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IMPROVED HARMONY SEARCH METHODS TO REPLACE 
VARIATIONAL PRINCIPLE IN GEOTECHNICAL PROBLEMS 
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ABSTRACT 

Variational principle is an important principle in engineering discipline.  This principle is suitable for 
simple problems where an analytical expression can be determined, but there are many practical problems 
where the classical variational principle is practically impossible to be applied.  In this paper, the authors 
will try to demonstrate that the variational principle can be replaced by the use of modern artificial intel-
ligence based optimization method (harmony search method) which can be applied to much more com-
plicated problems.  Two different improved harmony search algorithms are proposed in this paper.  The 
new algorithms differ from the original algorithm in that: (1) The harmonies are rearranged into several 
pairs and the better pairs are used to develop several new harmonies; (2) Different probabilities are as-
signed to different harmonies.  The robustness of the proposed methods is demonstrated by using three 
difficult examples, and the sensitivities of the related optimization parameters are investigated through 
statistical orthogonal analysis. 

Keywords : Variational principle, Slope stability analysis, Harmony search algorithm, Minimum fac-
tor of safety, Random number. 

1.  INTRODUCTION 

A variational principle in physics is a method for de-
termining the state or dynamics of a physical system, by 
identifying it as an extremum (minimum, maximum or 
saddle point) of a function or functional.  Variational 
principle is expressed in terms of the calculus of varia-
tions.  According to Lanczos [1], any physical law 
which can be expressed as a variational principle de-
scribes an expression which is self-adjoint.  These 
expressions are also called Hermitian and are invariant 
under a Hermitian transformation.  

The formulation of the principle of least action is 
commonly attributed to Maupertuis [2] who stated that 
“Nature is thrifty in all its actions” and “The laws of 
movement and of rest deduced from this principle being 
precisely the same as those observed in nature, we can 
admire the application of it to all phenomena”.  Euler 
[3] gave a formulation of the principle in 1744.  The 
full importance of the principle to mechanics was stated 
by Lagrange [4], and the variational principle was used 
to derive the equations of motion by Hamilton [5,6] 

which is now called the Lagrangian equations of motion.  
Jacobi [7] tackled the problem of whether the varia-
tional principle found minima or other extrema (e.g. a 
saddle point); and most of his work focused on ge-
odesics on two-dimensional surfaces. 

In geotechnical engineering, variational principle has 
provided the solutions to many problems.  For slope 
stability problem, Baker and Garber [8], Baker [9] and 
Revilla and Castillo [10] have applied the principle to 
determine the factor of safety of a slope which does not 
require any assumption on the internal force distribu-
tion.  Through the use of the variational principle, the 
critical failure surface can be determined automatically.  
The variational formulation by Baker [9] was criticized 
by De Jong [11,12] as the stationary value may have an 
indefinite character rather than a minimum.  The 
global minimum is not necessarily given by the gradient 
of the function being zero if the global minimum lies 
along the boundary of the solution domain.  This con-
clusion was also supported by Castilo and Luenco 
[13,14] which was based on a series of counter-    
examples.  Baker [15] later incorporated some addi-
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tional physical restrictions into the basic limiting equi-
librium framework so as to guarantee that the slope 
stability problem has a well-defined minimum solution.  
Although the variational principle requires very few 
assumptions with no convergence problems during the 
solution, it is difficult to be adopted when the geometry 
or the ground/loading conditions are complicated.  
Variational principle is hence not adopted in any com-
mercial program or used in any practical problem. 

Besides the variational principle, optimization search 
for the critical failure surface (large number of control 
variables) has also been considered by various methods 
(mainly gradient type method) by Baker and Gaber [8], 
Nguyen [16], Celestino and Duncan [17], Arai and 
Tagyo [18], Baker [9], Yamagami and Jiang [19], Chen 
and Shao [20].  These classical methods are all limited 
by the presence of local minimum as the local minimum 
close to the initial trial will be obtained in the analysis.  
In view of the limitations of the classical optimization 
methods, the current approach is the adoption of the 
stochastic global optimization methods for the present 
problem.  These algorithms usually find a solution 
close to the best one with good efficiency.  Greco [21] 
and Malkawi et al. [22] adopted the Monte Carlo tech-
nique for searching the critical slip surface with success 
for some cases, but there is no precision control on the 
accuracy of the global minimum.  Zolfaghari et al. [23] 
adopted the genetic algorithm while Bolton et al. [24] 
used the leap-frog optimization technique to evaluate 
the minimum factor of safety.  Among the modern 
stochastic global optimization methods that have 
evolved in recent years, there are only limited applica-
tions in geotechnical engineering.  The simulated an-
nealing method, PSO, HM, ant-colony and Tabu search 
are first adopted by Cheng [25-28], while the genetic 
algorithm have been adopted by Zolfaghari et al. [23] 
and Cheng et al. [27] and the leap-frog algorithm 
adopted by Bolton et al. [24].  Cheng et al. [27] have 
carried out a detailed comparisons between six major 
types of stochastic global optimization methods, and the 
sensitivity of these methods under different optimiza-
tion parameters are investigated. 

Classically, static bounds to the control variables are 
used where the solution domain for each control vari-
able is fixed and pre-determined by engineering ex-
perience.  Cheng [25,28] has developed the first pro-
cedure which transformed the various constraints and 
requirement of a kinematically acceptable failure 
mechanism to the evaluation of the upper and lower 
bounds of the control variables.  The control variables 
are defined with dynamic domains where the bounds 
are controlled by the requirement of kinematically ac-
ceptable failure mechanism and are changing during the 
solution.  Through such approach, there is no need to 
define the static solution domain to each control vari-
able by engineering experience.  The approach by 
Cheng [25] is actually equivalent to the enforcement of 
convex slip surface by limiting the upper and lower 
bounds of the control variables sequentially, and this 
approach should be applicable to other disciplines 
which require a convex geometry (but not necessarily a 
convex function).  

In this paper, the variational principle will first be 
demonstrated to be equivalent to the global optimiza-
tion method.  If a robust global optimization method is 
developed, the analysis can avoid the problem as men-
tioned by De Josseline [11,12].  Towards this issue, 
the authors will adopt the efficient harmony search al-
gorithm and propose two improved versions of this 
method.  It will be demonstrated that the new algo-
rithms are more stable over wider conditions, and are 
recommended to be used for larger scale as compared 
with the original harmony search method.  

2.  EQUIVALENCE BETWEEN VARIATIONAL 
PRINCIPLE AND GLOBAL OPTIMIZATION 

SEARCH 

Since the variational principle is difficult to be used 
for general problems, the authors propose to use the 
modern global optimization as a replacement of the 
variational principle.  In the present paper, the authors 
will use slope stability problem for illustration.  Wu 
and Tsai [29] have introduced the variational principle 
for a slope in cohesive soil which is a highly simplified 
case.  In this paper, a more general formulation is con-
sidered and the applicability of the modern global op-
timization method is demonstrated.  For simplicity, the 
Janbu’s method [30] which assumes the interslice shear 
force to be zero is adopted in the illustration.  Con-
sider a simple slope as shown in Fig. 1 where the 
ground profile is given by Eq. (1) as:  

 1

1

0 0

( ) tan 0

x

f x x x d

h d x


   
 

 (1) 

in which,  is the slope angle and d1 is the horizontal 
extent of the slope from toe to the crest.  According to 
the Mohr-Coulomb failure criteria, ultimate shear 
strength f is expressed as:              

 tanf c      (2) 

Vertical force equilibrium gives: 

 sin cos 0W T P      (3) 

Where c and  are the shear strength parameters of soil; 
 and ds are the base normal force and base length at 
the base of a slice in Fig. 1(b); P n ds is the base 
normal force;  is the mobilized shear stress at base of 
slip surface;  is the inclination of the base of the slip 
surface; W is the weight of the slice and is given by W 
(f y) dx; T is the shear force at the bottom of the 
slice and T = ds.  Using Eqs. (1) and (2) and let dx 
approach the infinity, the mobilized shear stress  could 
be expressed as: 

 
( ) tan

tan

c f y

F y

   
 

 
 (4) 

where F is the factor of safety, y is the failure surface, , 
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c, and  are the bulk unit weight, cohesion and friction 
angle respectively.  Using the Janbu’s method [30] in 
the present study where the interslice shear force is as-
sumed to be zero: 

2
( tan ) / tan tan

    1  cos
tan

c W
F

W F




            
  

  (5) 

The total energy of the system comprises of three 
components, gravity, bottom shear force and interslice 
vertical force and horizontal force.  If there is no 
external horizontal force acting on the slope, based on 
the Janbu’s simplified method [30] with no vertical 
interslice force, the total potential energy S is expressed 
by Wu and Tsai [29] as Eq. (6) 

   
2

 
(1 ) ( )  

b

a
y f y y dx       (6) 

Substituting Eq. (4) into Eq. (6) yields 

 2( ) tan
(1 ) ( ) 

tan

c f y
H y f y y

F y

         
 

 (7) 

The Euler’s equation and the transeverality conditions 
of Eq. (6) could be expressed respectively as follows:  

 0y
y

dH
H

dx
    (8) 

 ( ) 0,  ,  yH f y H x a b      (9) 

where a, b are the x abscissa of the points where the 
failure surface intersects with the surface of the slope.  
From the boundary condition, for two ends of the pos-
sible failure surface, we have: 

 ( ) ( ) ,      ,  f x y x x a b   (10) 

Solve Eq. (9) using boundary conditions Eq. (10) gives: 

2 2 2 2 2 2

2
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y x
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f x F
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
  (11) 

From Fig. 1, it’s easy to find that y(a) y(b), then 

2 2 2 2 2 2

2
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(a)  Coordinates system and a slip surface 

 

 
(b) Internal forces in a slice from Janbu’s simplified method 

(interslice shear force is assumed to be zero) 

Fig. 1 A simple slope to illustrate the variational 
principle and harmony search method 

Solving Eq. (8), a second order differential equation 
governing the slip surface will be obtained: 

 ( )
B

y x
A

   (14) 

where  

 

2 2

2 2

( tan )( tan
           tan 2 tan tan )
B F y f F Fy

F y f

       
    

 
(15)

 

 2 22(tan ) ( ) tanA F c f y       (16) 

There are totally five unknowns: a, b, F, and two 
factors for the second order differential equation.  
There are also five equations: Two boundary conditions 
(Eq. 8), two transeverality conditions (Eq. 9) and one 
governing equation (Eq. 12).  Analytical solution to 
this system of equations arising from the use of varia-
tional principle is not easy to formulate, so a finite dif-
ference method is adopted for the solution in the pre-
sent study: 

(1) Set increment x. 
(2) Assume point A and F, then f (a), y(a), f '(a) are 

all determined from Eq. (10), y'(a) is calculated 
from Eq. (12) and y"(a) is calculated from Eq. 
(14).   

(3) Use Runge-Kutta method to approximate the 
solution of this initial value problem. 

(4) Trace where the failure surface intersect the 
slope profile, i.e. f (x) y(x)  and the number 
of steps required in the calculation of the factor 
of safety N is recorded. 

(5) Calculate the Factor of safety F using Janbu’s 
simplified method [30]. 
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(6) Check if the F obtained is close enough to pre-
viously one obtained in tracing the failure sur-
face.  

(7) When (6) is achieved, check whether f '(b) satis-
fies the transeverality condition (Eq. 11), if not, 
A will be altered, then go to (3).  If it does, the 
critical failure surface and the corresponding 
FOS are determined. 

For the present problem, the critical solution is de-
termined by the variational principle as well as the 
harmony search method.  For illustration, a simple 
homogeneous slope without water is considered.  The 
height of the slope is 5m, slope angle  45, c’ 10kPa 
and ’  5, 10, 15 and 20.  The comparisons be-
tween the critical factors of safety from the variational 
principle and harmony search method are shown in Ta-
ble 1.  It is interesting to note that the results by the 
two formulations are virtually the same, which has in-
directly demonstrated that the two methods are actually 
equivalent in analysis.  The critical failure surfaces 
obtained from the two methods are also virtually the 
same.  Since the use of global optimization method is 
much more convenient for complicated problem, it will 
be adopted in the later study to replace the use of varia-
tional principle in upper bound analysis. 

3.  PROCEDURES FOR GENERATING 
TRIAL SLIP SURFACES  

The critical solution in slope stability problem needs 
to consider two major issues: Generation of failure sur-
faces and the determination of minimum factor of safety.  
The slip surface generation method used in the present 
study is developed by Cheng [26,27] which is applica-
ble to both concave and convex slip surface for slope 
stability problem.  The procedures for generating an 
arbitrary slip surface is shown in Fig. 2, where the 
ground surface is represented by y yg (x), bedrock is 
represented by y R(x).  The trial slip surface in Fig. 3 
is composed of n + 1 vertices with coordinates of (xi, yi), 
in which i varies between 1 and n + 1, thus there will be 
n vertical slices with slice angle i, in which i varies 
between 1 and n.  The vertices V1 and Vn+1 are the exit 
and entrance points of the slip surface respectively, and 
the lower and upper bounds for these two vertices can 
be prescribed by the engineers easily.  Usually, the y- 
coordinates and/or the x-coordinates of these vertices 
are taken as the variables.  The x-coordinates of V2 to 
Vn can be obtained by even spacing as given by Eq. (17) 
while the upper and lower bounds to the y-coordinates  
Vi,max and Vi,min can be calculated by using Eq. (18). 

 1 1
1 ( 1),  2,  ...,  n

i

x x
x x i i n

n
 

      (17) 

 ,max

,min

( )
,   2,  ...,  

( )
i g i

i i

y y x
i n

y R x
  

 (18) 

In Fig. 3, a trial slip surface consists of n + 1 vertices, 
each of which is identified by the x- and y- coordinates 

Table1 Minimum factor of safety for different  by 
variational principle and global optimization 
method 

 5 10 20 30 40 

Eq. (12) 0.705 0.872 1.175 1.490 1.856

Modified 
harmony 

search
0.710 0.878 1.186 1.494 1.857

 

x1 

xn+1 

y

x0 

y=R(x) 

y=yg(x) 

x2,y2 

xn,yn xl 
xu 

xL 
xU 

… 

V1 

V2 
Vi 

xi,yi αi 

Vn 

Vn+1 
yi,max 

yi,min 

 

Fig. 2 A typical slip surface obtained by conventional 
procedure 

xl 

xn+1 y 

x 

(x2,y2)

β2 

βn+1 

(x3,y3) 

(xn,yn) 

y2min 

y2max 

y=R(x) 

V1 

V2 
V3 

Vn 

Vn+1

 

Fig. 3  Procedure for generating trial slip surface 

of xi, yi, where i ranges from 1 to n + 1.  The exit point 
and entry point, i.e. V1 and Vn+1 are controlled by using 
an upper and lower limits given by xl, xu and xL, xU.  
The x-coordinates of vertices from 2 to n are calculated 
by using the following Eq. (19). 

 1 1
1 ( 1 ),  2,  ...,  n

i i

x x
x x i i n

n
 

        (19) 

where i is a variable used to determine the x-     
coordinates of Vi and is subjected to 0.5 < i < 0.5.  
For a given value of x2, we can calculate y2max and y2min 
using Eq. (18).  A variable 2 within the range of 0 to 
1 is introduced to represent the y-coordinates of V2.  y2 
can be obtained using Eq. (20). 

 2 2min 2 max 2 min 2( )y y y y     (20) 

Two lines are obtained by connecting V1 and Vn+1, V1 
and V2 respectively.  The angles of the lines from the 



Journal of Mechanics, Vol. 27, No. 1, March 2011 111 

downward direction V1 are denoted as 2, , n+1   
respectively.  n  2 values are randomly generated 
within the range of 2 to n+1 using n  2 values of   
3, , n in the range of 0 to 1.0 as given by Eq. (21), 
and they are sorted by ascending order and are related 
to 3 to n respectively.  The y-coordinates of V3 to Vn 
are then determined by Eq. (22). 

 1 2( )i i n       (21) 

 1 1tan( / 2) ( )i i iy y x x        (22) 

where i = 3, , n. 
Each trial slip surface obtained by this procedure can 

be represented mathematically by the vector V (x1, 2, 
2, , n, n; xn1), in which 2n variables are used to 
determine the slip surface.  The lower bound and up-
per bound to each element in V are denoted as li and ui 
respectively, where i ranges from 1 to 2n.   

For the generated failure surface as shown in Fig. 4, 
CD can be considered as unacceptable as this will be a 
restraint to the slope failure.  CD can be kept for 
analysis if necessary, but it will not be the critical solu-
tion in most cases so that a more efficient search is to 
correct CD so that the failure mechanism is acceptable.  
D’ is determined by extrapolating BC to D’, where D’ 
and D have the same x-coordinate.  Vertices D should 
be moved to D’, and the same check should be per-
formed for every adjacent three vertices until the whole 
failure surface (convex surface) is acceptable.  If D is 
higher than D’, CD will be acceptable and no modifica-
tion is required.  In view of the above process, the 
optimization problem associated with the location of 
the critical slip surface for the present formulation is 
outline as Eq. (23).  

1 1

2 1

2 min 2 2 max 2

min     ( )

. .        

0.5 0.5   2,  ...,  

0 1     3,  ...,  

0 1

l u L n U
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i n i

f

s t x x x x x x

i n

i n

y y y





   

    

         

     

V

 

(23)

 

A 

B 

C 

D 

E 

F

D’ 

 

Fig. 4  Correction procedures used in this study 

It must be noticed that the trial slip surface of n + 1 
vertices is generated by using m = 2n variables.  The 
present technique in generating a failure surface has the 
advantage that every failure surface will be kinemati-
cally acceptable, and the number of control variables is 
kept to a limited value, and these two features have 
overcome the problems by Zolfaghari et al. [23] and 
Chen [31]. 

4.  ORIGINAL AND NEW HARMONY 
SEARCH ALGORITHMS  

Based on the author’s experience [27], the harmony 
search method is found to be relatively efficient and is 
adopted by the authors for many geotechnical problems.  
Harmony search algorithm (HS) was developed by 
Geem et al. [32] and Lee et al. [33] which was concep-
tualized based on the musical process of searching for a 
perfect state of harmony.  HS is a phenomenon-  
mimicking algorithm inspired by the improvisation 
process of musicians.  In the HS algorithm, each mu-
sician plays a note for finding a best harmony.  The 
advantages of the HS include: (1) Gradient of objective 
function is not required; (2) Discrete or continuous 
variables can be adopted; (3) Initial trial is not required; 
(4) May escape from local minima.  The HS algorithm 
uses a stochastic random search that is based on the 
harmony memory considering rate HR and the pitch 
adjusting rate PR.  Harmony search algorithm (HS) is 
a population based search method.  For readers who 
are not familiar with this method, the work by Lee and 
Geem [33] should be consulted first before reading the 
improved harmony search method in this paper.  A 
harmony memory HM of size M (usually equals 2m) is 
used to generate a new harmony which is probably bet-
ter than the optimum in the current harmony memory.  
The harmony memory consists of M harmonies (slip 
surfaces) and the M harmonies are usually generated 
randomly.  Consider 1 2{   ,  ...,  }MHM hm hm hm   

 1 2( ,  ,  ...,  )i i i imhm v v v  (24) 

where each element of hmi corresponds to that in vector 
V as described above.  The most important procedure 
in HS is the generation of a new harmony named hmM+1 
as shown in Fig. 5, and its solution procedures are out-
lined in Fig. 5. 

Step 1: Initialize the algorithm parameters: HR, PR, 
M and randomly generate M harmonies (slip 
surfaces) and evaluate the harmonies ; 

Step 2: Generate a new harmony (as shown in Fig. 5) 
and evaluate it; 

Step 3: Update the HM; i.e. if the new harmony is 
better than the worst harmony in the HM in 
terms of factor of safety, the worst harmony 
is replaced with the new harmony. 

Step 4: Repeat steps 2 and 3 until the termination 
criterion as suggested by Cheng et al. [28] is 
achieved. 
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i=1 

Generate a random number 1r  in (0, 1) 

Yes 

No 

NiiM vv  ,1
'  

 MN ,...,2,1  

Generate iMv ,1
'

  in 

the range ( ii ul , ) 

Generate a random 
number 2r  in (0, 1) 

r1<HR 

r2<PR 
No 
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iMiM vv ,1
'

,1     

Adjust iMv ,1
'

  by Eq(9) i<m 

Stop 

Yes 

No 

i=i+1 

 

Fig. 5  The procedure for generating a new harmony 

The flowchart of generating a new harmony hmM+1 is 
shown in Fig. 6 the adjusted process is given as fol-
lows: 

Take the ith value of the coarse harmony nh , niv , 

for instance, its lower bound and upper bounds are 
named herein vimin, vimax, a random number r0 in the 
range [0,] is generated.  If r0 > 0.5, niv  is adjusted to 

vni using the Eq. (9), otherwise, Eq. (10) is used to cal-
culate the new value of vni. 

 
  

  

1, 1, 1,

1, 1, 1,

( )    0.5

( )     0.5
M i M i i M i i

M i M i M i i i

v v u v rd r

v v v l rd r
  

  

     
      

 (25) 

where rd and ri are random numbers in the range [0,1] 
respectively.  In addition, the number of evaluations of 
objective function during the search for the optimum is 
denoted as NEOF, and this value can represent the 
computation time required by the optimization algo-
rithm. 

Based on many trials by the authors, it is found that 
the original simple harmony search algorithm works 
well for simple optimization problem with less than 25 
control variables in slope stability problems.  For more 
complicate problem with a large number of control 
variables, the authors found that the results from the 
original harmony search algorithm are not satisfactory 
for some difficult problems as shown in later section.  
The authors have developed two modified harmony 
search algorithms for such difficult cases which differ 
from the original method in two aspects.  The first 
difference is the probability of each harmony.  The 
better the objective function value of one harmony, the 
more probable will the harmony be chosen for the gen-
eration of a new harmony.  The second modification is 
that instead of a new harmony is generated as in the 
original method, several new harmonies (Nhm) are 
generated during each iteration step in the modified 
algorithm.  In general, the modified harmony search 
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Fig. 6  Rearrangement for harmonies in HM 

method (NHS) is much more effective than the original 
harmony search method for large scale optimization but 
will be slightly less efficient for small scale problem.  
NHS is also more stable for small to large scale prob-
lems and is recommended for use. 

In the original harmony search method (OHS), only 
one harmony is obtained from M harmonies in the cur-
rent HM, and each harmony is used with the same 
probability.  This is the main reason why the original 
harmony is highly efficient for small scale problem but 
can be trapped by the local minimum easily for large 
scale optimization problems.  Actually, the M  har-
monies in HM can be classified into groups based on 
their objective function values, and the probability of 
the better harmony should be higher than the worse 
ones.  In the new harmony search algorithm (NHS) as 
proposed in this study, the harmonies are rearranged 
into M / 2 pairs as illustrated in Fig. 6. 

In Fig. 6, mi, i  1, , M/2 is randomly chosen from 
M/2 + 1 to M.  The pairs located at the front of HM 
have greater probability to generate new harmonies.  
We can introduce a parameter  (0 <   1) to decide 
which pair is used to generate new harmonies.  An 
array BB( ) is used to represent the probabilities of all 
the pairs, where BB(i)  (1 )i1, i 1, , M/2.  
The accumulated probability array AC( ) is calculated 

as 
1

( ) ( )
i

j

AC i BB j


 .  A random number ra is ob-

tained within the range of 0 to AC(M/2).  If AC(i  1) 
< ra  AC(i), then the i-th pair is used to generate one 
new harmony.  The procedures for generating the new 
harmony by one given pair are outlined in Fig. 7.  
Suppose i-th pair of harmonies, namely, hmi and hmk, 
are used to obtain a new harmony.  A random number 
 in the range of 0.2 to 0.8 (the lower and upper bounds 
to  are based on the facts that the larger the value of , 
the more probable the better individuals in the current 
pair is chosen, and vice versa) is first randomly deter-
mined and the probabilities of hmi and hmk are given by 
i and k respectively using Eq. (26).  The accumu-
lated probabilities of hmi and hmk are aci and ack. 

 
;   (1 )

 ;   
i k

i i k i kac ac

       
     

 (26) 
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Fig. 7 The procedure for generating new harmony in 

NHS1 

If one random number rb within the range of 0 to ack is 
smaller than aci, then hmi is used, and if rb is higher 
than aci and smaller than ack, then hmk is used.  This 
procedure is called the choosing procedure. 

Instead of only one new harmony is obtained in the 
original Harmony search algorithm, several new har-
monies are generated in NHS.  Two different versions 
of new harmony search methods are proposed in this 
paper.  In the first method NHS1, the iterative steps 
for NHS1 are as follows: 

1. Step 1: Initialize the algorithm parameters: HR, PR, 
cp, , M and randomly generate M harmonies (slip 
surfaces) and evaluate them, the counter js  0, the 
optima harmony is called hmo and its objective func-
tion value is fo, its initial value is set to an arbitrary 
large value and a value of 100 (much greater than 
normal factors of safety) is taken for slope stability 
analysis; 

2. Step 2: As shown in Fig. 5, the harmonies in HM are 
grouped in to M/2 pairs. 

3. Step 3: Generate M/2 random numbers rni, i = 1, , 
M/2 within the range of 0 to 1.  If rni is lower than 
cp, a new harmony is obtained as illustrated in Fig. 6, 
and altogether D new harmonies are obtained.  One 
iteration step is finished and js js + 1; 

4. Step 4: Evaluate D new harmonies and choose M 
harmonies into HM from M old harmonies and D new 
harmonies.  The best harmony in HM is called hmg 
and its corresponding value is fg. 

5. If js N1, then check | fo  fg |  .  If this relation is 
satisfied, the NHS will terminate, otherwise, set N1 

N1 + N2, hmo = hmg; fo  fg and NHS will go to step 
2.  If js N1, NHS will go to step 2 then. 

It must be noted that M/2 random numbers and the 
parameter cp are used to determine the number of new 
harmonies to be generated within one iteration step in 
step 3.  An alternative procedure to determine the 

number of new harmonies is the use of parameter Nh 
which is the number of new harmonies to be obtained 
within one iteration step.  The latter procedure is much 
more straightforward and is also easier to implement 
than the former one.  In the following example studies, 
the value of Nh is equal to 5, and N1  500, N2  200. 

The second new harmony search method NHS2 dif-
fers from the original method in two aspects.  The first 
difference is the probability of each harmony.  Instead 
of the use of uniform probability in the original har-
mony search method, the better the objective function 
value of one harmony, the more probable will it be 
chosen for the generation of a new harmony.  A pa-
rameter (0 <   1) is introduced and all the harmonies 
in HM are sorted by ascending order, and a probability 
is assigned to each of them.  For instance, pr(i) means 
the probability to choose the i-th harmony  
Where 

 1( ) (1 )ipr i      (27) 

for i = 1, 2, , M.  From Eq. (27), it can be seen that 
the larger the value of , the more probable is the first 
harmony being chosen.  An array ST(i), i  0, 1, 2, , 
M should be used to implement the above procedure for 
choosing the harmony. 

 
1

( ) ( )
i

j

ST i pr j


   (28) 

where ST(i) represents the accumulating probability for 
i-th harmony.  ST(0) is defined as 0.0 for the sake of 
implementation.  A random number rc is given form 
the range [0, ST(M)], and the kth harmony in HM is 
chosen if the following criterion is satisfied. 

 ( 1) ( ) ,  1,  2,  ...,  cST k r ST k k M     (29) 

The second modification in NHS2 is that instead of a 
new harmony, a certain number of new harmonies (Nhm) 
are generated during each iteration step in the modified 
algorithm.  The utilization of HM is intuitively more 
exhaustive by generating several new harmonies than 
by generating one new harmony during one iteration.  
In order to retain the structure of HM unchanged, the M 
harmonies with the lower objective functions (for the 
minimization optimization problem) from M + Nhm 
harmonies are included in the HM again and Nhm har-
monies of higher objective functions are rejected. 

Based on extensive tests on different types of prob-
lems, the authors have found that the two improved 
harmony search methods usually perform better for 
more difficult problems (presence of multi local minima, 
large number of control variables) and the number of 
evaluations and the results are better than the original 
harmony search method.  On the other hand, for sim-
ple problems with smaller number of control variables, 
the original harmony search method is usually more 
efficient. 
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5.  NUMERICAL EXAMPLES 

Based on the authors’ internal study, the original 
harmony search method is found to be more efficient 
for small scale optimization problems.  When the 
number of control variable is large and there is a small 
region in the solution domain where there is a major 
change in the soil parameters, it is found that the origi-
nal harmony search method can be trapped by the 
presence of local minimum easily.  For the present 
proposals, it is also found to work well for normal 
problems over wide range of soil parameters where 
there is no special geotechnical features.  For prob-
lems with special geotechnical features, the robustness 
of the present optimization algorithm will be demon-
strated by three relatively difficult examples where the 
precise location of the critical failure surface has a 
strong influence on the factor of safety and many global 
optimization methods may be trapped easily by the lo-
cal minimum. 

To illustrate the applicability of the proposed modi-
fied harmony search methods, 3 examples will be con-
sidered.  Example 1 is a slope with four layers of soils 
as shown in Fig. 8 while the soil parameters are given 
in Table 2.  Soil layer 3 is a thin irregular weak layer 
and the Spencer method is used to calculate the factor 
of safety.  Since soil layer 3 is thin with poor soil pa-
rameters, many control variables should lie within this 
region which is not easily determined automatically 
from the OHS.  This situation is particularly important 
when the number of control variables is large which 
will be demonstrated.  The results as shown in Fig. 9 
have clearly illustrated that the performance of the OHS 
is poor under this case, while the improved harmony 
method give much lower factor of safety with similar 
critical slip surface as shown in Fig. 8. 

All the stochastic optimization methods rely on the 
use of some parameters which are difficult to be deter-
mined for general case.  In general, these parameters 
are based on the statistics from large number of nu-
merical tests.  It is surprising to find that the perform-
ance of the modern global optimization methods under 
different optimization parameters in slope stability 
problems is seldom investigated in the past.  Due to 
the special problems in slope stability analysis (discon-
tinuous function), the authors view that the performance 
of the algorithm with respect to the use of optimization 
parameters is very important and a statistical check has 
been carried out in the present study.  Assuming xl  
11, xu  15; xL  25, xU  35, the randomly generated 50 
series of parameters as shown in Table 3 are used to 
check the robustness of the present algorithm.  From 
Fig. 9, the results corresponding to the 50 series of pa-
rameters are mainly located in the range of 1.28 to 1.33, 
with only one result higher than 1.40 and two results 
higher than 1.35.  The average value of the 50 factors 
of safety is 1.31 and the average number of NEOF is 
11617.  If we assume the number of slice is equal to 
20 (21 control variables); four levels are set for three 
parameters: HR, PR,  thereby obtaining an orthogonal 
table given in Table 4.  Four levels for HR are 0.8, 
0.85, 0.9, and 1.0; 0.1, 0.15, 0.2, and 0.25 for PR; and 

Table 2  Geotechnical parameters of example 1 

Layers  (kN/m3) c (kPa)  (degree) 

1 19.0 15.0 20.0 

2 19.0 17.0 21.0 

3 19.0 5.00 10.0 

4 19.0 35.0 28.0 

Table 3 50 series of parameters for the investigation 
on the robustness of NHS1 and NHS2 

 1 2 3 4 5 6 7 8 9 10

HR 0.992 0.906 0.948 0.970 0.975 0.988 0.921 0.966 0.921 0.962

PR 0.186 0.133 0.101 0.269 0.187 0.131 0.208 0.192 0.263 0.163

 0.441 0.772 0.738 0.331 0.541 0.518 0.664 0.746 0.524 0.374

n 21 15 18 18 21 18 19 24 20 17

 11 12 13 14 15 16 17 18 19 20

HR 0.958 0.909 0.988 0.906 0.969 0.989 0.991 0.946 0.993 0.987

PR 0.205 0.180 0.221 0.295 0.149 0.287 0.180 0.299 0.154 0.195

 0.649 0.557 0.476 0.411 0.451 0.759 0.783 0.302 0.346 0.656

n 19 21 15 20 24 17 17 18 15 22

 21 22 23 24 25 26 27 28 29 30

HR 0.989 0.911 0.967 0.917 0.910 0.962 0.990 0.940 0.992 0.977

PR 0.123 0.249 0.236 0.297 0.201 0.166 0.132 0.215 0.200 0.175

 0.349 0.309 0.359 0.521 0.785 0.650 0.739 0.447 0.559 0.554

n 22 16 17 23 21 17 20 17 21 22

 31 32 33 34 35 36 37 38 39 40

HR 0.921 0.903 0.928 0.940 0.990 0.950 0.965 0.983 0.993 0.996

PR 0.216 0.196 0.185 0.102 0.153 0.237 0.282 0.122 0.131 0.255

 0.667 0.652 0.337 0.363 0.585 0.536 0.755 0.622 0.737 0.638

n 15 22 24 20 20 24 22 23 19 16

 41 42 43 44 45 46 47 48 49 50

HR 0.905 0.941 0.995 0.980 0.918 0.961 0.997 0.976 0.944 0.930

PR 0.293 0.139 0.228 0.127 0.196 0.125 0.288 0.190 0.212 0.199

 0.345 0.658 0.371 0.679 0.684 0.726 0.526 0.452 0.759 0.577

n 19 19 24 17 18 15 15 18 18 17

41

43

45

47

49

51

10 15 20 25 30 35 40
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Fig. 8 Geotechnical profile and critical solution for 
example 1 
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0.3, 0.4, 0.5 and 0.6 for .  The sensitivity of each 
parameter can be obtained through 16 tests.  If the F 
value (Factorial Analysis of Variance after Fisher [34]) 
of one parameter is larger than the critical value F0.05 
and is smaller than F0.01, it implies that the calculated 
result is sensitive to this parameter, otherwise if the F 
value is smaller than F0.05, it shows that the result is 
insensitive to this parameter.  If the F value is larger 
than F0.01, the result is hyper-sensitive to this parameter. 

For NHS1, From the result in the 5-th column in Ta-
ble 4, the F values of the three parameters HR, PR,  
can be obtained as 0.78,0.90 and 0.92 respectively 
while F0.05  4.8 and F0.01  9.8.  It can be concluded 
that the three parameters are insensitive to the analysis.  
Similarly, the F values of the two parameters HR, PR 
used in NHS2 can be calculated as 0.47 and 0.59, com-
pared with the standard value F0.05  3.9 and F0.01  7.0 
(different number of parameters and levels result in 
different values of F0.05 and F0.01, and they can be de-
termined easily from the existing Tables), we can con-
clude that both parameters are insensitive to the NHS2 
analysis.  The results obtained by NHS1 and NHS2 are 
almost identical in this problem. 

OHS is trapped by the local minima as shown in Fig.  
10 with relatively poor results for the factor of safety, 
though the NEOF required by OHS is smaller than 
those required by NHS1 and NHS2.  OHS located the 
factor of safety within the range of 1.40 to 1.60 with 
different number of control variables.  On the other 
hand, NHS1 and NHS2 find the minimum factor of 
safety cluster around 1.3 which is much better than the 
results by OHS.  One special advantage of the har-
mony search is that the number of evaluation does not 
increase sharply with the increase in the number of 
control variables (number of slice), and this is a very 
important reason for the adoption of harmony search 
method for large scale slope stability analysis. 

Example 2 as shown in Fig. 11 is a slope with three 
layers where an irregular weak layer is sandwiched 
between two strong layers.  The geotechnical proper-
ties for layers 1 to 3 respectively are friction angle 20, 
10 and 20; cohesion 28.73kPa, 0.0kPa, and 28.73kPa; 
and unit weight 18.84kN/m3 for all three layers.  The 
Spencer’s method is adopted to determine the factor of 
safety.  As described above, the same 50 series of pa-
rameters randomly generated within their correspond-
ing ranges are used to test the robustness of the pro-
posed algorithm. 

Assuming xl  30, xu  45; xL  70, xU  75, the same 
orthogonal test table as used in example 1 is performed 
to investigate the sensitivities of parameters in the pro-
posed algorithm.  The obtained results are listed in 
Table 5.  The corresponding F values for the three 
parameters are given by FHR  1.48, FPR  1.12, F  
1.68.  For NHS2, FHR  1.15, FPR  0.57.  Compared 
with the standard values of F0.05, F0.01, it can also be 
conclude that the three parameters are insensitive to the 
optimization analysis. 

The same values for the parameters used in OHS, 
NHS1, and NHS2 as used in example 1 are adopted to 
compare the results obtained by the three algorithms 
with the different number of slices.  The results are 

Table 4 Orthogonal test table of three and two pa-
rameters and four levels by NHS1 and NHS2 
respectively ** 

results 
 HR PR  

NHS1 NHS2

1 1 (0.85) 1 (0.10) 1 (0.3) 1.3196 1.2938

2 1 (0.85) 2 (0.15) 2 (0.4) 1.3325 1.3276

3 1 (0.85) 3 (0.20) 3 (0.5) 1.3542 1.3321

4 1 (0.85) 4 (0.25) 4 (0.6) 1.3391 1.3413

5 2 (0.90) 1 (0.10) 2 (0.4) 1.3370 1.3079

6 2 (0.90) 2 (0.15) 1 (0.3) 1.3492 1.2917

7 2 (0.90) 3 (0.20) 4 (0.6) 1.3265 1.3298

8 2 (0.90) 4 (0.25) 3 (0.5) 1.3245 1.3057

9 3 (0.95) 1 (0.10) 3 (0.5) 1.3616 1.3235

10 3 (0.95) 2 (0.15) 4 (0.6) 1.2924 1.3223

11 3 (0.95) 3 (0.20) 1 (0.3) 1.3050 1.3134

12 3 (0.95) 4 (0.25) 2 (0.4) 1.3171 1.2783

13 4 (1.00) 1 (0.10) 4 (0.6) 1.3509 1.3327

14 4 (1.00) 2 (0.15) 3 (0.5) 1.3262 1.3298

15 4 (1.00) 3 (0.20) 2 (0.4) 1.2998 1.3144

16 4 (1.00) 4 (0.25) 1 (0.3) 1.2914 1.2903

** note that the parameter  is not used in NHS2, so the 
number of total parameters is equal to 2 

Table 5 The orthogonal test table of four parameters 
and four levels for example 2 

results 
 HR PR  

NHS1 NHS2

1 1 (0.85) 1 (0.10) 1 (0.3) 1.4781 1.4578

2 1 (0.85) 2 (0.15) 2 (0.4) 1.4746 1.4379

3 1 (0.85) 3 (0.20) 3 (0.5) 1.4348 1.4849

4 1 (0.85) 4 (0.25) 4 (0.6) 1.4441 1.4707

5 2 (0.90) 1 (0.10) 2 (0.4) 1.3952 1.4034

6 2 (0.90) 2 (0.15) 1 (0.3) 1.4346 1.4041

7 2 (0.90) 3 (0.20) 4 (0.6) 1.4367 1.4684

8 2 (0.90) 4 (0.25) 3 (0.5) 1.4549 1.4092

9 3 (0.95) 1 (0.10) 3 (0.5) 1.3761 1.4690

10 3 (0.95) 2 (0.15) 4 (0.6) 1.3961 1.4154

11 3 (0.95) 3 (0.20) 1 (0.3) 1.4874 1.3912

12 3 (0.95) 4 (0.25) 2 (0.4) 1.4145 1.3789

13 4 (1.00) 1 (0.10) 4 (0.6) 1.4397 1.4071

14 4 (1.00) 2 (0.15) 3 (0.5) 1.4200 1.4052

15 4 (1.00) 3 (0.20) 2 (0.4) 1.4711 1.4654

16 4 (1.00) 4 (0.25) 1 (0.3) 1.4560 1.5514

 
 
summarized in Fig. 12.  Results in Fig. 12 are basi-
cally similar to those in Fig. 10.  OHS tends to locate a 
much higher factor of safety than NHS1 and NHS2 for 
a given number of slices and the results fluctuates in the 
range of 1.60 to 1.80 with the number of slices varying 
from 20 to 80.  On the other hand, the results by NHS1 
and NHS2 are much more stable than OHS and the 
numbers of evaluation are also acceptable (most prob-
lems are finished within 5 minutes).  

Example 3 as shown in Fig. 13 is based on a problem 
where an irregular weak layer is sandwiched between 
two strong layers.  The geotechnical properties for 
layers 1 to 3 respectively are friction angle 35, 25 and 
35; cohesion 20.0kPa, 0.0kPa, and 10.0kPa; and unit 
weight 19.0kN/m3 for all three layers.  For analysis, 
the parameters for this problem are xl  3.0, xu  8.0; 
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Fig. 10 Comparison of factor of safety and NEOF for 

different number of control variables between 
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Fig. 11  Cross section of example 2 
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Fig. 13  Cross-section for example 3 

xL  20, xU  28.  As described above, the orthogonal 
analysis is firstly performed to investigate the sensitiv-
ity of the related parameters.  The results obtained are 
listed in Table 6.  From the data listed in 5-th column 
in Table 6, we can calculate the F values of three pa-
rameters which are equal to 7.95, 14.80, and 5.32 re-
spectively for NHS1.  According to the comparison 
with the critical values F0.05 and F0.01, it can be con-
cluded that HR and  are sensitive and PR is hyper- 
sensitive to the analysis.  For NHS2, the correspond-
ing F values are 5.82 and 2.28 and HR is sensitive while 
PR is insensitive to the analysis.  It should be noted 
that the parameters used in the search algorithms are 
not sensitive for the simple examples, but they can be 
sensitive or hypersensitive for complicated examples.  
It is suggested that engineers should perform an or-
thogonal analysis for complicated problems.  The au-
thors have also found similar behaviour for genetic al-
gorithms and ant colony method.  Actually, all sto-
chastic global optimization method will face similar 
problem in the choice of parameters, but the present 
modified proposals have greatly reduced this limitation 
which is serious for the original formulation. 

The comparisons of results and NEOF between OHS, 
NHS1 and NHS2 in Fig. 14 show that the OHS locates 
results much higher than those by NHS1 and NHS2.  
The NEOF required by OHS is smaller than those used 
by NHS1 and NHS2.  This is mainly because after N2 
iterations, there is no improvement on the factor of 
safety obtained so far, which is called precocity.  On 
the other hand, the NHS1 and NHS2 can improve the 
result found so far within N2 iterations, so the NEOF 
used by them is always larger than that used by OHS.  
The largest one is not more than 30000 and this is 
acceptable as the solution time is less than 5 minutes. 

6.  RESULTS AND DISCUSSION 

In this paper, the variational principle has been 
demonstrated to be equivalent to the global optimiza-
tion method, and the limitations of the classical varia-
tional principle formulation as mentioned by De Jong 
[11,12] can be overcome by the adoption of modern 
heuristic global optimization method.  Modern sto-
chastic optimization method is however much more 
convenient to be used for difficult problems. 

The original harmony search algorithm is easily 
trapped by the local minima due to the procedure that 
only one new harmony is obtained and equal probabil-
ity are use for the harmonies within the solution domain.  
In views of the efficiency of the harmony search 
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Table 6 The orthogonal test table of four parameters 
and four levels for example 3 

results 
 HR PR  

NHS1 NHS2 

1 1 (0.85) 1 (0.10) 1 (0.3) 1.4843 1.5419 

2 1 (0.85) 2 (0.15) 2 (0.4) 1.5074 1.5462 

3 1 (0.85) 3 (0.20) 3 (0.5) 1.5207 1.6225 

4 1 (0.85) 4 (0.25) 4 (0.6) 1.5461 1.5227 

5 2 (0.90) 1 (0.10) 2 (0.4) 1.5239 1.4814 

6 2 (0.90) 2 (0.15) 1 (0.3) 1.4752 1.4872 

7 2 (0.90) 3 (0.20) 4 (0.6) 1.5047 1.5345 

8 2 (0.90) 4 (0.25) 3 (0.5) 1.5267 1.5215 

9 3 (0.95) 1 (0.10) 3 (0.5) 1.4831 1.4681 

10 3 (0.95) 2 (0.15) 4 (0.6) 1.4817 1.4923 

11 3 (0.95) 3 (0.20) 1 (0.3) 1.4711 1.5107 

12 3 (0.95) 4 (0.25) 2 (0.4) 1.5415 1.5385 

13 4 (1.00) 1 (0.10) 4 (0.6) 1.4579 1.4779 

14 4 (1.00) 2 (0.15) 3 (0.5) 1.4702 1.4970 

15 4 (1.00) 3 (0.20) 2 (0.4) 1.4857 1.4870 

16 4 (1.00) 4 (0.25) 1 (0.3) 1.5047 1.4828 
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Fig 14 Comparison of factor of safety and NEOF for 
different number of slices and between OHS, 
NHS and OHS 

method and its limitations, two modified harmony 
search algorithms are proposed by generating pairs of 
harmonies and the use of different probabilities to dif-
ferent harmony.   

The modified harmony algorithms are found to be 
highly effective and efficient for difficult problems as 
shown in this paper.  For the three relatively difficult 
problems with irregular weak layer of soils, water 
pressure and earthquake loading, it is found that the two 

proposed modified harmony search algorithms have 
performed well and are relatively insensitive to the 
global optimization parameters in most cases.  On the 
other hand, the original harmony search method is 
trapped by the local minima easily for these types of 
problems which are not uncommon in practice.  From 
numerous internal tests, it appears that the modified 
harmony methods are more effective and stable meth-
ods over a wide range of problems as compared with 
the original harmony method, except when the prob-
lems under consideration is simple with relatively few 
control variables.   

Stochastic algorithms are approximate and not accu-
rate algorithms.  These algorithms usually find a solu-
tion close to the best one, and they usually find it fast 
and easily.  Every stochastic algorithm relies on the 
use of some parameters for analysis but there is no se-
rious method in determining these kinds of parameters.  
The success of a suitable global optimization algorithm 
may rely on the use of these parameters, but it is sur-
prising to find that there is not any previous study on 
the sensitivity of these parameters on the optimization 
analysis in slope stability problem.  Slope stability 
problem has the special features of widely varying 
ground and subsoil profile, soil parameters and loading.  
It is found that the two proposed algorithms are rela-
tively insensitive to the use of these parameters due to 
the special arrangement in generating pairs of harmo-
nies and this property is highly beneficial in slope sta-
bility problem. 

7.  CONCLUSIONS 

The efficiency of a global optimization algorithm is 
an important factor to be considered.  Majority of the 
global optimization methods will also require tremen-
dous evaluations for large scale optimization analysis.  
The authors have tested the proposed algorithms to a 
maximum 160 control variables (sufficient for most of 
the slope stability analyses) and have found that the 
proposed algorithms are still efficient and has per-
formed satisfactory.  It is true that the original har-
mony method is usually more efficient than the modi-
fied methods for simple and small problems, but the 
original harmony method suffers from the limitation of 
being trapped by the presence of local minimum for 
large scale problem. 

The modified harmony algorithms and the trick in 
generating a random number with weighting to different 
zones have been proved to be highly effective in geo-
technical engineering.  The present algorithms are 
however not limited to geotechnical problems, and such 
algorithms should be applicable to general optimization 
problems.  The authors are now considering the use of 
such technique for the back-analysis of pile driving 
analysis which is another important problem faced by 
many engineers.  The authors are currently working on 
some plasticity problem using the variational principle, 
and it is found that it is extremely difficult to solve 
many problems using the classical calculus of variation.  
The present paper come from the works in plasticity 
problem and has been demonstrated to have practical 
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advantages over the variational principle in practical 
applications. 
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