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MODIFIED KASTNER FORMULA FOR CYLINDRICAL CAVITY 
CONTRACTION IN MOHR-COULOMB MEDIUM FOR 

CIRCULAR TUNNEL IN ISOTROPIC MEDIUM  
 
 

Y. M. Cheng * 

Department of Civil and Structural Engineering 
Hong Kong Polytechnic University 

Kowloon, Hong Kong 

ABSTRACT 

The Kastner formula for cavity contraction is one of the commonly used formulae for the cavity con-
traction problem in tunnel excavation, and it is based on the assumption of small displacement around the 
cavity with no volume change in the plastic zone.  In this paper, the errors arising from these assump-
tions are discussed, and the volume change of the plastic zone is considered.  It can be seen that this as-
sumption is reasonable for normal situations, but for rock with weak shear strength, the Kastner formula 
should be used with care, especially in situations where there will be relatively large volume changes in 
the plastic zone. 

Keywords: Cavity contraction, Cavity expansion, Kastner formula. 

1.  INTRODUCTION 

Cavity expansion theory was first studied by Bishop 
et al. [1] for the metal indentation problem and was 
later applied to geotechnical problems by Gibson and 
Anderson [2], Ladanyi [3], Palmer [4], Vesic [5], 
Hughes et al. [6], Randolph and Worth [7], Randolph et 
al. [8], Houlsby and Withers [9].  The asymptotic 
value, which is also known as the cavitation pressure, 
was determined by Hill [10], Durban and Baruch [11] 
and Durban [12,13].  The problem of cavity expansion 
and cavity contraction has attracted much attention in 
geotechnical problems with application to the bearing 
capacity of deep foundations, interpretation of pres-
sure-meter tests, breakout resistance of anchors, pile 
driving, wellbore instability, underground excavation 
and blasting fracturing by explosives.  Yu [14-16] has 
summarised and presented the major developments in 
the field of cavity expansion/contraction theory and its 
geotechnical applications.  

The stability of tunnel surrounding rock is controlled 
by the stresses and the strength of the surrounding rock.  
If the surrounding rock is in a plastic/fracture state after 
the tunnel is driven, the surrounding rock will be unsta-
ble.  The thickness of the plastic zone can be taken as 
a comprehensive index to evaluate the stability of the 
surrounding rock of a deep tunnel.  Kastner’s solution 
[17] is often used in elastic-plastic analysis for the sur-
rounding rock of a circular tunnel.  It is well-known 

that the Kastner formula is based on the ideal elastic- 
plastic model, and the Kastner solution may deviate 
from the actual situation in the surrounding rock.  
Kastner [18] obtained an improved solution for the ex-
tent of the plastic zone of a circular opening in elasto- 
perfectly plastic material, and subsequently Salencon 
(1969) presented a more systematic elasto-plastic 
analysis to the same problem.  Different constitutive 
models have been used to obtain cavity expansion solu-
tions that can consider the frictional, cohesive and dila-
tant behaviour of geomaterials (Carter et al. [19]; Yu 
and Houlsby [20]; Yu [21]; Collins et al. [22]; Salgado 
et al. [23]; Ladanyi and Foriero [24]). 

The use of the method by Kastner [17] for the analy-
sis of yield zone radius and tunnel boundary displace-
ment is very popular in China and some other countries.  
Because there are currently many tunnel and mining 
works in the world (and particularly in Asia), the valid-
ity of the method by Kastner [17] becomes an important 
issue.  Wilson [25] also derived the formulas for cal-
culating the yield zone radius and tunnel boundary dis-
placement for the cavity contraction problem.  Be-
cause some of the assumptions in the formulae by 
Kastner [17] and Wilson [25] may not be satisfactory, 
revised formulae will be derived in this paper without 
these assumptions.  The differences between these 
new results and the original results will be compared to 
examine the validity of the popular Kastner [17] and 
Wilson formulae [25].  
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2. UNIFIED DERIVATION OF CAVITY 
EXPANSION AND CAVITY CONTRACTION 

Suppose that the original primary stress in the soil or 
rock is p0 (at rest pressure coefficient Ko  1) and that a 
cylindrical cavity is excavated with a uniformly distrib-
uted internal pressure pu acting on the cavity surface.  
When p0 < pu, it is the case of cavity expansion (Fig. 1), 
and for p0 > pu, it is the case of cavity contraction (Fig. 
2).  For the cavity expansion problem of pressure- 
meter test, pu refers to the pressure arising from the 
expansion of the pressure-meter membrane, and for the 
cavity contraction problem of tunnel excavation, pu 
refers to the supporting pressure.  

For both problems, the initial radius of the cavity is 
denoted as R0, and the ultimate radius is denotes as Ru.  
A cylindrical zone around the cavity will pass into the 
state of plastic equilibrium if pu is much larger than p0 
for cavity expansion, or pu is much less than p0 for cav-
ity contraction.  Suppose the plastic zone around the 
cavity will extend to a radius Rp.  Beyond that radius, 
the rest of the mass remains in a state of elastic equilib-
rium.  It is assumed that the soil or rock in the plastic 
zone behaves as Mohr-Coulomb material with shear 
strength parameters c and .  Beyond the plastic zone, 
the soil or rock is assumed to behave as a linearly de-
formable, isotropic solid defined by a modulus of de-
formation E and a Poisson’s ratio . 
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Fig. 1  Expansion of cavity 
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Fig. 2  Contraction of cavity 

3.  ELASTIC RANGE 

According to theory of elasticity, we can take the 
stress function  as 

 2= 0.5 lnAr B r   (1) 

where A and B are constants.  The radial and circum-
ferential stresses are then given by 
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From the far field boundary condition, when r  , 
both r and  equal p0, so A equals p0.  Then, 
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4.  PLASTIC RANGE 

The equilibrium differential equation is given by 

 0r rd

dr r
  

   (6) 

For cavity expansion, r , according to Mohr- 
Coulomb rule, r is given by 
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Introducing Eq. (7) into (6), 
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Solving Eq. (8) gives 
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 
      (9) 

where D is a constant.  When r pu, r = Ru (radius of 
hole at ultimate), so 
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Introducing Eq. (10) into (9), 
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Introducing Eq. (11) into (7), 
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At the boundary r Rp, the stresses of the elastic and 
the plastic zones must coincide, so from Eqs. (4), (5), 
(11) and (12), we obtain 
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From Eqs. (13) and (14), Rp is given by 
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From Eq. (15), we can also obtain 
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For cavity contraction, r < , according to the 
Mohr-Coulomb rule, , is given by 
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Introducing Eq. (17) into (6), 
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Solving Eq. (18), 
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where D1 is a constant.  When r pu, r Ru (radius of 
hole at ultimate), so 
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Introducing Eq. (20) into (19) gives 
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or 
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Introducing Eq. (22) into (17) gives 
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At the boundary r Rp the stresses of the elastic and 
the plastic zones must coincide, so from Eqs. (4), (5), 
(22) and (23), we obtain 
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Using Eq. (24) and (25) gives 
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From Eq. (26), we can also see that 
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5.  STRESS DISTRIBUTION FOR CAVITY 
EXPANSION AND CAVITY CONTRACTION 

In Eq. (16), if Ru Rp, then pu(1 sin)p0ccos.  
For cavity expansion, there is no plastic zone around 
the cavity when pu(1 sin)p0ccos.  Similarly, 
in Eq. (27), if Ru Rp, then pu(1 sin)p0ccos.  
For cavity contraction, there is no plastic zone around 
the cavity when pu(1 sin)p0ccos.  So 
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In Fig. 3, the stress distribution around the cavity is 
shown with the variation of pressure pu.  When pu < (1 
sin)p0 ccos, in the plastic zone, both r and 
increase with the increase in the radius, while in the 
elastic zone,   decreases and r still increases with 
the increase in the radius.  At radius Rp,   has the 
largest value.  When (1 sin)p0 ccos  pu < p0, 
there is no plastic zone around the cavity, and r in-
creases while  decreases with the increase in the ra-
dius.  When pu p0, in all the soil or rock mass around 
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Fig. 3  Stress distribution around the cavity 

the cavity, r is always equals to with no plastic zone.  
When p0 < pu  (1  sin)p0 ccos, there is also no 
plastic zone around the cavity, and r decreases while 
increases with the increase in the radius.  When pu 
> (1 sin)p0 ccos, in the plastic zone, both r and 
 decrease with the increase in the radius, while in the 
elastic zone,   increases while r still decreases with 
the increase in the radius.  At radius Rp,   has its 
lowest value. 

5.1  Kastner’s Formula for Cavity Contraction 

For a deep circular tunnel excavation, the radius Rp 
of the plastic zone was derived by Kastner [17] as 
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Comparing Eq. (28) with Eq. (26), we can see that in 
the Kastner formula [17], it is implicitly assumed that 
Ru R0.  This assumption is based on the small dis-
placement around the cavity and no volume change in 
the plastic zone.  Based on this assumption, the dis-
placement of the tunnel boundary can be derived as 
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5.2  Wilson’s Formula for Cavity Contraction 

For a deep circular tunnel excavation, the radius of 
the plastic zone was derived by Wilson [25] as 
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It can be seen that this equation is the same as the one 
derived by Kastner [17].  However, for the derivation 
of the tunnel boundary displacement, the expansion in 
the yield zone is considered by Wilson [25], and an 
average “expansion factor” , which is linearly de-
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pendent only on the distortion, is assumed.  The equa-
tion for the tunnel boundary displacement according to 
Wilson [25] is 
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Using the symbols presented above, this equation can 
be expressed as 
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Above, when the expansion factor  is equal to zero, 
Eq. (31b) can be reduced to the Kastner formula [17]. 

5.3 Modified Kastner Formula for Cavity 
Contraction 

It is clear that for calculating the radius of the plastic 
zone, both the Kastner [17] and Wilson [25] formulae 
implicitly assume that RuR0.  For calculating the dis-
placement of the tunnel boundary, no volume change in 
the plastic zone is assumed in the Kastner formula [17].  
Volume change is considered by Wilson [25], but the 
assumption of small displacement compared to the tun-
nel radius is still required to simplify the derivation.  
The expansion factor by Wilson is different from the 
concept of volumetric strain in classical elastic-
ity/plasticity theory, and is proposed by Wilson [25] 
without any theoretical background and no simple 
method can be used to determine this complex value.  

In this paper, the error caused by the assumption of 
Ru R0 will be discussed, and the volume change of the 
plastic zone is considered by introducing an average 
volumetric strain , which is similar to Vesic’s deriva-
tion for cavity expansion (Vesic, [5]).  The relation-
ship of Ru and R0 is derived as follows. 

At the radius r Rp, the radial displacement, up, can 
easily be computed from the elastic theory: 
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where r(p) and (p) are the radial stress and tangential 
stress at the boundary of the elastic zone.  From Eqs. 
(33) and (34), it can be shown that 
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Introducing Eq. (35) in Eq. (32), 
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The volume change in the plastic zone is equal to the 
change of volume of the elastic zone plus the change of 
volume of the plastic zone.  It can be written as 
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where  is the volume change ratio in the plastic zone 
and 0 denotes an increase of the volume. 

Defining F 

1 sin

2sin
0( cot )(1 sin )

cotu

p c

p c

 
    

   
 and    

H  0

1
sin ( cot )p c

E

 
   , Eqs. (26) and (36) can be 

written as 

 p uR FR  (38) 

 p uu HFR  (39) 

Introducing Eqs. (38) and (39) into (37) yields 

 0 2 2

1

1 (1 ) (1 ) 1
uR R

F H
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 (40a) 

Defining ξ 
2 2

1

1 (1 ) (1 ) 1F H

 
      

, 

 0uR R   (40b) 

Introducing Eq. (40) into Eq. (26) gives 
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or 
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  (41b) 
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Obviously, the tunnel boundary displacement uo is the difference between Ru and R0, so 

 0 0 0 0u (1 )      and     /u uR R R R R        (42a) 

or 
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 (42b) 

 
Thus, the modified formulae proposed in this paper 

are derived as Eqs. (41) and (42) for the plastic zone 
radius and the tunnel boundary displacement, respec-
tively.  We will compare the results from the modified 
formula against the results from the Kastner [17] and 
Wilson [28] formulae.  Suppose a 3m diameter tunnel 
is excavated in a rock mass with a Poisson ration  
0.3 and elastic modulus E 3000MPa.  The primary 
stress p07.5MPa, and the supporting pressure pu 
0.1MPa.  For the first example, the cohesion c is 
equal to 2MPa, and the friction angle  is equal to 30.  
The  values for different volume expansion ratios, , 
are presented in Table 1.  It can be seen for this normal 
situation that the ratio of Ru to R0 is nearly equivalent to 
1, and the difference between Ru and R0 is not larger 
than 2.  It is hence reasonable to assume Ru R0 in 
the Kastner [17] and Wilson formulae [25] for normal 
situations.  If the friction angle is changed to 20 and 
the cohesion is reduced to 0.4MPa (Table 2), there are 
great differences between Ru and R0.  For weak rock, 
one should be careful when using the Kastner [17] and 
Wilson formulae [25] to calculate the plastic zone ra-
dius, especially in situation where a relatively large 
volume change in the plastic zone may occur.  

For the comparison of the tunnel boundary displace-
ment, though the volume change in the yield zone is 
considered in both the modified formula derived in this 
paper and the Wilson formula [25], different volume 
change parameters are used by Wilson and the authors 
without any direct relation between the parameters, so it 
is difficult to directly compare the results of these two 
formulas.  Therefore, the comparison of tunnel dis-
placement between Kastner [17] and the modified for-
mula was conducted first (shown in Fig. 4), and then the 
comparison between Kastner [17] and Wilson formula 
[25] was conducted (shown in Fig. 5).  If there is no 
volume change in the yield zone ( = 0), the dif-
ference between the modified formula and Kastner for-
mula [17] is not large (not exceeding 4 in these exam-
ples).  The results using the Kastner formula [17] and 
the Wilson formula [25] are the same when  is equal to 
zero because the Wilson formula [25] is reduced to the 
Kastner formula [17] in this case.  If volume change is 
considered, with the increase in the volume change pa-
rameter, the result using the modified formula increases 
much faster than the Wilson formula [25]. 

 
 

Table 1 The Ru to R0 ratio for a competent rock situa-
tion ( = Ru / R0) 

c (MPa)   

2 30 0 0.9964 

2 30 0.01 0.9937 

2 30 0.04 0.9863 

Table 2  The Ru to R0 ratio for weak rock ( Ru /R0) 

c (MPa)    

0.4 20 0 0.9757 

0.4 20 0.01 0.8993 

0.4 20 0.04 0.751 

 

Fig. 4 Comparison of tunnel displacement between 
Kastner [17] and modified formula in this 
study 

 

Fig. 5 Comparison of tunnel displacement (mm) be-
tween Kastner [17] and Wilson [25] formulae 
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6.  CONCLUSIONS  

The Kastner [17] and the Wilson [25] formulae are 
commonly used for the analysis of circular tunnels by 
engineers.  For the calculation of the yield zone radius, 
it is assumed that Ru R0 in both the Kastner [17] and 
the Wilson [25] formulae, and this assumption is based 
on small displacement around the cavity.  For the tun-
nel boundary displacement, the Kastner formula [17] 
requires the assumption of no volume change in the 
plastic zone, which is not required in the Wilson for-
mula [25], but the assumption of small displacement is 
still required in the method by Wilson [25].  In this 
paper, these limitations are removed, and the modified 
formulae are compared with the more popular formulae 
by Kastner [17] and Wilson [25].  From the compari-
sons, it can be seen that the assumption of Ru R0 is 
reasonable for normal situations, but for rock with weak 
shear strength, great differences can occur between Ru 
and R0.  Engineers should be careful when using the 
Kastner [17] or the Wilson [25] formula, especially in 
situations where a relatively large volume change ratio 
of plastic zone may occur. 
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