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Abstract: Camponogara and Shima (2010) developed an ε-approximation algorithm (FPTAS) 
for the mobile agent routing problem in which a benefit function determines how visits to 
different sites contribute to the agent’s mission. The benefit is to be maximized under a time 
constraint. They reduced the problem to the constrained longest-path problem in a graph. In this 
note we present a modified FPTAS that improves on their result by a factor of 

( ) ( )log log /n h b b , where b  and b are an upper bound and a lower bound on the maximum 

benefit, respectively, n is the number of nodes, and h is the length of the longest path (in hops) 
in the graph. 
 
Keywords: Mobile agent; Constrained routing; Constrained longest path; Approximation 
algorithm; FPTAS 
Categories: F.2.2, G.2.2, I.2.11, J.7 

1 Introduction  

Camponogara and Shima (2010) developed an efficient ε-approximation algorithm 
(FPTAS) for the mobile agent routing problem in which computational resources are 
available at many possible sites. In order to complete its mission, the mobile agent 
visits a number of hosts that provide information, e.g., sites in the Internet, computer 
nodes in grids, etc. A given benefit function determines how much benefit (e.g., 
signal energy, information from sites, retrieval data, etc.) each site contributes to the 
agent’s mission. The problem is to maximize the benefit within a time limit. Since 
information is available at many different sites that yields different degrees of benefit, 
the mobile agent should find a best possible itinerary to visit them. 

Camponogara and Shima reduce this problem to the constrained longest-path 
problem (CLPP) in a graph G = (V, E). Their algorithm finds a path with a benefit at 
least 1-ε times the benefit of the optimal path (such a path is called ε-approximate) 
and has the following property: 
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               The ε-approximation algorithm for CLPP runs in O(log log( b /b)(|E|n/ε + 

log log( b /b))) time, where b and b are an upper bound and a lower bound 
on the maximum benefit, respectively, and n and |E| are the number of 
nodes and arcs in the underlying directed graph G = (V, E), respectively. 

One of the main difficulties in obtaining an FPTAS for the considered problem is 
a lack of simply computable tight lower and upper bounds. Camponogara-Shima’s 
algorithm (CSA), in which the term b depends on arc benefits, can be classified as a 
“weakly polynomial” FPTAS. The main theoretical contribution of this note is that we 
derive a “strongly polynomial” FPTAS that runs in O(|E|h/ε +|E|hlog log h) time, thus 

reducing the complexity of CSA by a factor of (n/h)log log ( b  /b), where h denotes 
the length of the longest path (in hops) in graph G. 

2 Outline of Camponogara-Shima’s Algorithm  

We begin with a brief description of the algorithm by Camponogara and Shima 
(2010). We use the same notation as introduced by them. Arcs in G are denoted by 
(i,j), bij is the benefit of traversing arc (i,j), rij is the time resource consumption to 
move along arc (i,j), r is the amount of resource available, and |V| = n. Benefit b(p) 
and time resource r(p) of a route p from a given node s to a given node t are defined 
as the sum of the benefits and times, respectively, of the arcs in the path. A directed 
path from node i to node j (denoted as the i-j path) is called a b-path if its benefit is at 
least b and an r-path if its time consumption is not greater than r.    

Like many other FPASs available in the literature, CSA comprises three basic 
sub-procedures as the building blocks:  
(a) Program Test(v) that answers the question “b*<v?”, where b* is the maximum 

benefit value within the time limit, and v is a given parameter. The test outputs 
“yes” if b* < v and outputs “no” if b* ≥ v(1- ε). It is a dynamic-programming-
based procedure of complexity O(|E|n/ε), where n =|V|. 

(b) Scaling of arc benefit values. 
(c) A dynamic programming (DP) procedure, called dual-Reverse-DP(b) that 

computes a maximum-benefit r-path from s to t in O(|E| b ). 
We do not include the details of the DP algorithm as it is a standard procedure 

well known in the literature. However, in order to make the paper self-contained, we 
present the original procedure Test(v) and the ε–approximation algorithm on the 

scaled data called FPTAS( b , b, φ, ε, r) in Figures 1 and 2, respectively. They will be 
modified and their novel combination will lead to our new algorithm with the 
improved time complexity. 
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Test (v) 
1. Take a fixed ε, 0 <ε < 1. Scale (i.e., round up) the benefit values bij and replace 
them by┌ min(bij,v)/(vε/(n-1)) ┐. 
2. Run  Dual-Reverse-DP over graph G with scaled benefits as follows:  
Compute the time resource consumption ri(b) of a b-path from node i to sink t 
with the least consumption, which is defined recursively by: 

 ri(b) = 
( ) { }( ){ }

,
min max ,0 , 0,1,j ij ij
i j E

r b b r b
∈

− + = … , K  

until rs(b) > r for some b < (n-1)/ε, in which case every b-path has a benefit at most 
b* < v,  
or else b ≥ (n-1)/ε, in which case an r-path with a benefit of at least v(1- ε) is found. 
Here b increases from 0 up to some K until one of the above conditions is satisfied. 

Figure 1: Test procedure by Camponogara and Shima (2010) 

 

FPTAS( b , b, φ, ε, r) 

1: while b /b > φ, do  

2: v = b b⋅  

3:   if Test(v) =”yes” then  

4:    b ←v 
5:   else  
6:    b←v(1- ε)  
7:   end if  
8: end while 
9:  Set bij← ┌ bij/(bε/(n-1)) ┐ 
10: Apply Dual-Reverse-DP to obtain an optimal r-path 

 
Figure 2:  Camponogara and Shima’s (2010) ε–approximation procedure 

3 The Improved FPTAS 

In the improved ε-approximation algorithm, we modify the scaling and testing sub-
procedures of CSA and exploit them in a different way. Our approach basically 
follows a computational scheme first suggested by Gens and Levner (1981) for the 
min-cost knapsack problem. It consists of three main stages: 
Stage A. Find a preliminary lower bound LB and preliminary upper bound UB on 

the optimal solution such that   UB/LB ≤ h ≤ n-1.   

Stage B. Find improved lower and upper bounds β  and β
 

on the optimal 

solution such that 2β β ≤ . 

Stage C. Scale the input data and find an ε-approximation solution using a 
dynamic programming sub-algorithm on the scaled data. 
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Stages B and C are modifications of the two stages in CSA depicted in Figures 1 
and 2, while Stage A is totally absent from CSA. These changes permit us to 
essentially improve the complexity of the algorithm. As we will see below, in practice 
h can be essentially smaller than n. The computation of h is clarified below in Step A3 
in Section 3.1. 

The logic of the modified algorithm is the following. 
First, the preliminary bounds LB and UB (such that UB/LB < h) are found in 

Stage A. After that, the algorithm runs the binary search in a logarithmic scale in a 
similar way as it is performed by Hassin (1992) and Camponogara and Shima (2010) 
(see Figure 1). After each test run, the bounds are modified. Each current test is 
executed at the point v = (UB*LB)1/2. However, there is a difference between our 
modified test, denoted by M-Test(v), and the original Test(v). This difference helps 
accelerate the algorithm. We will explain this in detail below.  

When Stage B terminates, we obtain improved lower and upper bounds, and then 
use them in the modified ε-approximation procedure in Stage C. The main difference 

between the new ε-approximation procedure in Stage 3 and FPTAS( b , b, φ, ε, r) is 
that factor h is used instead of n-1 in the scaling. Specifically, instead of the scaling 
operation indicated in Step 9 in Figure 2, we use the following one: 

Set ij
ij

b
b

hβ ε
⎡ ⎤

← ⎢ ⎥
⋅⎢ ⎥⎢ ⎥

                                                     (1)  

where h denotes the length of the longest (in hops) s-t path in graph G.  

Proposition 1. Scaling in stage C according to (1) increases each arc benefit by 

at most hβ ε⋅  and each path benefit by at most *bβ ε ε⋅ ≤ . 

The proof can be conducted along the same line as the corresponding proofs for 
similar statements in Gens and Levner (1981), Hassin (1992), and Camponogara and 
Shima (2010). In fact, we just substitute n-1 by h. 

Notice that replacing (n-1) by h in (1) does not improve the worst-case 
complexity but dramatically accelerates computation in practical computer networks.  

The number of iterations in Stage B needed to decrease the ratio UB/LB from h to 
a value below 2 is evidently (log log h). We will show that, in contrast to Hassin’s and 
Camponogara-Shima’s procedures, each of which needs to run Test(v) O(log 
log(UB/LB)) times (where each test requires, in turn, O(|E|h/ε) time), our modification 
scheme needs only O(log log h) runs of the modified test M-Test(v), wherein each test 
requires O(|E|h) time. The time to compute the test point b = (UB*LB)1/2 before each 
test is O(log log(UB/LB)) in Camponogara-Shima’s Test(v) and O(log log h) in the 
modified test M-Test(v), which we will describe below. We have arrived at our key 
observation: 

Proposition 2.The modified test M-Test(v) for CLPP requires O(log log h) 
iterations, each of which requires O(|E|h) time to run the test operations and 
O(log log h) time more to compute the test point. Thus, M-Test(v) runs in     
O(log  log h (|E|h + log log h)) = O(|E|h log log h) time. 
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Taking into account that Stage A requires O(|E|+n) time and Stage C requires 
O(|E|h/ε) time, we obtain the following improved complexity for the modified 
algorithm: 

Proposition 3. The modified algorithm for CLPP requires a total of O(|E|h/ε 
+|E|hlog log h) time, thus improving the complexity of CSA by a factor of 

(n/h)log log ( b /b). 
We present the proofs in the following. 

3.1 Description of Stage A 

Notice that graph G is acyclic since we are solving the longest path problem (with 
respect to benefit), with non-negative benefit values serving as arc "lengths". At the 
same time, in order to find the preliminary lower and upper bounds, we will solve the 
shortest (with respect to time) path problem, in which the arc times serve as the arc 
"lengths". After obtaining  the shortest (with respect to time) paths from the soruce to 
each node and from each node to the destination (Step A1 below), we can determine 
the minimum-time path passing through any arc (Step A2).  Then we will select an 
appropriate arc with the maximum benefit value (Step A3). More specifically, we 
carry out the following four steps: 
Step A1. Find the finite shortest (with respect to time) s-i paths and shortest (with 

respect to time) j-t paths for all those arcs (i, j) for which such paths exist. 
For this aim, we run twice the standard algorithm for finding the shortest 
path from one source to all the destinations in the acyclic directed graph G; 
during these runs, we treat node s as a source in the first run and node t as 
a “source” in the second run. In the second run we change the arc 
direction. 

Step A2. For each arc (i,j) in G, add the length of the shortest (in time) s-i path, the 
length  of the shortest (in time) j-t path, and the length r(i, j) of arc (i, j) 
itself.  Denote the obtained sum by R(i, j). 

Step A3. Let us call the arc (i,j) right if R(i, j) ≤  r. (W.l.o.g., we assume that at least 
one such an arc does exist in G). Scan all the “right” arcs and select among 
them one with the maximum benefit value. Denote the latter value by b0. 
Clearly, b0≤ b*≤ nb0. Since any s-t path contains at most h hops, the 
following also holds: b0 ≤ b* ≤hb0. Therefore, we have found LB = b0 and 
UB = hb0. 

Step A4. Find h, the number of hops in the longest (with respect to hops) s-t path in 
graph G. For this aim, we run the standard algorithm for finding the 
longest s-t path in the acyclic directed graph G.  

Complexity of Stage A. The complexity of Steps A1 and A4 is O(|E|+n) (see Cormen 
et al., 2001, ch.24.2) and the complexity of Steps A2 and A3 is O(|E|). Therefore, 
Stage 1 requires O(|E|+n) time in total.  

3.2 Description of Stage B 

The new test denoted by M-Test(v) is based on Test(v) described in Figure 1. The 
difference between them is two-fold. First, instead of scaling the benefits as indicated 
in Step 1 in Figure 1, we use a different scaling operation defined as follows: 
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ij
ij

b
b

v hε
⎡ ⎤

← ⎢ ⎥
⎢ ⎥

. 

Second, when computing the resource consumption ri(b) of a b-path from node i 
to sink t, we again substitute n-1 by h. Specifically, ri(b) is computed recursively, like 
in Step 2 in Figure 1, for b  = 0, 1, … , until rs(b) > r for some b < h/ε, in which case 
every b-path has a benefit at most b* < v, or  else b ≥h/ε, in which case an r-path of 
benefit at least v(1- ε) is found. 

Thus, similar to Test(v), M-Test(v) answers “yes” if b* < v or “no” if b* ≥ v(1- 
ε). One can easily verify that this testing property still holds after changing n-1 to h. 
Due to this modification, the complexity of the testing procedure decreases from 
O(|E|n/ε) to O(|E|h/ε) time. In addition, in the sub-algorithm Bounds described below, 
we use the modified M-Test(v) only for several fixed ε-values (ε = 1/4, 1/3, and 1/2). 
Due to this, the complexity of M-Test(v|ε fixed) decreases from O(|E|h/ε) to O(|E|h) 
time; on the other hand, the latter algorithm guarantees the same testing property as 
Test(v). 

The sub-algorithm BOUNDS provides the improved lower and upper bounds β  

and β  such that 2β β ≤ . It is presented in Figure 3. In this figure, M-Test(v|ε=0.5) 

denotes M-Test(v) carried out with fixed ε = 0.5. Obviosly, M-Test(v|ε=0.5) either 
returns b* <v or, otherwise, returns b* ≥0.5v. Similarly, M-Test(v|ε=1/3) either reports 
b* <v or, else, b* ≥2/3v. M-Test(v|ε=0.25) either reports b* < v, or, else, b* ≥0.75v.  

Bounds 
Input: LB and UB such that UB/LB≤nh. 

Output: β  and β  such that /β β ≤ 2 

1. If UB/LB ≤2 goto 6 

2. Set 2v LB UB= ⋅  
3. Run Test1 = M-Test (v|ε = 0.5) 

.            if Test1=”no” set LB← 0.5v and goto 1 
             if Test1=”yes” set UB ←v 
     4.  Set v ← v/2; Run Test2 = M-Test(v|ε=1/3) 
           if Test2 = “yes” set  UB← v and goto 1 
           if Test2= “no” set LB ←2/3v (now the ratio  UB/LB = 3) 
      5.Set v← 2LB. Run Test3=M-Test(v|ε=0.25) 
          if Test3=”yes” set UB←v 
          if Test3= “no” set LB← 0.75v 
         (now the ratio  UB/LB = 2) 

       6. β  = LB, β = UB end 

Figure 3: Sub-algorithm Bounds 

The proof of the validity of Bounds is straightforward and is omitted here. 
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Complexity of Stage B. Since (i) the test point in any step of Bounds is 

v LB UB= ⋅  , (ii) M-Test(v|ε fixed) runs in O(|E|h) time, and (iii) the number of 
returns to Step 1 in Bounds is at most log log h, the overall complexity of Stage B is 
O(|E|h log log h). 

Notice that complexity of Stage C is discussed in the beginning of Section 3 and 
Proposition 3. The logical structure of the two algorithms is presented in Figure 4. 
 

The CS algorithm                New algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The structure of two algorithms 

 

 

( ),Test v ε  

Each step: 

( )/ log log( / )O E n b bε +

Set: UB, LB 

( )log log( / )O b b times 

Finding ε-approximation path 

    
( )O E n ε  

Set initial bounds: ,b b  

B 

C 

Find preliminary LB,UB 
UB LB h≤  

( )O E n+

Find ,β β bounds 2β β≤  

 
Set: UB,LB 

M-Test(v, 0.25ε = ) 

Each step: ( )O E h  

( )log logO h times 

Finding ε-approximation path 

( )O E h ε  

A

B

C

,LB UBβ β← ←
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4 Summary and Conclusions  

According to Camponogara and Shima (2010), the motivation for agent mobility and 
efficient agent routing is not in the technology itself but rather in the benefit that 
agents offer for innumerous applications in communications, computing systems, and 
the Internet, as well as in educational, social, and cultural services. The mobile agent 
itinerary problem can be cast as the resource-constrained longest-path problem that 
appeals for fast and practical algorithms. 

Table 1 summarizes the main differences between CSA and our new algorithm. 

 
Algorithm Stages CSA New algorithm 

Stage A  
None 

 

Use special algorithm for 
initial UB, LB to achieve 
a ratio equal to h. 

Complexity 
of Stage A 

_ ( )O E n+  

Stage B Call DP with a given ε Call DP with a constant ε, 
equal to 1/2, 1/3, and ¼. 

The number of 
iterations 

( )log log( / )O b b  ( )log log( )O h
 
as a result 

of the improvement in 
Stage A. 

Complexity at each 
iteration 

 

( )/ log log( / )O E n b bε +
 

( )O E h  as a result of a 

constant ε  
Total complexity 

of  Stage B ( )
( )
log log( / )

/ log log( / )

b b
O

E n b bε

⎛ ⎞•
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

 

( )( )log logO h E hi
 

Stage C Scaled DP with paramater n Scaled DP 
with parameter h 

Complexity of 
Stage C 

( )O E n ε
 

( )O E h ε
 

 
Total complexity of  
all stages A,B and C 

( )
( )
log log( / )

/ log log( / )

b b
O

E n b bε

⎛ ⎞•
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

 
( )log logO h E h E h ε+i

 

Table 1: Comparison of the algorithms 

In this note we suggest a modified algorithm that improves the original 

Componogara-Shima algorithm by a factor of (n/h)log log( b /b). Therefore, the 
complexity of our algorithm polynomially depends only on the graph size (i.e., |E| and 
n) and 1/ε, and does not depend on the magnitudes of the input data. In addition, 
although the maximum number of hops, h, in graph G, in the worst case can be n-1, 
the factor n/h in realistic computing networks may be up to dozens and even 
hundreds. Our simulation experiments with agents serving computer communication 
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networks confirm that the running time of the new technique is considerably less than 
that of the CSA. Figure 5, borrowed from Lennon and Maurer (1994), illustrates this 
fact. In this example, the average node out-degree in the network is just 4 (though, in 
practice, it may be much larger), so in the 5-layer network the acceleration factor n/h 
is larger than 600.  

 

 

Figure 5: A networked multimedia system (Lennon and Maurer, 1994) 
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