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Abstract. The critical behavior of the clock model in two-dimensional square lattice is studied 
numerically using Monte Carlo method with Wolff algorithm. The Kosterlitz-Thouless (KT) 
transition is observed in the 8-state clock model, where an intermediate phase exists between the 
low-temperature ordered phase and the high-temperature disordered phase. The bond 
randomness is introduced to the system by assuming a Gaussian distribution for the coupling 
coefficients with the mean 1� �  and different values of variance: from 2 0.1� �  to 

2 3.0� � . 
An abrupt jump in the helicity modulus at the transition, which is the key characteristic of the 
KT transition, is verified with a stability argument. Our results show that, a small amount of 
disorder (small � ) reduces the critical temperature of the system, without altering the nature of 
transition. However, a larger amount of disorder changes the transition from the KT-type into 
that of non-KT-type. 
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INTRODUCTION 

Unlike the phase transitions manifested in most spin models, Kosterlitz-Thouless 
(KT) transition is a specific phase transition observed in the critical behavior of the 
superfluid systems and it can be described by the two-dimensional XY model [1-3]. On 
the other hand, the q-state clock model is a discrete version of the XY model. It is 
expected to have various critical behavior under different q values. Extensive studies 
[4-10] on the clock model had shown that, for 4q � , the phase transition is Ising-like, 
and for 6q � , it is XY-like. 

The presence of defects interrupts the periodic structure of crystalline materials and 
the systems become disordered when the quantity of interruptions is large. It can be 
visualized by a random distribution of coupling coefficients between neighboring 
spins. In statistical point of view, it is natural to consider a Gaussian distribution for 
the coupling coefficients. It is our motivation to study the effect of disorder on the 
phase transition in the clock model. Since the critical behavior for the q-state clock 
model does not change appreciably on varying q values when q is large. For simplicity, 
we can use the random-bond 8-state clock model ( 8q � ) to study the KT transition. 
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MODEL 

We consider a system of spins on a square lattice with size N L L� � . In the q-
state clock model, the spins are confined on a plane with q different states each of 
which is specified by a phase angle � 	2n n q
 �� , where 0,1,2,..., 1n q� � . The spin 

state at each site can be defined by the spin vector � 	sin ,cosn n n
 
�S . The 
Hamiltonian is given by 
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For simplicity, the summation is restricted to the nearest neighbors only. The coupling 
coefficients ijJ  are assumed to follow the Gaussian distribution 
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where 1� �  is the mean and 2�  is the variance of the distribution. The bond-
randomness is reflected by the parameter � , in particular, 2 0� �  represents a pure 
system with no disorder and with constant coupling coefficient 1J � . 

The energy per spin E of the system is given by 

 1
ij i j

ij
E J

N 
 �

� � �� S S , (3) 

where 
 �
 �  denoted the ensemble average of the quantities. The magnetization per 
spin m  is given by 

 1 1sin , cosi i
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and its magnitude is denoted by m. Furthermore, the susceptibility per spin �  can be 
obtained from the fluctuations of m and is given by 
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METHODS 

The helicity modulus per spin �  is a measure of the resistance to an infinitesimal 
spin twist �  across the system along one direction. It is given by 
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where sin( )( )ij i j ijij
s J N
 



 �
 � �� e x  and ije  is a unit vector pointing from lattice 

site i to j. The abrupt jump in the helicity modulus from the finite value (2 ) B ck T�  to 
zero at the critical temperature cT  in the thermodynamic limit at the critical 
temperature is the key feature of the KT transition [2]. The fourth-order helicity 
modulus can be expressed as 
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Supposed 4�  is negative at the transition, then �  cannot approach zero continuously 
but must make a discontinuous jump toward zero at the transition instead [11]. Thus, 
we can identify the KT transition. 

RESULTS AND DISCUSSION 

The magnetization and susceptibility against temperature for the random-bond 8-
state clock model with various �  are given in Fig. 1 In the pure case ( 2 0� � ), the 
system undergoes two transitions at two critical temperatures instead of a single one. 
There exists an intermediate phase called the KT phase (or the massless phase) 
between the low-temperature ordered phase and the high-temperature disordered phase. 
The results for the susceptibility show the double-peak feature of the KT transition. As 
�  increases, the critical temperature of the system decreases and the distance between 
two peaks in the susceptibility graph decreases. The results show the shrinkage of the 
intermediate phase as the amount of disorder increases. 

 

 
(a)                                                                              (b) 

FIGURE 1.  (a) The magnetization (b) The susceptibility against temperature for the random-bond 8-
state clock model with lattice size 128 128N � �  and various � : 0, 0.1, 0.5, 1.0, 2.0, and 3.0. 

 
In order to demonstrate the disappearance of the KT transition under a large amount 

of disorder, we have calculated the fourth-order helicity modulus of the systems and 
the results are given in Fig. 2. For 2 0� �  and 2 0.5� � , the fourth-order helicity 
modulus at the critical temperature are clearly negative, implying the system 
undergoes the KT transition. However, despite the noisy nature, the depth of the 
trough of the fourth-order helicity modulus reduces as �  increases. For 2 2.0� � , the 
trough is no longer observable and the helicity modulus does not jump discontinuously. 
Hence, we conclude that the transition is no longer of the KT-type and this is 
consistent with our above results. 
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FIGURE 2.  The fourth-order helicity modulus against temperature for the random-bond 8-state clock 

model with lattice size 128 128N � �  and various � : 0, 0.5, and 2.0. 
 

Our results show that, a small amount of disorder (small � ) reduces the critical 
temperature of the system, without altering the nature of transition. However, a larger 
amount of disorder changes the transition from the KT-type into that of non-KT-type. 
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