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In our previous study, we modeled the indentation performed on an elastic—plastic solid
with a rigid conical indenter by using finite element analysis, and established a
relationship between a nominal hardness/reduced Young’s modulus (H,/E,) and unloading
work/total indentation work (W,./W,). The elasticity of the indenter was absorbed in

E, = 1/[(1 — V)/E + (1 — v{>/E;], where E; and v; are the Young’s modulus and Poisson’s
ratio of the indenter, and E and v are those of the indented material. However,
recalculation by directly introducing the elasticity of the indenter show that the use of E,
alone cannot accurately reflect the combined elastic effect of the indenter and indented
material, but the ratio n = [E/(1 — VOVIE/(1 — v;»)] would influence the H,/E~W./W,
relationship. Thereby, we replaced E, with a combined Young’s modulus E, =

I = VA/E 4+ 1.32(1 — v{9)/E;] = EJ[1 + 0.321/(1 + m)], and found that the
approximate H,/E.—W./W, relationship is almost independent of selected n values over
0-0.3834, which can be used to give good estimates of E as verified by experimental results.

. INTRODUCTION

Instrumented indentation tests for measuring mechan-
ical properties of materials on small scales have been
widely used for more than two decades,'™ and other than
hardness, Young’s modulus is an important material
property determinable with this technique. Using the
well-known relationship among reduced Young’s modu-
lus, initial unloading stiffness and contact area, Oliver
and Pharr*® developed a classic method for Young’s
modulus measurement. However, this method is not
always accurate enough. For example, when the indented
material exhibits little work hardening, pronounced
piling up occurs around an indent, causing difficulty in
estimating the contact area. Cheng and Cheng’® pro-
posed an alternative method. They established an
approximate relationship among reduced Young’s mod-
ulus, real hardness and indentation work, and combined
Oliver and Pharr’s relationship to estimate Young’s mod-
ulus. This method avoids indirect determination of con-
tact depth as in Oliver and Pharr’s method and
subsequent error. However, the square of the stiffness
evaluated at the initial unloading process appears in the
formulation, which is found to be sensitive to the condi-
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tion of the indentation test and is normally fluctuating at
low loads. This greatly affects the applicability of the
method.

In our recent studies,”'® we developed a new energy-
based method for determining Young’s modulus of
a material. In this method, finite element analysis
(FEA) was performed to simulate indentation made on
an elastic—plastic solid with a rigid indenter. The elastic
effect of an indenter used in a real experiment is absorbed
by using a reduced Young’s modulus, E, = 1/(1 — V*)/E +
(1 — vi*)/E;, where E and v are the Young’s modulus and
Poisson’s ratio of the indented material; and E; and v; are
those of the indenter. An approximate functional rela-
tionship between the ratio of nominal hardness/reduced
Young’s modulus (H,/E,) and the ratio of the unloading
work/total work of indentation (W./W,) was established,
where H,, = P,,/A(h,,) with P, being the maximum load
and A(h,,) the cross-sectional area evaluated at the max-
imum indentation depth /4, Note that H, is different
from the real hardness H determined with the area evalu-
ated at the maximum contact depth. The greatest advan-
tage of this method is that H, can be determined from the
primary load and displacement data; and W, and W, are
in fact the areas under the unloading and loading curves.
Thus, one avoids the need of indirectly estimated quanti-
ties like the contact depth, and some experimental
parameters, which is sensitive to the condition of mea-
surement, such as the initial unloading stiffness used in
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Cheng and Cheng’s method. The value of E derived from
the method is therefore more exact.

In this work, we report further modification of our
energy-based method by directly introducing the elastic-
ity of a conical indenter into the FEA model. In particu-
lar, the role of E, in the H,/E—~W./W, relationship is
replaced by a newly defined combined Young’s modulus
E. = 1/[(1 — V?)/E + 1.32(1 — v;%)/E;]. A functional
H,/E—~W./W, relationship was established, from which
a good estimate of £ was achieved as verified by experi-
mental results.

Il. NUMERICAL ANALYSES OF SHARP
INDENTATION

Within the framework of continuum mechanics, we
considered an elastic conical indenter indenting normally
into a homogeneous elastic—plastic solid. The half angle
of the conical indenter is specified to be 70.3° to approx-
imate the most commonly used Berkovich indenter
geometry. The rationale of employing such a setting is
based on the fact that the computed load—displacement
responses produced by using a real Berkovich tip is
found to be virtually identical to that produced by a
conical tip having the same area-to-depth ratio.'""'* We
further assumed that the indented material is an isotropic
and rate-independent solid, and obeys Von Mises yield
criterion and pure isotropic hardening rule. The uniaxial
stress—strain relation is a combination of linear elasticity
and Hollomon’s power law hardening:

<
o — Ee, € syn (1)
oy(e/ey)", e>¢y

where ¢ and ¢ are the true stress and true strain, and G,
and ¢, = o/E the yield stress and yield strain. If we
assume that the indenter is elastic, and interface between
the indenter and the indented material is frictionless, the
nominal hardness H,, and the work ratio W./W,, regarded
as the indentation responses in the analysis, should be
functions of the elastoplastic properties (£, v, Gy, n) of
the tested material, the elastic properties (E;, v;) of the
indenter, and the maximum indentation depth (4,,). The
correlations between these quantities are expressed
implicitly as

Hn :le(E7V7 Gy,l’l,Ei,Vi,hm) ) (2)

We/Wt :fWI(EaVa Gy,i’l,Ei,Vi,l’lm) . (3)

According to Dao et al.'' and Fischer-Cripps,'” these
two functions may be simplified by introducing E, to
combine the overall elasticity effects of the indenter and
the indented material, such that Eqgs. (2) and (3) can be
expressed as

Hn :fHZ(Gy»naEhhm) ) (4)

We/Wt :fW2(Gy7n7Erahm) . (5)

Applying IT theorem of dimensional analysis, func-
tions (4) and (5) can be rewritten in the following dimen-
sionless forms:

Hn/Er :fH3<Gy/Er7n) 5 (6)

Wc/Wt :fWS(Gy/Ervn) . (7)

Considering that o,/E, in Eq. (7) can be expressed
in terms of W/W, and n, it can be expressed alterna-
tively as

cYy/Er :f\;/% (We/Wi,n) . (8)

By substituting Eq. (8) into Eq. (6) to remove c,/E,,
the expression of H,/E, becomes

Hy/E: = fislfars (We/ Wi, n), 1) = fiaw (We/Wion) . (9)

To obtain an explicit result, a commercial finite ele-
ment code ABAQUS' capable of handling large defor-
mation analysis was used to simulate the conical
indentation process. In the calculations, 6, was varied to
cover a broad range of 0.0005~160,000 MPa. The n was
assigned to have the values of 0, 0.15, 0.3, and 0.45 in
sequence. E, v, E;, and v; were varied in such a way that
the Young’s modulus ratio n = [E/(1 — VHV/[E/(1 —
vi))] was equal to [70/(1 — 0.3%)]/[co] = 0, [70/(1 —
0.3)1/[1141/(1 — 0.07%)] = 0.0671, [200/(1 — 0.3%)]/
[1141/(1 — 0.07)] = 0.1917, and [400/(1 — 0.3%)]/
[1141/(1 — 0.072)] = 0.3834 successively. In an FEA,
four-node axisymmetric elements were used. The size of
the elements was made to be small enough for the num-
ber of nodes at the contact region to be more than 30.
Figure 1 illustrates the model used, where the meshing
around the contact region is much finer for ensuring
the accuracy of the simulation. The radius of the cross-
sectional area of the indenter at /i, is below 1/40 of the

(b)
FIG. 1. Finite elements mesh design for a conical indenter and an
indented solid. (a) Overall view and (b) details around the contact region.
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FIG. 2. (a)—(d) Plots of H,/E, versus W./W, with different values of n for 1 =0, 0.0671, 0.1917, and 0.3834.

dimension of the indented material model. The in-
dented material and indenter were meshed into 8100
and 2500 elements, respectively. The design of the
model passed a sensitivity test, which indicates that
the change of the calculated results was less than 0.5%
even when the mesh size was reduced by 50%, or the
model size was doubled in both the radial and vertical
directions.

Figures 2(a)-2(d) show the plots of H,/E. versus
W/W, corresponding to four n = 0, 0.15, 0.3, and 0.45,
respectively, with each containing data of different
values of n. It is evident that the data points in each
figure fall in a narrow band bounded between the curves
of n = 0 and 0.45. Therefore, H,/E, and W./W, can be
regarded to have a functional relationship. Such a rela-
tionship is describable with a sixth-order polynomial,
which is referred to as the representative relationship
afterwards. The four representative relationships associ-
ated with the four values of n are plotted in Figs. 2(a)—
2(d), respectively. Obviously, if E, is effective in
reflecting the combined elastic effect of the indenter and
indented material, all of the four curves should merge
together disregarding their values of 1. However, their
plots shown in Fig. 3 show some degree of inconsistency,
leading one to infer that the variation of n would indeed
alter the functional form of H,/E, against W./W,. As such,
the H,/E~W./W, relationship may not be the best for the
use of determining the Young’s modulus of an indented
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FIG. 3. Representative H,/E—W./W, relationships for n = 0, 0.0671,
0.1917, and 0.3834.

substance with the energy-based method. A natural
thought is to develop a new closed-form relationship
among Young’s modulus, nominal hardness, and inden-
tation work. In this work, we propose to use a combined
Young’s modulus E, = 1/[(1 — VZ)/E + 1.32(1 — v))/E;] =
EJ[1 + 0.32n/(1 + m)] to replace E,.. The resulted
Hy/E. values are plotted in Fig. 4 against W./W.
The plot indicates an effective one-to-one correspon-
dence between H,/E. and W /W, disregarding the value
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FIG. 4. Representative H,/E.—W./W, relationships for n = 0, 0.0671,
0.1917, and 0.3834.

of m. The data points can be fitted to a sixth-order
polynomial:

6

Ho/Ee = ai(We/W)' (10)

i=1

where the coefficients are determined as a; = 0.16716,
a, = —0.13875, a; = 0.06215, a4, = 0.01568, as =
—0.04784, and a¢ = 0.01878.

Successful establishment of Eq. (10) forms the basis
for determining Young’s modulus by means of micro-
indentation tests, when the influence of the tip bluntness
of a real Berkovich indenter is negligible.

lll. METHOD FOR DETERMINING YOUNG’S
MODULUS BASED ON MICROINDENTATION
TESTS

On the basis of the newly revealed relationship
between H./E. and W /W, described by Eq. (10), the
detailed procedures for determining Young’s modulus
by applying instrumented microindentation tests are
given as follows:

(i) Generate loading and unloading curves by
performing microindentation on a tested material with a
Berkovich indenter. P, and &, are directly measured to
give the value of H, = P,/A(h,,). When h;, = 3 pm, the
value of A(h,,) is equal to 24.5 hrzn. When 1 pm < i, <
3 um, A(hy,) is proposed to be determined according to
the calibrated area function generated from the method
proposed by Oliver and Pharr.*¢

(i1) Calculate the indentation unloading work and the
total work by integrating the areas under the unloading
and loading curves, respectively, and then determine the
work ratio W./W,.

(iii) Determine the combined Young’s modulus E. =
Hn/[Zleai(We/Wt)’], and then the Young’s modulus of

the tested material by using the expression E = (1 — v?)/
[1/E. — 1.32(1 — v;)/E;], provided that the values of E;,
v;, and v are all known.

The stability for the determination of E. can be exam-
ined by investigating the sensitivity of £, with respect to
perturbations of H,, and W./W,. The di%persion of E cal-
culated from the formula E. = H,/ [Zi: ai(We/ Wt)'] by
varying W./W, with £5% around a centered value
selected arbitrarily from a range of 0.01~1 is less than
=+ 5.2%, while the same change of H, would lead to the
same variation of E.. It is thus concluded that E. exhibits
a rather good stability over small perturbations of H,, and
We/W,.

The error of this method in determining E. is the same
as that of our previous method in determining E, for an
ideal Berkovich indenter model analyzed in our previously
published work.'” It has been found that the errors always
decrease with the work ratio W./W, increasing, and the
maximum error is +13.3% when W /W, approaches zero.
From the engineering point of view, such a level of accu-
racy in the measurement of Young’s modulus can meet the
requirements of most applications. Further improvement
of the accuracy should turn to the use of multiple sharp
indentation tests, and the works of Lan and Venkatesh'®
and Liu et al,'® provided a good guideline on how to
extract the elastic and plastic properties of materials with
high accuracy and reduced sensitivity.

IV. EXPERIMENTAL EXAMPLES

We first referred to some published data of
microindentation tests for two aluminum alloys 6061-
T6511 and 7075-T651"'" to examine the effectiveness of
the method. The Young’s moduli extracted from uniaxial
tension tests for these two materials are 66.8 and 70.1
GPa, respectively, and their Poisson’s ratio are both 0.33.
The results of the indentation tests are summarized in
Table I, in which A, is evaluated from the equation
hy = (Pm/C)” 2, with C being the loading curvature, and
the nominal hardness H, is calculated by using the
expression H,, = P,/(24.5h2). In addition, the results of
Young’s modulus Epgp determined by the Oliver and
Pharr method are also shown in Table 1. It is obvious that
for these two materials with small strain-hardening expo-
nents of 0.08 and 0.122, the currently proposed method
appears to be more effective than the traditional one.
Thus, it is further believed that the relatively low strain-
hardening exponent would cause piling up, which is sup-
posed to be the main reason responsible for the lower
accuracy in estimating the Young’s modulus of the mate-
rial by using Oliver and Pharr’s method.

In addition, a commercial Nano Indenter XP (MTS
Systems Corp., Knoxville, TN) equipped with a Berkovich
indenter was used to perform microindentation tests
on three materials, i.e., aluminum single crystal, GCr15
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TABLE 1. The values of E and Epgp for two aluminum alloys determined from the present method and Oliver & Pharr method.

For Al 6061-T6511

Test no. N (um) Sy (N/mm) H, (GPa) We/W, E (GPa) (E-66.8)/E (%) Eogp (GPa) (Eogp-66.8)/ Eogp (%)
1 10.46 4768 1.118 0.098 72.1 7.4 79.3 15.8
2 10.31 4800 1.151 0.095 76.8 13.0 81.2 17.7
3 10.50 4794 1.110 0.096 73.0 8.5 79.5 15.9
4 10.48 4671 1.114 0.111 63.5 -53 71.5 13.8
5 10.54 4762 1.102 0.111 62.7 —6.5 78.6 15.0
6 10.43 4491 1.127 0.109 65.4 -22 74.9 10.9
Average 68.9 3.0 78.5 14.9
For Al 7075-T651
Test no. Ty (Um) S, (N/mm) H, (GPa) WoW, E (GPa) (E-70.1)/E (%) Eogp (GPa) (Eoar-70.1)/ Eogp (%)
1 8.45 3665 1.714 0.167 68.3 -2.6 77.6 9.7
2 8.56 3658 1.669 0.162 68.3 —2.6 76.3 8.1
3 8.42 3654 1.727 0.168 68.4 —2.4 71.7 9.8
4 8.34 3744 1.759 0.164 71.5 1.9 80.5 12.9
5 8.30 3789 1.776 0.161 73.5 4.6 81.9 14.4
6 8.20 3706 1.820 0.169 72.1 2.8 81.3 13.8
Average 70.3 0.3 79.2 11.5
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FIG. 5. Load—displacement curves of five repetitive tests performed
on aluminum single crystal.

bearing steel, and fused silica, where the aluminum single
crystal and fused silica are standard samples provided by
MTS. Their reference Young’s modulus values as claimed
by MTS are 70.4 and 72 GPa, respectively. The reference
value for GCr15 bearing steel is determined to be 204 GPa
by applying standard ultrasonic measurement. The area
function A(h) of the indenter was calibrated as A(h) =
24.4974h° + 424.149h + 28211.4h'° — 69751.1n""* —
46333.30"® — 7055.70"1° + 20987.70'7* + 37312.20"%
+ 46075.9h"1?%. An experiment was repeated five times
to obtain five sets of load—displacement curves, as shown
in Figs. 5-7. The Poisson’s ratio v of aluminum single
crystal, GCrl5 bearing steel, and fused silica were
assigned to be 0.347, 0.29, and 0.17, respectively. By
applying the proposed method, the Young’s modulus £
of the three tested materials were determined. The results

J. Mater. Res., Vol. 25, No. 6, Jun 2010
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FIG. 6. Load—displacement curves of five repetitive tests performed
on GCrl5 bearing steel.
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FIG. 7. Load—displacement curves of five repetitive tests performed
on fused silica.
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TABLE II. The values of E for aluminum single crystal, GCrl5 bear-
ing steel, and fused silica determined from the present method.

For aluminum single crystal

Testno.  hy, (um) H,(GPa) W/W, E(GPa) (E-70.4)/E (%)
1 2.001 0.256 0.0262 56.3 —25.0
2 2.004 0.255 0.0193 71.7 9.4
3 1.990 0.259 0.0259 57.7 -21.9
4 2.023 0.250 0.0250 66.6 —5.8
5 1.938 0.272 0.0205 78.4 10.2
Average 67.3 —4.5
For GCr15 bearing steel
Testno.  h, (um) H,(GPa) W/W, E(GPa) (E-204)/E (%)
1 1.924 7.156 0.288 219.0 6.9
2 1.942 7.026 0.288 213.8 4.6
3 1.939 7.048 0.282 219.7 7.1
4 1.962 6.880 0.283 2124 4.0
5 1.936 7.063 0.288 215.6 5.4
Average 216.1 5.6
For fused silica
Testno.  hy, (um)  H, (GPa) W /W, E (GPa) (E-T2)/E (%)
1 1.997 4.632 0.667 73.4 1.9
2 1.999 4.623 0.664 73.4 1.9
3 1.997 4.633 0.664 73.6 2.2
4 1.996 4.635 0.661 73.7 2.4
5 1.996 4.634 0.666 73.4 2.0
Average 73.5 2.1

are given in Table II. It is seen that all the estimated
values of Young’s modulus for the three materials are
close to the reference values. This validates once again
the effectiveness of the proposed method.

V. CONCLUSIONS

In this study, we simulated indentation process per-
formed on a homogeneous elastic—plastic solid with an
elastic conical indenter by applying FEA, and reexamined
the previously proposed H,/E~W./W, relationship. Re-
sults showed that E, used in the relationship cannot accu-
rately reflect the combined elastic effect of an indenter
and an indented material, because the Young’s modulus
ratio n = [E/(1 — VAOVIE/( = vi®)] can affect indepen-
dently the dependence of H,/E, on W ./W,. Through defin-
ing a combined Young’s modulus E. = 1/[(1 — vz)/
E+1.32(1 — v)/E] = EJ[1 4+ 0.32n/(1 + n)] and using
it to replace E,, an effective one-to-one correspondence
between H,/E. and W./W, was established, which is found
to be independent on m over a broad range from 0 to
0.3834. From this relationship, an improved method for
estimating the Young’s modulus of an indented material
based on a microindentation test is proposed. The effec-
tiveness of the method was verified by referring to some

published microindentation data for two aluminum alloys
6061-T6511 and 7075-T651, and by the results of
microindentation tests performed on three standard mate-
rials, i.e., aluminum single crystal, GCrl5 bearing steel,
and fused silica.
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