
An Improved FPTAS for Mobile Agent Routing
with Time Constraints

Eugene Levner
(Ashkelon Academic College, Ashkelon and Bar Ilan University, Ramat Gan, Israel

elevner@ash-college.ac.il and levnere@mail.biu.ac.il)

Amir Elalouf
(Bar Ilan University, Ramat Gan, Israel

amir.elalouf@biu.ac.il)

T.C.E. Cheng
(The Hong Kong Polytechnic University, Hong Kong

edwin.cheng@inet.polyu.ac.hk)

Abstract: Camponogara and Shima (2010) developed an ε-approximation algorithm (FPTAS)
for the mobile agent routing problem in which a benefit function determines how visits to
different sites contribute to the agent’s mission. The benefit is to be maximized under a time
constraint. They reduced the problem to the constrained longest-path problem in a graph. In this
note we present a modified FPTAS that improves on their result by a factor of

() ()log log /n h b b , where b and b are an upper bound and a lower bound on the maximum

benefit, respectively, n is the number of nodes, and h is the length of the longest path (in hops)
in the graph.

Keywords: Mobile agent; Constrained routing; Constrained longest path; Approximation
algorithm; FPTAS
Categories: F.2.2, G.2.2, I.2.11, J.7

1 Introduction

Camponogara and Shima (2010) developed an efficient ε-approximation algorithm
(FPTAS) for the mobile agent routing problem in which computational resources are
available at many possible sites. In order to complete its mission, the mobile agent
visits a number of hosts that provide information, e.g., sites in the Internet, computer
nodes in grids, etc. A given benefit function determines how much benefit (e.g.,
signal energy, information from sites, retrieval data, etc.) each site contributes to the
agent’s mission. The problem is to maximize the benefit within a time limit. Since
information is available at many different sites that yields different degrees of benefit,
the mobile agent should find a best possible itinerary to visit them.

Camponogara and Shima reduce this problem to the constrained longest-path
problem (CLPP) in a graph G = (V, E). Their algorithm finds a path with a benefit at
least 1-ε times the benefit of the optimal path (such a path is called ε-approximate)
and has the following property:

Journal of Universal Computer Science, vol. 17, no. 13 (2011), 1854-1862
submitted: 11/3/11, accepted: 29/8/11, appeared: 1/9/11 © J.UCS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61027284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 The ε-approximation algorithm for CLPP runs in O(log log(b /b)(|E|n/ε +

log log(b /b))) time, where b and b are an upper bound and a lower bound
on the maximum benefit, respectively, and n and |E| are the number of
nodes and arcs in the underlying directed graph G = (V, E), respectively.

One of the main difficulties in obtaining an FPTAS for the considered problem is
a lack of simply computable tight lower and upper bounds. Camponogara-Shima’s
algorithm (CSA), in which the term b depends on arc benefits, can be classified as a
“weakly polynomial” FPTAS. The main theoretical contribution of this note is that we
derive a “strongly polynomial” FPTAS that runs in O(|E|h/ε +|E|hlog log h) time, thus

reducing the complexity of CSA by a factor of (n/h)log log (b /b), where h denotes
the length of the longest path (in hops) in graph G.

2 Outline of Camponogara-Shima’s Algorithm

We begin with a brief description of the algorithm by Camponogara and Shima
(2010). We use the same notation as introduced by them. Arcs in G are denoted by
(i,j), bij is the benefit of traversing arc (i,j), rij is the time resource consumption to
move along arc (i,j), r is the amount of resource available, and |V| = n. Benefit b(p)
and time resource r(p) of a route p from a given node s to a given node t are defined
as the sum of the benefits and times, respectively, of the arcs in the path. A directed
path from node i to node j (denoted as the i-j path) is called a b-path if its benefit is at
least b and an r-path if its time consumption is not greater than r.

Like many other FPASs available in the literature, CSA comprises three basic
sub-procedures as the building blocks:
(a) Program Test(v) that answers the question “b*<v?”, where b* is the maximum

benefit value within the time limit, and v is a given parameter. The test outputs
“yes” if b* < v and outputs “no” if b* ≥ v(1- ε). It is a dynamic-programming-
based procedure of complexity O(|E|n/ε), where n =|V|.

(b) Scaling of arc benefit values.
(c) A dynamic programming (DP) procedure, called dual-Reverse-DP(b) that

computes a maximum-benefit r-path from s to t in O(|E| b).
We do not include the details of the DP algorithm as it is a standard procedure

well known in the literature. However, in order to make the paper self-contained, we
present the original procedure Test(v) and the ε–approximation algorithm on the

scaled data called FPTAS(b , b, φ, ε, r) in Figures 1 and 2, respectively. They will be
modified and their novel combination will lead to our new algorithm with the
improved time complexity.

1855Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

Test (v)
1. Take a fixed ε, 0 <ε < 1. Scale (i.e., round up) the benefit values bij and replace
them by┌ min(bij,v)/(vε/(n-1)) ┐.
2. Run Dual-Reverse-DP over graph G with scaled benefits as follows:
Compute the time resource consumption ri(b) of a b-path from node i to sink t
with the least consumption, which is defined recursively by:

 ri(b) =
() { }(){ }

,
min max ,0 , 0,1,j ij ij
i j E

r b b r b
∈

− + = … , K

until rs(b) > r for some b < (n-1)/ε, in which case every b-path has a benefit at most
b* < v,
or else b ≥ (n-1)/ε, in which case an r-path with a benefit of at least v(1- ε) is found.
Here b increases from 0 up to some K until one of the above conditions is satisfied.

Figure 1: Test procedure by Camponogara and Shima (2010)

FPTAS(b , b, φ, ε, r)

1: while b /b > φ, do

2: v = b b⋅

3: if Test(v) =”yes” then

4: b ←v
5: else
6: b←v(1- ε)
7: end if
8: end while
9: Set bij← ┌ bij/(bε/(n-1)) ┐
10: Apply Dual-Reverse-DP to obtain an optimal r-path

Figure 2: Camponogara and Shima’s (2010) ε–approximation procedure

3 The Improved FPTAS

In the improved ε-approximation algorithm, we modify the scaling and testing sub-
procedures of CSA and exploit them in a different way. Our approach basically
follows a computational scheme first suggested by Gens and Levner (1981) for the
min-cost knapsack problem. It consists of three main stages:
Stage A. Find a preliminary lower bound LB and preliminary upper bound UB on

the optimal solution such that UB/LB ≤ h ≤ n-1.

Stage B. Find improved lower and upper bounds β and β

on the optimal

solution such that 2β β ≤ .

Stage C. Scale the input data and find an ε-approximation solution using a
dynamic programming sub-algorithm on the scaled data.

1856 Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

Stages B and C are modifications of the two stages in CSA depicted in Figures 1
and 2, while Stage A is totally absent from CSA. These changes permit us to
essentially improve the complexity of the algorithm. As we will see below, in practice
h can be essentially smaller than n. The computation of h is clarified below in Step A3
in Section 3.1.

The logic of the modified algorithm is the following.
First, the preliminary bounds LB and UB (such that UB/LB < h) are found in

Stage A. After that, the algorithm runs the binary search in a logarithmic scale in a
similar way as it is performed by Hassin (1992) and Camponogara and Shima (2010)
(see Figure 1). After each test run, the bounds are modified. Each current test is
executed at the point v = (UB*LB)1/2. However, there is a difference between our
modified test, denoted by M-Test(v), and the original Test(v). This difference helps
accelerate the algorithm. We will explain this in detail below.

When Stage B terminates, we obtain improved lower and upper bounds, and then
use them in the modified ε-approximation procedure in Stage C. The main difference

between the new ε-approximation procedure in Stage 3 and FPTAS(b , b, φ, ε, r) is
that factor h is used instead of n-1 in the scaling. Specifically, instead of the scaling
operation indicated in Step 9 in Figure 2, we use the following one:

Set ij
ij

b
b

hβ ε
⎡ ⎤

← ⎢ ⎥
⋅⎢ ⎥⎢ ⎥

 (1)

where h denotes the length of the longest (in hops) s-t path in graph G.

Proposition 1. Scaling in stage C according to (1) increases each arc benefit by

at most hβ ε⋅ and each path benefit by at most *bβ ε ε⋅ ≤ .

The proof can be conducted along the same line as the corresponding proofs for
similar statements in Gens and Levner (1981), Hassin (1992), and Camponogara and
Shima (2010). In fact, we just substitute n-1 by h.

Notice that replacing (n-1) by h in (1) does not improve the worst-case
complexity but dramatically accelerates computation in practical computer networks.

The number of iterations in Stage B needed to decrease the ratio UB/LB from h to
a value below 2 is evidently (log log h). We will show that, in contrast to Hassin’s and
Camponogara-Shima’s procedures, each of which needs to run Test(v) O(log
log(UB/LB)) times (where each test requires, in turn, O(|E|h/ε) time), our modification
scheme needs only O(log log h) runs of the modified test M-Test(v), wherein each test
requires O(|E|h) time. The time to compute the test point b = (UB*LB)1/2 before each
test is O(log log(UB/LB)) in Camponogara-Shima’s Test(v) and O(log log h) in the
modified test M-Test(v), which we will describe below. We have arrived at our key
observation:

Proposition 2.The modified test M-Test(v) for CLPP requires O(log log h)
iterations, each of which requires O(|E|h) time to run the test operations and
O(log log h) time more to compute the test point. Thus, M-Test(v) runs in
O(log log h (|E|h + log log h)) = O(|E|h log log h) time.

1857Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

Taking into account that Stage A requires O(|E|+n) time and Stage C requires
O(|E|h/ε) time, we obtain the following improved complexity for the modified
algorithm:

Proposition 3. The modified algorithm for CLPP requires a total of O(|E|h/ε
+|E|hlog log h) time, thus improving the complexity of CSA by a factor of

(n/h)log log (b /b).
We present the proofs in the following.

3.1 Description of Stage A

Notice that graph G is acyclic since we are solving the longest path problem (with
respect to benefit), with non-negative benefit values serving as arc "lengths". At the
same time, in order to find the preliminary lower and upper bounds, we will solve the
shortest (with respect to time) path problem, in which the arc times serve as the arc
"lengths". After obtaining the shortest (with respect to time) paths from the soruce to
each node and from each node to the destination (Step A1 below), we can determine
the minimum-time path passing through any arc (Step A2). Then we will select an
appropriate arc with the maximum benefit value (Step A3). More specifically, we
carry out the following four steps:
Step A1. Find the finite shortest (with respect to time) s-i paths and shortest (with

respect to time) j-t paths for all those arcs (i, j) for which such paths exist.
For this aim, we run twice the standard algorithm for finding the shortest
path from one source to all the destinations in the acyclic directed graph G;
during these runs, we treat node s as a source in the first run and node t as
a “source” in the second run. In the second run we change the arc
direction.

Step A2. For each arc (i,j) in G, add the length of the shortest (in time) s-i path, the
length of the shortest (in time) j-t path, and the length r(i, j) of arc (i, j)
itself. Denote the obtained sum by R(i, j).

Step A3. Let us call the arc (i,j) right if R(i, j) ≤ r. (W.l.o.g., we assume that at least
one such an arc does exist in G). Scan all the “right” arcs and select among
them one with the maximum benefit value. Denote the latter value by b0.
Clearly, b0≤ b*≤ nb0. Since any s-t path contains at most h hops, the
following also holds: b0 ≤ b* ≤hb0. Therefore, we have found LB = b0 and
UB = hb0.

Step A4. Find h, the number of hops in the longest (with respect to hops) s-t path in
graph G. For this aim, we run the standard algorithm for finding the
longest s-t path in the acyclic directed graph G.

Complexity of Stage A. The complexity of Steps A1 and A4 is O(|E|+n) (see Cormen
et al., 2001, ch.24.2) and the complexity of Steps A2 and A3 is O(|E|). Therefore,
Stage 1 requires O(|E|+n) time in total.

3.2 Description of Stage B

The new test denoted by M-Test(v) is based on Test(v) described in Figure 1. The
difference between them is two-fold. First, instead of scaling the benefits as indicated
in Step 1 in Figure 1, we use a different scaling operation defined as follows:

1858 Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

ij
ij

b
b

v hε
⎡ ⎤

← ⎢ ⎥
⎢ ⎥

.

Second, when computing the resource consumption ri(b) of a b-path from node i
to sink t, we again substitute n-1 by h. Specifically, ri(b) is computed recursively, like
in Step 2 in Figure 1, for b = 0, 1, … , until rs(b) > r for some b < h/ε, in which case
every b-path has a benefit at most b* < v, or else b ≥h/ε, in which case an r-path of
benefit at least v(1- ε) is found.

Thus, similar to Test(v), M-Test(v) answers “yes” if b* < v or “no” if b* ≥ v(1-
ε). One can easily verify that this testing property still holds after changing n-1 to h.
Due to this modification, the complexity of the testing procedure decreases from
O(|E|n/ε) to O(|E|h/ε) time. In addition, in the sub-algorithm Bounds described below,
we use the modified M-Test(v) only for several fixed ε-values (ε = 1/4, 1/3, and 1/2).
Due to this, the complexity of M-Test(v|ε fixed) decreases from O(|E|h/ε) to O(|E|h)
time; on the other hand, the latter algorithm guarantees the same testing property as
Test(v).

The sub-algorithm BOUNDS provides the improved lower and upper bounds β

and β such that 2β β ≤ . It is presented in Figure 3. In this figure, M-Test(v|ε=0.5)

denotes M-Test(v) carried out with fixed ε = 0.5. Obviosly, M-Test(v|ε=0.5) either
returns b* <v or, otherwise, returns b* ≥0.5v. Similarly, M-Test(v|ε=1/3) either reports
b* <v or, else, b* ≥2/3v. M-Test(v|ε=0.25) either reports b* < v, or, else, b* ≥0.75v.

Bounds
Input: LB and UB such that UB/LB≤nh.

Output: β and β such that /β β ≤ 2

1. If UB/LB ≤2 goto 6

2. Set 2v LB UB= ⋅
3. Run Test1 = M-Test (v|ε = 0.5)

. if Test1=”no” set LB← 0.5v and goto 1
 if Test1=”yes” set UB ←v
 4. Set v ← v/2; Run Test2 = M-Test(v|ε=1/3)
 if Test2 = “yes” set UB← v and goto 1
 if Test2= “no” set LB ←2/3v (now the ratio UB/LB = 3)
 5.Set v← 2LB. Run Test3=M-Test(v|ε=0.25)
 if Test3=”yes” set UB←v
 if Test3= “no” set LB← 0.75v
 (now the ratio UB/LB = 2)

 6. β = LB, β = UB end

Figure 3: Sub-algorithm Bounds

The proof of the validity of Bounds is straightforward and is omitted here.

1859Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

Complexity of Stage B. Since (i) the test point in any step of Bounds is

v LB UB= ⋅ , (ii) M-Test(v|ε fixed) runs in O(|E|h) time, and (iii) the number of
returns to Step 1 in Bounds is at most log log h, the overall complexity of Stage B is
O(|E|h log log h).

Notice that complexity of Stage C is discussed in the beginning of Section 3 and
Proposition 3. The logical structure of the two algorithms is presented in Figure 4.

The CS algorithm New algorithm

Figure 4: The structure of two algorithms

(),Test v ε

Each step:

()/ log log(/)O E n b bε +

Set: UB, LB

()log log(/)O b b times

Finding ε-approximation path

()O E n ε

Set initial bounds: ,b b

B

C

Find preliminary LB,UB
UB LB h≤

()O E n+

Find ,β β bounds 2β β≤

Set: UB,LB

M-Test(v, 0.25ε =)

Each step: ()O E h

()log logO h times

Finding ε-approximation path

()O E h ε

A

B

C

,LB UBβ β← ←

1860 Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

4 Summary and Conclusions

According to Camponogara and Shima (2010), the motivation for agent mobility and
efficient agent routing is not in the technology itself but rather in the benefit that
agents offer for innumerous applications in communications, computing systems, and
the Internet, as well as in educational, social, and cultural services. The mobile agent
itinerary problem can be cast as the resource-constrained longest-path problem that
appeals for fast and practical algorithms.

Table 1 summarizes the main differences between CSA and our new algorithm.

Algorithm Stages CSA New algorithm

Stage A
None

Use special algorithm for
initial UB, LB to achieve
a ratio equal to h.

Complexity
of Stage A

_ ()O E n+

Stage B Call DP with a given ε Call DP with a constant ε,
equal to 1/2, 1/3, and ¼.

The number of
iterations

()log log(/)O b b ()log log()O h

as a result

of the improvement in
Stage A.

Complexity at each
iteration

()/ log log(/)O E n b bε +

()O E h as a result of a

constant ε
Total complexity

of Stage B ()
()
log log(/)

/ log log(/)

b b
O

E n b bε

⎛ ⎞•
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

()()log logO h E hi

Stage C Scaled DP with paramater n Scaled DP
with parameter h

Complexity of
Stage C

()O E n ε

()O E h ε

Total complexity of
all stages A,B and C

()
()
log log(/)

/ log log(/)

b b
O

E n b bε

⎛ ⎞•
⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

()log logO h E h E h ε+i

Table 1: Comparison of the algorithms

In this note we suggest a modified algorithm that improves the original

Componogara-Shima algorithm by a factor of (n/h)log log(b /b). Therefore, the
complexity of our algorithm polynomially depends only on the graph size (i.e., |E| and
n) and 1/ε, and does not depend on the magnitudes of the input data. In addition,
although the maximum number of hops, h, in graph G, in the worst case can be n-1,
the factor n/h in realistic computing networks may be up to dozens and even
hundreds. Our simulation experiments with agents serving computer communication

1861Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

networks confirm that the running time of the new technique is considerably less than
that of the CSA. Figure 5, borrowed from Lennon and Maurer (1994), illustrates this
fact. In this example, the average node out-degree in the network is just 4 (though, in
practice, it may be much larger), so in the 5-layer network the acceleration factor n/h
is larger than 600.

Figure 5: A networked multimedia system (Lennon and Maurer, 1994)

References

[Camponogara and Shima, 2010] Camponogara, E., Shima, R. B. (2010). Mobile agent souting
with time constraints: a resource constrained longest-path approach. Journal of Universal
Computer Science, 16, 3 372-401.

[Cormen et al. 2001] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2001).
Introduction to Algorithms, MIT Press, Cambridge, USA.

[Gens and Levner 1981] Gens, G. V., Levner, E. V. (1981). Fast approximation algorithms for
job sequencing with deadlines. Discrete Applied Mathematics, 3 313-318.

[Hassin 1992] Hassin, R. (1992). Approximation schemes for the restricted shortest path
problem. Mathematics of Operations Research, 17, 1 36-42.

[Lennon and Maurer 1994] Lennon, J., Maurer, H. (1994). Applications and impact of
hypermedia systems: an overview. Journal of Universal Computer Science, pilot issue, 54-108.

1862 Levner E., Elalouf A., Cheng T.C.E.: An Improved FPTAS ...

