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Abstract. The rough set theory was proved of its effectiveness in deal-
ing with the imprecise and ambiguous information. Dominance-based
Rough Set Approach (DRSA), as one of the extensions, is effective and
fundamentally important for Multiple Criteria Decision Analysis (MCDA).
However, most of existing DRSA models cannot directly examine uncer-
tain information within rough boundary regions, which might miss the
significant knowledge for decision support. In this paper, we propose a
new believe factor in terms of an intuitionistic fuzzy value as foundation,
further to induce a kind of new uncertain rule, called believable rules,
for better performance in decision-making. We provide an example to
demonstrate the effectiveness of the proposed approach in multicriteria
sorting and also a comparison with existing representative DRSA models.

Keywords: Multicriteria decision analysis; Rough set; Intuitionistic fuzzy
set; Rule-based approach; Sorting.

1 Introduction

Rough set methodology is an effective mathematical tool for Multicriteria De-
cision Analysis (MCDA) because of its strength in data analysis and knowledge
discovery from imprecise and ambiguous data. The classical Pawlak’s rough set
had been successfully applied in medical diagnosis [13], supplier selection [5],
etc. However, it cannot deal with the preference-ordered data. With substitution
of indiscernibility relations by dominance relations, Classical Dominance-based
Rough Set Approach (C-DRSA) was firstly generated by Greco et al. [8]. Com-
pared with Pawlak’s Rough Set, the key idea of C-DRSA is mainly in two aspects:
(1) the knowledge granules generated from multiple criteria are dominance cones
rather than the concept of indiscernibility; (2) the objective sets of rough ap-
proximations are the upward and downward unions of preference-ordered classes,
rather than the binary-relation-based non-preference classes. Such properties let
C-DRSA be a suitable means for decision supports, particularly with respect to
multicriteria ranking, sorting and choice.

C-DRSA is the core procedure for calculation of rough approximations, in
which consistency data are assigned to lower approximations and inconsistency
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data are put into the rough boundary regions. The purpose of applying DRSA
models is to induce decision rules and then employ them for providing assign-
ments to pre-defined decision classes. Various extensions of DRSA models also
appeared. Variable-Precision DRSA (VP-DRSA) [9] defined a threshold called
the precision to control the membership of inconsistent objects into the lower
approximations. Quasi-DRSA [6] hybridized Pawlak’s rough set and C-DRSA
for lower error rates in natural selection. Chai and Liu [3] provided a class-based
rough approximation model and studied the reducts preserving the singleton
class rather than the traditional class unions.

However, most of previous DRSA models aim to generate a minimal rule
set, which might neglect valuable uncertain information within rough boundary
regions [8]. Even though such possible rules and approximate rules as uncertain
rules are able to extract uncertain information, they rarely can be employed in
real world. A significant extension of C-DRSA is Variable-Consistency DRSA
(VC-DRSA) [7] that relaxes the strict dominance principle and hence admits
several inconsistent objects to the lower approximations. This approach indeed
enhances the opportunity of discovering the strong rule patterns, and is partic-
ularly useful for large datasets. Yet, it is still far from satisfactory.

In this paper, we develop a new DRSA model through inducing a new kind of
uncertain rule called believable rule, in order to better extract valuable uncertain
information. To this end, we introduce a new believe factor in terms of the
concept of intuitionistic fuzzy value [4], [11]. Three related measurements are
generated for exploring rough boundary region. Finally, aided by the proposed
believe factor, we define a new kind of uncertain rule, called believable rule,
for better examination of uncertain information within rough boundary regions.
Through comparing with previous representative DRSA models, an example
is provided to verify the capability of the proposed model in solving sorting
problems.

The rest of this paper is organized as follows. Section 2 provides the prelim-
inaries, including the principles of DRSA methodology and intuitionistic fuzzy
theory. Section 3 presents believable rule induction aided by believe factor. In
section 4, we demonstrate the capability of the proposed model via an illustra-
tive example with a comparison. Finally, we draw the conclusion and outline the
future work in Section 5.

2 Preliminaries

2.1 Dominance-based Rough Set Approach

An information table can be transferred to a decision table via distinguishing
condition criteria and decision criteria. Formally, a decision table is the 4-tuple
S = 〈U,Q, V, f〉 , which includes (1) a finite set of objects denoted by U , x ∈
U = {x1, ..., xm}; (2) a finite set of criteria denoted by Q = C

⋃
D, where

condition criteria set C 6= ∅, decision criteria set D 6= ∅ (usually the singleton
set D = {d}), and q ∈ Q = {q1..., qn}; (3) the scale of criterion q denoted by Vq,
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where V =
⋃
q∈Q Vq; (4) information function denoted by fq(x) : U × Q → V ,

where fq(x) ∈ Vq for each q ∈ Q, x ∈ U . In addition, each object x from
U is described by a vector called decision description in terms of the decision
information on the criteria, denoted by DesQ(x) = [fq1(x), ..., fqn(x)]. As such,
information function fq(x) also can be called decision values in MCDA.

The objective sets of dominance-based rough approximations are the upward
or downward unions of predefined decision classes. Suppose the decision criterion
d makes a partition of U into a finite number of classes CL = {Clt, t = 1, ..., l}.
We assume that Clt+1 is superior to Clt according to DM’s preference. Each
object x from U belongs to one and only one class Clt. The upward and down-
ward unions of classes are represented respectively as: Cl≥t =

⋃
s≥t Cls, Cl

≤
t =⋃

s≤t Cls, where t = 1, ..., l.

Then, the following operational laws are valid: Cl≤1 = Cl1;Cl≥l = Cll;Cl
≥
t =

U − Cl≤t−1;Cl≤t = U − Cl≥t+1;Cl≥1 = Cl≤l = CL;Cl≤0 = Cl≥l+1 = ∅.
The granules of knowledge in DRSA theory are dominance cones with respect

to values space of the considered criteria. If two decision values are with the
dominance relation like fq(x) ≥ fq(y) for every considered criterion q ∈ P ⊆ C,
we say x dominates y, denoted by xDpy. The dominance relation is reflexive
and transitive. With this in mind, the dominance cone can be represented by:
P-dominating set D+

P (x) = {y ∈ U : yDpx}; P-dominated set D−P (x) = {y ∈ U :
xDpy}.

The key concept in DRSA theory is the Dominance Principle: if the decision
value of object x is no worse than that of object y on all considered condition
criteria (saying x is dominating y on P ⊆ C), object x should also be assigned to
a decision class no worse than that of object y (saying x is dominating y on D).
Founded on such dominance principle, the definitions of rough approximations
are given in the following.

P-lower approximations denoted as P (Cl≥t ) and P (Cl≤t ), are represented as:

P (Cl≥t ) = {x ∈ U : D+
P (x) ⊆ Cl≥t };P (Cl≤t ) = {x ∈ U : D−P (x) ⊆ Cl≤t }.

P-upper approximations denoted as P (Cl≥t ) and P (Cl≤t ), are represented as:

P (Cl≥t ) = {x ∈ U : D−P (x) ∩ Cl≥t 6= ∅}; P (Cl≤t ) = {x ∈ U : D+
P (x) ∩ Cl≤t 6= ∅}.

VC-DRSA model accepts a limited number of inconsistent objects which are
controlled by the predefined threshold called consistency level. For P ⊆ C, the
P-lower approximations of VC-DRSA can be represented as: P l(Cl≥t ) = {x ∈
Cl≥t :

|D+
P (x)

⋂
Cl

≥
t |

|D+
p (x)| ≥ l} ; P l(Cl≤t ) = {x ∈ Cl≤t :

|D−
P (x)

⋂
Cl

≤
t |

|D−
p (x)| ≥ l} , where

consistency level l means that object x from U belongs to the class union Cl≥t
(or Cl≤t ) with no ambiguity at level l ∈ (0, 1].

2.2 Intuitionistic Fuzzy Theory

This section revisits the principles of intuitionistic fuzzy theory as one of our
preliminaries. Atanassov [1] extended Zadeh’s fuzzy set employed by a member-
ship function, and defined the notion of intuitionistic fuzzy set (IFS) via further
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considering a non-membership function. An IFS A in a finite set X can be writ-
ten as: A = {< x, µA(x), νA(x) > |x ∈ X} s.t. 0 ≤ µA + νA ≤ 1, x ∈ X; with
µA : X → [0, 1], x ∈ X → µA(x) ∈ [0, 1]; νA : X → [0, 1], x ∈ X → νA(x) ∈
[0, 1]. The hesitation degrees [10] can be defined as: πA = 1− µA − νA.

Xu [11] extracted the basic element from IFS as the Intuitionistic Fuzzy Value
(IFV) denoted as a = (µa, νa, πa), where the membership degree µa ∈ [0, 1], the
non-membership degree νa ∈ [0, 1], and the hesitation degree πa ∈ [0, 1] with
πa = 1 − µa − νa. Let a1 and a2 be two IFVs. The related operations [12]
are revisited in the following. Complement: a = (νa, µa); Addition: a1 ⊕ a2 =
{µa1+µa2−µa1µa2 , νa1νa2}; Multiplication: a1⊗a2 = {µa1µa2 , νa1+νa2−νa1νa2};
Multiple law: λa = (1 − (1 − µa)λ, νλa ), λ > 0; Exponent law: aλ = (µλa , 1 −
(1− νa)λ), λ > 0; The Score Function: s(a) = µa − νa; The Accuracy Function:
h(a) = µa+νa. The method for comparing two intuitionistic fuzzy values through
using s(a) and h(a) is presented: If s(a1) < s(a2), then a1 < a2 . If s(a1) = s(a2)
, then, 1) If h(a1) = h(a2), then a1 = a2; 2) If h(a1) < h(a2), a1 < a2; 3) If
h(a1) > h(a2), then a1 > a2.

3 Uncertain Rule Induction

3.1 Believe Factor

Considering the assignment of object x ∈ U , dominance cones D+
P (x) and

D−P (x) can be divided into three subsets, denoted as X1, X2 and X3: (a) for

D+
P (x), we have X1 ⊆ P (Cl≥t ), X2 ⊆ Cl≥t − P (Cl≥t ), X3 ⊆ Cl≤t−1; (b) for

D−P (x), we have X1 ⊆ P (Cl≤t ), X2 ⊆ Cl≤t − P (Cl≤t ), X3 ⊆ Cl≥t+1. With re-

spect to the objects belonging to the class unions Cl≥t and Cl≤t but failing
to be assigned to the corresponding lower approximations, the following as-
sertions are valid: (1) For t = 2, ..., l, we have BnP (Cl≥t ) = BnP (Cl≤t−1) =

(Cl≥t − P (Cl≥t ))
⋃

(Cl≤t−1 − P (Cl≤t−1)). (2) For x ∈ Cl≥t − P (Cl≥t ), t = 2, ..., l,

we have D+
P (x) = X1

⋃
X2

⋃
X3 subject to X1 ⊆ P (Cl≥t ), X2 ⊆ Cl≥t −P (Cl≥t ),

X3 ⊆ Cl≤t−1 . (3) For x ∈ Cl≤t − P (Cl≤t ), t = 1, ..., l − 1, we have D−P (x) =

X1

⋃
X2

⋃
X3 subject to X1 ⊆ P (Cl≤t ), X2 ⊆ Cl≤t − P (Cl≤t ), X3 ⊆ Cl≥t+1.

Lemma 1. For x ∈ BnP (Cl≥t )(or x ∈ BnP (Cl≤t )), the following assertions are
valid:

(a) |X1| ≥ 0; (b) |X2| ≥ 1; (c) |X3| ≥ 1,

where the number of objects in a set is denoted by | • |.

Proof. We take x ∈ Cl≥t − P (Cl≥t ) as example. For (a), it is given by nature.

For (b), assuming |X2| = 0, we get D+
P (x)

⋂
(Cl≥t − P (Cl≥t )) = ∅. Since we

held x ∈ D+
P (x), we then infer x /∈ Cl≥t − P (Cl≥t ), which is contradictory to

our premises: x ∈ Cl≥t − P (Cl≥t ). Therefore, the assumption |X2| = 0 does
not hold. Finally, we obtain |X2| ≥ 1. For (c), assuming |X3| = 0, we get
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D+
P (x)

⋂
Cl≤t−1 = ∅. Since we held U −Cl≤t−1 = Cl≥t , we then get D+

P (x) ⊆ Cl≥t .

According to the definition of P (Cl≥t ), we then hold x ∈ P (Cl≥t ), which is

contradictory to our premises : x ∈ Cl≥t − P (Cl≥t ). Therefore, the assumption

|X3| = 0 does not hold. Finally, we hold |X3| ≥ 1. For x ∈ Cl≤t − P (Cl≤t ), the
proof is in the similar processing.

Based on these observations, we propose a new coefficient, called Believe Factor
of upward and downward unions (Believe Factor for short). The definition is
given as follows.

Definition 1. For x ∈ Cl≥t − P (Cl≥t ), t = 2, ..., l, we have the believe factor of
upward union of decision classes (upward believe factor for short):

β(x→ Cl≥t ) = (µ≥t (x), ν≥t (x), π≥t (x)) s.t. µ≥t (x) =
|D+

P (x)
⋂
P (Cl

≥
t )|

|D+
P (x)| ,

ν≥t (x) =
|D+

P (x)
⋂
Cl

≤
t−1|

|D+
P (x)| , π≥t (x) =

|D+
P (x)

⋂
(Cl

≥
t −P (Cl

≥
t ))|

|D+
p (x)| .

Definition 2. For x ∈ Cl≤t −P (Cl≤t ), t = 1, ..., l− 1, we have the believe factor
of downward union of decision classes (downward believe factor, for short):

β(x→ Cl≤t ) = (µ≤t (x), ν≤t (x), π≤t (x)) s.t. µ≤t (x) =
|D−

P (x)
⋂
P (Cl

≤
t )|

|D−
P (x)| ,

ν≤t (x) =
|D−

P (x)
⋂
Cl

≥
t+1|

|D−
P (x)| , π≤t (x) =

|D−
P (x)

⋂
(Cl

≤
t −P (Cl

≤
t ))|

|D−
p (x)| .

Remark that the symbol “→” in β(x→ Cl≥t ) and β(x→ Cl≤t ) can be understood

as “be assigned to” or “belongs to”. For object x ∈ U , µ(x) (including µ≥t (x)

and µ≤t (x)) is called positive score ; ν(x) (including ν≥t (x) and ν≤t (x)) is called

negative score; π(x) (including π≥t (x) and π≤t (x)) is called hesitancy score. The
forms of upward/downward believe factors can be regarded as intuitionistic fuzzy
values [4], [11].

Lemma 2. For object x ∈ Clt, t = 1, ..., l, the following assertions are valid:

µ≥t (x) + ν≥t (x) + π≥t (x) = 1; µ≤t (x) + ν≤t (x) + π≤t (x) = 1 .

Proof. It can be easily proved according to definition 1 and definition 2.

Lemma 3. β(x → Cl≥t ) = (µ≥t (x), ν≥t (x), π≥t (x)) = (1, 0, 0) is valid for x ∈
P (Cl≥t ). β(x → Cl≤t ) = (µ≤t (x), ν≤t (x), π≤t (x)) = (1, 0, 0) is valid for x ∈
P (Cl≤t ).

Proof. It can be easily proved according to definition 1 and definition 2.

3.2 Measurements

We introduce three measurements related to believe factor for uncertain rule
induction.
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Definition 3. (Confidence degree) For object x ∈ U , the confidence degree of
believe factor, denoted by L(x), is defined by: L(x) = µ(x) +π(x), where µ(x) is
positive score and π(x) is hesitancy score. Specifically, we hold:

L(x→ Cl≤t ) = µ≤t (x) + π≤t (x);L(x→ Cl≥t ) = µ≥t (x) + π≥t (x).

Definition 4. (Believe degree) For object x ∈ U , the believe degree of believe
factor, denoted by S(x), is defined by: S(x) = µ(x)−ν(x), where µ(x) is positive
score and ν(x) is negative score. Specifically, we hold:

S(x→ Cl≤t ) = µ≤t (x)− ν≤t (x);S(x→ Cl≥t ) = µ≥t (x)− ν≥t (x).

Definition 5. (Accuracy degree) For object x ∈ U , the accuracy degree of believe
factor, denoted by H(x), is defined by: H(x) = µ(x)+ν(x), where µ(x) is positive
score and ν(x) is negative score. Specifically, we hold:

H(x→ Cl≤t ) = µ≤t (x) + ν≤t (x);H(x→ Cl≥t ) = µ≥t (x) + ν≥t (x).

3.3 Believable Rule Induction

Given a decision table, each object x from U has a decision description in terms
of the evaluations on the considered criteria: DesP (x) = [fq1(x), ..., fqn(x)],
where information function fq(x) ∈ Vq, for V =

⋃
q∈P Vq, q ∈ P ⊆ C. We say

each DesP (x) is able to induce an uncertain rule based on cumulated preferences.

Considering DesP (x) of boundary object x which is coming from BnP (Cl≥t ),
there are two kinds of decision descriptions in the separated rough boundary
regions as: DesP (x) = [r≥q1 , r

≥
q2 , ..., r

≥
qn ], for x ∈ Cl≥t − P (Cl≥t ) ; DesP (x) =

[r≤q1 , r
≤
q2 , ..., r

≤
qn ], for x ∈ Cl≤t−1 − P (Cl≤t−1) ; where (Cl≥t − P (Cl≥t )) + (Cl≤t−1 −

P (Cl≤t−1)) = BnP (Cl≥t ) = BnP (Cl≤t−1).
With this in mind, the boundary objects carry the valuable uncertain in-

formation for decision making on the following conditions: (1) Considering the

believe factor of object x ∈ Cl≥t −P (Cl≥t ), if believe degree S(x→ Cl≥t ) > 0, we
say object x carries the believable decision information as: Providing the assign-
ment to class union Cl≥t in some degree. (2) Considering the believe factor of

object x ∈ Cl≤t−1−P (Cl≤t−1), if believe factor S(x→ Cl≤t−1) > 0, we say object x
carries the believable decision information as: Providing the assignment to class
union Cl≤t−1 in some degree.

The boundary objects satisfying the above conditions are called valuable ob-
jects. The induced uncertain rules on the basis of these valuable objects are called
believable rules. In the following, the strategies are given in order to induce a set
of believable rules.
Strategy I (Upward believable rule): Considering the object xi from the sepa-

rated boundary region Cl≥t − P (Cl≥t ), if S(xi → Cl≥t ) = µ≥t (xi) − ν≥t (xi) > 0

is satisfied, we then induce an upward believable rule BR≥t based on the de-
cision description DesP (xi) = [r≥q1 , r

≥
q2 , ..., r

≥
qn ]: If fq1(x) ≥ r≥q1 and fq2(x) ≥

r≥q2 ...fqn(x) ≥ r≥qn , then x ∈ Cl≥t , which is with three measuring degrees: L(xi →
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Cl≥t ), S(xi → Cl≥t ) and H(xi → Cl≥t ).
Strategy II (Downward believable rule): Considering the object xi from the

separated boundary region Cl≤t−1 − P (Cl≤t−1), if S(xi → Cl≤t−1) = µ≤t−1(xi) −
ν≤t−1(xi) > 0 is satisfied, we then induce a downward believable rule BR≤t−1
based on the decision description DesP (xi) = [r≤q1 , r

≤
q2 , ..., r

≤
qn ]: If fq1(x) ≤ r≤q1

and fq2(x) ≤ r≤q2 ...fqn(x) ≤ r≤qn , then x ∈ Cl≤t−1, which is with three measuring

degrees: L(xi → Cl≤t−1), S(xi → Cl≤t−1) and H(xi → Cl≤t−1).

4 Illustrative Example

4.1 Decision Table and Rough Approximations

In this section, we use an example to illustrate the application of believable rule
for multicriteria sorting (also known as ordinal classification). We use synthetic
data set as shown in Table 1. We consider that the decision table is monotonic,
which means a better decision value on condition criteria tends to contribute
a better assignment in decision class, rather than the worse one, or vice versa.
The decision information is summarized below: object set {S1, S2,...,S50}; con-
dition criterion set {A,B,C}; single decision criterion {D}; decision values scale
[1, 2, 3, 4, 5], where the larger number is superior to the smaller one according
to DM’s preference; decision class scale [III, II, I], where Class I is superior
than Class II, and then Class III, denoted by Class I =Cl3; Class II=Cl2; Class
III=Cl1.

Table 1. Decision table

Object A B C D Object A B C D Object A B C D

S 1 3 4 3 I S 18 3 4 3 I S 35 2 3 3 III
S 2 4 3 3 I S 19 5 2 4 II S 36 1 2 3 III
S 3 5 3 4 I S 20 3 4 2 II S 37 2 3 3 III
S 4 5 3 4 I S 21 4 2 3 II S 38 2 2 3 III
S 5 5 4 3 I S 22 5 2 4 II S 39 1 3 2 III
S 6 3 4 3 I S 23 5 2 4 II S 40 1 2 3 III
S 7 5 3 3 I S 24 1 4 2 II S 41 2 3 2 III
S 8 1 3 3 I S 25 1 4 2 II S 42 1 3 2 III
S 9 4 3 4 I S 26 2 4 3 II S 43 1 3 2 III
S 10 4 3 4 I S 27 3 4 2 II S 44 2 3 2 III
S 11 4 4 3 I S 28 1 4 2 II S 45 3 2 3 III
S 12 1 3 3 I S 29 1 4 2 II S 46 4 2 3 III
S 13 3 4 3 I S 30 2 1 3 II S 47 3 2 3 III
S 14 4 3 3 I S 31 3 2 4 II S 48 5 3 3 III
S 15 5 3 4 I S 32 3 2 4 II S 49 3 2 3 III
S 16 5 3 4 I S 33 5 2 4 II S 50 3 2 3 III
S 17 5 4 3 I S 34 1 3 2 III
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Each object belongs to one and only one decision class. The upward and
downward unions of decision classes are given as: Cl≤1 = Cl1;Cl≤2 = Cl1

⋃
Cl2;Cl≥2

= Cl3
⋃
Cl2;Cl≥3 = Cl3;Cl≥1 = Cl≤3 = Cl1

⋃
Cl2

⋃
Cl3.

According to the strict dominance principle, we can obtain the C-lower ap-
proximation. Then, we can further obtain the separated boundary regions as:
Cl≥3 −C(Cl≥3 )={S2;S7;S8;S12;S14}; Cl≥2 −C(Cl≥2 )={S2;S7;S8;S12;S14;S30;

S21}; Cl≤1 −C(Cl≤1 )={S35;S37;S48;S50;S49;S47;S46;S45;S38}; Cl≤2 −C(Cl≤2 )
={S35;S37;S48;S26}.

4.2 Believable Rule Induction

We calculate the believe factor of each object which is from the rough boundary
regions, as shown in Table 2. In this table, the believe degree of S46 is equal
to zero rather than a positive value. Thus, S46 is not a valuable object, and it
is unable to provide any assignment for decision-making. Excluding S46, other
objects are all valuable objects and are able to induce believable rules. According
to Strategy I and Strategy II in section 3.3, we generate the believable rules
together with their measurements, as shown in Table 3.

Table 2. Believe factor of rough boundary objects

Regions Boundary objects Believe factors Measurements
µ(x) π(x) ν(x) S(x) H(x) L(x)

Cl≥3 − P (Cl≥3 ) S2; S14 9/13 3/13 1/13 8/13 10/13 12/13
S7 6/8 1/8 1/8 5/8 7/8 7/8
S8; S12 13/22 5/22 4/22 9/22 17/22 18/22

Cl≥2 − P (Cl≥2 ) S2; S14 9/13 3/13 1/13 8/13 10/13 12/13
S7 6/8 1/8 1/8 5/8 7/8 7/8
S8; S12 14/22 5/22 3/22 11/22 17/22 19/22
S21 13/19 4/19 2/19 11/19 15/19 17/19
S30 20/34 5/34 9/34 11/34 29/34 25/34

Cl≤1 − P (Cl≤1 ) S35; S37 8/14 3/14 3/14 5/14 11/14 11/14
S38 2/4 1/4 1/4 1/4 3/4 3/4
S45; S47; S49; S50 2/8 5/8 1/8 1/8 3/8 7/8
S46 2/10 6/10 2/10 0/10 4/10 8/10
S48 8/24 9/24 7/24 15/24 15/24 17/24

Cl≤2 − P (Cl≤2 ) S26 14/19 3/19 2/19 12/19 16/19 17/19
S35; S37 10/14 2/14 2/14 8/14 12/14 12/14
S48 16/24 3/24 5/24 11/24 21/24 19/24

4.3 Verification of Sorting Capability

This section aims to verify the sorting capability of our induced rules. We choose
existing representative DRSA models as competitors, including C-DRSA model
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Table 3. Induction of believable decision rules

Believable
rules

Conditional criteria Assign-
ments

Confidence
degree

Accuracy
degree

Base(s) of
rulesA B C

[B1] ≥4 ≥3 ≥3 ≥I 0.9231 0.7692 S2; S14
[B2] ≥5 ≥3 ≥3 ≥I 0.8750 0.8750 S7
[B3] ≥1 ≥3 ≥3 ≥I 0.8182 0.7727 S8; S12

[B4] ≥4 ≥3 ≥3 ≥II 0.9231 0.7692 S2; S14
[B5] ≥5 ≥3 ≥3 ≥II 0.8750 0.8750 S7
[B6] ≥1 ≥3 ≥3 ≥II 0.8636 0.7727 S8; S12
[B7] ≥4 ≥2 ≥3 ≥II 0.8947 0.7895 S21
[B8] ≥2 ≥1 ≥3 ≥II 0.7353 0.8529 S30

[B9] ≤2 ≤3 ≤3 ≤III 0.7857 0.7857 S35; S37
[B10] ≤2 ≤2 ≤3 ≤III 0.7500 0.7500 S38
[B11] ≤3 ≤2 ≤3 ≤III 0.8750 0.3750 S45; S47; S49; S50
[B12] ≤5 ≤3 ≤3 ≤III 0.7083 0.6250 S48

[B13] ≤2 ≤4 ≤3 ≤II 0.8947 0.8421 S26
[B14] ≤2 ≤3 ≤3 ≤II 0.8571 0.8571 S35; S37
[B15] ≤5 ≤3 ≤3 ≤II 0.7917 0.8750 S48

[8], VC-DRSA model [7], and the extended scheme [2] of DRSA models. Hereinto,
C-DRSA can be regarded as consistency level L=1.0. VC-DRSA can be denoted
as L<1.0, i.e. L=0.9, L=0.8, L=0.7, etc. The extended scheme is with the symbol
ˆ, i.e. L̂ = 1.0, L̂ = 0.9, L̂ = 0.8, etc.

Table 4 illustrates the statistical results of assignments in multicriteria sort-
ing. Through generated certain rules, sorting rates are given in the first six rows
of this table. The proposed believable rules together with the induced certain
rules (via C-DRSA) are also tested for sorting. The comparison result indicates
that our proposal provides the highest correct sorting rate (the ratio of the num-
ber of correctly classified objects over the total number of testing objects), which
equals to 0.94.

Table 4. A comparison of correct sorting rate

Alternative Proposals Correctly
Sorted objects

Incorrectly
Sorted objects

Unknown
objects

1. L=1.0 42 84% 0 0% 8 16%
2. L=0.9 45 90% 1 2% 4 8%
3. L=0.8 41 82% 2 4% 7 14%
4. L̂ =1.0 36 72% 6 12% 8 16%
5. L̂ =0.9 43 86% 5 10% 2 4%
6. L̂ =0.8 42 84% 8 16% 0 0%
7. Our proposal 47 94% 3 6% 0 0%

5 Conclusion

This paper provided a new idea for extracting uncertain information within
rough boundary regions. In terms of intuitionistic fuzzy values, we proposed
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a new coefficient, called believe factor, together with three measuring degrees.
Aided by these measurements, we further provided the method for inducing
believable rule as a new kind of uncertain rule for sorting problems. In the
experimental testing, we illustrated the process of believable rule induction, and
verified its sorting capability via comparison with other representative proposals.
In the future work, we shall develop this approach for multicriteria ranking and
expand its ability for prediction. We would have been investigating some real-
world applications using the proposed approach like supplier chain management
(i.e. supplier selection).
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