-

Proor: We first modify the proof of Lemma 1 to obtain

Pr{Yil < ta""Yik < t’Yi,k+l = t}
Pr(Y, <t)

Pr{N;(t) = k|Y;, <t} =

= Fikil(t_)[l_ Fi (t_)], k= 1,2,...,
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and so

EIN (DY <t]= (5.3)

Similar to the proof of Theorem, ive have

N (t) n
E[EY N () = n,le<t] = 3 El %< )= (0~ DELYlY <]
n—1
“EO [O’t)ydﬁ(y)
and
N (1)
EL22 ZiIN(t) = n,Yj; < t} =(n—1E[Z,]=(n— 1Dy,
Thus by the law of iterated expectation together wigh3),
N (t
E[ i)(ij-i-ij) Yj1<t1 —elne - S IRV Yo <t
k=2 v t v
1 1
- (i o, om0 (=5 2)
1
= Fj(t—)( [O,I)de](y)+vj Fj(t—)>. (5.4)

It follows from (5.4) and(3.8) that
E[(R = Y1~ ZidlgoyylR = t]
=ElR ~ Y= Z)ley, B =t]
=E[B — Y1~ ZuB =t > Y ]Pr(Y;; <t)

N (t)
k=2

= F(t-) {t + ydR(y) + v F,-(t—))}

1 <
1-F (=) \Joo

1 t
= Fj(t—){Tj(t_)(—L [1— Fj(y)]dy+ v H(t-))}
= F(t-)H (1), (5.5)
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whereFlj (t) = H;(t)/(1 — Fj(t—)), with H;(t) defined in(5.1). Consequently
E[(Pj - Yj1 - Zjl)I(P]>le)]

Pr(B > Y1)
_ E[F(P-)H;(P)]

E[F(R-)]

E[7)j _le_zj1|Pj > le] =

(5.6)

Onthe other handby (3.3), we haveE[ 7 | = E[Flj (R)]. Comparing it with(5.6), we
can see thaE[B — Y1 — Zj;|B > Y;1] = E[R]if and only if

E[FR(R-)H;(B)] = E[F(R-IE[H (R)]. (5.7)

AsFi(t—) andﬁj(t) are nondecreasing functiqremd strictly increasing in the sup-
port of F;(t), by Lemma Aa) in the Appendixthe inequality in5.7) is valid for any
nonnegative random variabR, with the strict inequality holding provideg does
not degenerate in the supportigft). u

For the case with resamplingrguments similar to those aboi&y condition-
ing onP, andT;) show thaE [ — Y, — Z;1|P, > Yj;] = E[ R ] (see also Frostifp]).
Therefore the expected remaining occupying time of a job increases after a
breakdown in the case without resamplibgit remains the same in the case with
resampling

6. CONCLUDING REMARKS

Stochastic scheduling subject to preemptive-repeat machine breakdowns is an im-
portant and challenging problerilowever unlike the problem with preemptive-
resume breakdownprogress achieved up to date on this problem is very limited
this article we have studied the problem in a fairly general and unified setting
which allows the uptimes and downtimes of machine breakdowns to be job depen-
dent the uptimes and downtimes to follow any general probability distributiend
the processing times to follow any general probability distributigveshave further
considered two possible situations on the realization of a random processing time
after a machine breakdowthe case without resampling and the case with resam-
pling, and revealed some interesting phenomena on the differences between these
casesWe have investigated the optimal solutions under the criterion to minimize the
expected weighted flow tim&Ve show that the optimal solutions can be constructed
under an index rule comprising the parameters of the m&#sults for some cases
of important practical relevance have also been developed

The investigations on the problem with the preemptive-repeat modeteve
erthelessfar from being completeand there are many important and interesting
guestions to be further studie@in interesting but difficult problem is to consider
multiple machinesconfigured in parallel or as a flowshop or jobshd@pptimal
solutions with respect to other performance meas(sesh as those involving due
dates for the jobsare also interesting topics for further investigation



484 X. Cai, X. Sun, and X. Zhou

Acknowledgments
The authors are grateful to an anonymous referee whose valuable suggestions and comments have helped

improve the articleThis research was partially supported by the Research Grants Council of Hong Kong
under Earmarked Grants CUHK 44/99E and PolyU 514201E.

References

1. Adiri, I, Frostig E., & Rinnooy Kan A.H.G. (1991). Scheduling on a single machine with a single
breakdown to minimize stochastically the number of tardy jblasval Research Logisti&8: 261-271

2. Birge, J, Frenk JB.G., Mittenthal J, & Rinnooy Kan A.H.G. (1990. Single-machine scheduling
subject to stochastic breakdowxaval Research Logistic37: 661-677

3. Cai, X. & Zhou, X. (1999. Stochastic scheduling on parallel machine subject to random breakdowns
to minimize expected costs for earliness and tardy.gogerations Research7: 422—437

4. Cai, X. & Zhou, X. (2000. Asymmetric earliness-tardiness scheduling with exponential processing
times on an unreliable machin&nnals of Operations Researélg: 313-331

5. Frostig E. (1991). A note on stochastic scheduling on a single machine subject to breakdown—the
preemptive repeat modéd?trobability in the Engineering and Informational Sciené&e849-354

6. GlazebrookK.D. (1984. Scheduling stochastic jobs on a single machine subject to breakdowns
Naval Research Logistics Quarterdi: 251-264

7. GlazebrookK.D. (1987). Evaluating the effects of machine breakdowns in scheduling stochastic
problems Naval Research Logistic3: 319-335

8. Mittenthal J & RaghavachariM. (1993. Stochastic single machine scheduling with quadratic early-
tardy penaltiesOperations Researchl: 786—796

9. PinedgM. (1995. Scheduling: Theory, algorithms, and systeBrgglewood CliffsNJ: Prentice-Hall

10. Pinedg M. & Rammouz E. (1988. A note on stochastic scheduling on a single machine subject to
breakdown and repaiProbability in the Engineering and Informational Scien@#1-49
11 Zhou X. & Cai, X. (1997). General stochastic single-machine scheduling with regular cost func-

tions Mathematical and Computer Modellirh: 95-108

APPENDIX

LEMMA A: Let A be a subset dD,c0) and X be a nonnegative random variable which is not
degenerate in A.

(a) If f(x) and g x) are two nondecreasing functions fijoo), then
E[ f(X)9(X)] = E[ F(X)]E[9(X)] (A1)
and the strict inequality holds if(f&) and g(x) are strictly increasing in A.
(b) Iff(x) is strictly increasing and ¢x) is strictly decreasing in A, then

ELF(X)g(X)] < E[ f(X)IE[g(X)].

Proor: Assume that(x) andg(x) are two nondecreasing functions [djoo). Define s =
E[ f(X)] anda = inf{x:f(x) > W}. Then f(x) = y for x > aandf(x) = s for x < a.
Hence

[f(X) —plg(x) =[f(x) — prlg(a) forx>a
[k — F(X]a(x) = [ — F(x)]g(a) forx<a.
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As a result
[f(X) = lg(x) =[ f(x) — K ]g(a) forall x=0. (A.2)
It follows that
E[ F(X)g(X)] = E[ f(X)IE[g(X)] = E[(f(X) — pr)g(X)]
= E[(f(X) = p)g(a)]
= E[f(X) = pr]g(a)
= (M — Kr)g(a)
=0. (A.3)

Thus (A.1) holds Furthermorethe equality in(A.3) can only hold if the equality itA.2)
holds for allx in the support of the distribution &, which is not possible if (x) andg(x) are
strictly increasing imA. This proves parta); part(b) then follows immediately by applying
part(a) to f(x) and—g(x). |



