
Improving GPT-2 Throughput for Lossless Text Compression

Undergraduate Thesis

Alison Zhong

Advised by Dr. Yu Su

The Ohio State University

Department of Computer Science and Engineering

Spring 2024

Thesis Committee:

Yu Su, CSE (advisor)

Hanqi Guo, CSE

© Copyright by

Alison Zhong

2024

ABSTRACT

Compression helps with handling the enormous amount (in the hundreds of millions of ter-

abytes) of data generated daily. We can compress data with redundancies at higher rates

with better models of data. Knowing large language models’ (LLM) impressive performance

at modeling text data, they seem well suited for lossless text compression. We implement

a lossless text compressor that uses arithmetic coding with GPT-2. A naive GPT-2-based

compressor is slow—it compresses 200-500 bytes per second with a GPU compared to al-

most two million bytes per second by 7-Zip (a general-purpose compressor). Though such

a compressor’s outputs are ≈ 30% smaller than 7-Zip’s, the poor compression speed limits

its practicality. Hence, we investigate how various LLM optimizations impact our compres-

sor’s performance and speed. We achieve a 1.5× speedup without significant performance

degradation. We achieve further speedup (over 2×) if we accept sacrificing performance.

Additionally, we find that increasing model size improves compression performance more

than increasing context size and that distilled models compress better than pruned models.

ii

ACKNOWLEDGEMENTS

Thank you to Dr. Yu Su for giving me the opportunity to work on this interesting and chal-

lenging project and for your unwavering support. Thank you to Dr. Hanqi Guo for agreeing

to serve on my honors research distinction defense committee. Thank you to Samuel Stevens

for being my research mentor, guiding me through this journey, and providing insightful

suggestions and feedback.

iii

Table of Contents

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF ALGORITHMS . vii

1 INTRODUCTION . 1

2 RELATED WORKS . 3

3 METHODOLOGY . 6

3.1 Compressor . 7

3.2 Determinism . 9

3.3 Optimizations . 9

3.4 Hardware . 10

3.5 Window Sizes . 10

4 EXPERIMENTS . 11

4.1 Preliminary Experiments . 11

4.2 Final Experiments . 14

4.3 General Results . 17

5 CONCLUSION . 20

iv

REFERENCES . 21

APPENDIX . 26

v

List of Figures

4.1 Preliminary: BPC vs window size . 11

4.2 Preliminary: speed vs window size . 12

4.3 Preliminary: compression rate ratio and speedup 13

4.4 Preliminary: speedup vs window size . 13

4.5 Final: BPC vs window size . 14

4.6 Final: speed vs window size . 15

4.7 Final: compression rate ratio and speedup 16

4.8 Final: speedup vs window size . 16

4.9 Increasing context vs model size . 17

4.10 Smaller window: distillation vs pruning . 18

4.11 Larger window: distillation vs pruning . 18

4.12 Compare with 7-Zip . 19

vi

List of Algorithms

1 Encoding . 7

2 Decoding . 8

3 Arithmetic Encoder . 8

4 Arithmetic Decoder . 9

vii

CHAPTER 1

INTRODUCTION

Compression addresses two problems: storing and transferring large amounts of data. Data is

generated every moment, and compressing that data reduces the space needed to preserve all

that collected information. Since the transfer rate is bounded by bytes per second, reducing

the amount of data transferred leads to faster transfers.

Compression reduces the amount of bits needed to represent information by eliminating

redundancy. Data compression can be lossless or lossy. Lossy methods sacrifice additional

information that is necessary to recover data perfectly [32]. Lossless compression is standard

with text data, as changing one character can change the data’s interpretation.

No lossless data compression methods can efficiently compress all input data as only 2N

values can be stored in N bits. The four main types of compression methods are run-length

encoding, statistical methods, dictionary-based methods, and transforms [32].

Data is composed of strings of symbols. Statistical methods leverage statistical models

to encode symbols efficiently. Huffman coding constructs a code for symbols based on their

probabilities. More likely symbols receive shorter codes, minimizing redundancy in the code

[19]. Arithmetic coding represents data as an interval: each symbol narrows the interval,

and more likely symbols narrow the interval less. The output from arithmetic coding is a

number in the range of the final interval [22].

An algorithm’s compression rate is calculated as the input data size divided by the output

data size. Bits-per-character (BPC) measures the average number of bits representing a

character from the original data. Higher compression rates correspond to lower BPC.

1

Shannon defines entropy as the negative expectation of log of probability for symbols in

the data (Σi − pi ∗ log(pi)) and shows that a data source’s entropy lower bounds its average

coding length [35]. Huffman and arithmetic coding approach that lower bound. Arithmetic

coding is more optimal as it represents symbols with a fractional number of bits [22].

Large language models (LLMs) based on the transformer architecture [38] have achieved

state-of-the-art results on many natural language tasks [3, 36, 20]. LLMs take tokens as

input, convert the token sequence into embeddings, and apply multi-head attention and a

feed-forward network with normalization in layers. Tokenizers convert inputs into tokens;

Byte Pair Encoding (BPE) tokenizers are trained by greedily merging possible byte pairs [34].

An embedding layer converts token sequences into positional embeddings. The attention

mechanism connects all input and output positions, allowing transformer models to learn

global dependencies [38].

Autoregressive language models are trained to estimate the probability distribution of

a token sequence [44]. Generative Pre-trained Transformer 2 (GPT-2) is an autoregressive

model released by OpenAI in 2019 that achieved state-of-the-art results on tasks without

being trained on such tasks [30].

Arithmetic coding with a probability model that predicts the next tokens with higher

probabilities should achieve a lower BPC. Thus, an autoregressive LLM like GPT-2 should

compress text at a higher compression rate than general-purpose compressors.

A typical trade-off with compression algorithms is compression rate and compression

speed: what percent increase in compression rate is worth a magnitude increase in compres-

sion time [32]. In practice, lower compression rate methods like 7-Zip and gzip are used

since speed is desirable. Modern, transformer-based LLMs are slow due to having millions

to billions of parameters and the attention’s quadratic complexity [14]. We investigate accel-

erating transformer throughput while retaining good probability modeling, which translates

to retaining compression performance. Accelerating transformer throughput allows more

people to achieve higher compression rates.

2

CHAPTER 2

RELATED WORKS

Much research has been done on using neural networks to compress data [21, 1, 43]. DZip [15]

was a neural network-based compressor that achieved better compression rates on datasets

than domain-specific neural network compressors. The authors of DZip demonstrate the

compression ability of neural networks and warn that the “practicality of DZip is currently

limited due to the required encoding/decoding time” [15].

Recently, explorations of LLM-based compressors have been conducted. The authors of

LLMZip show lower upper bounds on the entropy of the English language with LLaMa-7B

[37]. They use LLaMa-7B [36] to calculate asymptotic upper bounds and use arithmetic

coding to demonstrate compression rates close to those bounds. There has also been work

exploring how compression and prediction relate. When discounting for model parameters,

LLM Chinchilla 70B achieves better compression than domain-specific compressors on text,

image, and audio data [11]. An adjacent work shows a correlation between compression

and intrinsic dimension: OPT models with better compression rates have lower intrinsic

dimension [5]. The authors also show that intrinsic dimension positively correlates to how

easily an OPT model can be trained for tasks.

There’s a range of methods to make transformer inference more efficient. These methods

are classified as time-efficient, computation-efficient, memory-efficient, and storage-efficient

based on which resource they reduce the requirements for while running transformer model

inference [14]. From a recent survey, popular methods to accelerate transformer inference

include knowledge distillation, model pruning, quantization, approximating multi-headed

3

attention, selecting optimal architecture for hardware, and hardware accelerators [7].

Knowledge distillation, model pruning, and quantization methods all seek to reduce the

model size. There are several techniques for knowledge distillation, which include training on

a larger model’s output logits [46], training on a transfer set with an ensemble of specialized

models [18], training on an intermediate model [26], and training with noisy output from a

larger model [41]. Distilled models can have comparable performance to the original model.

Model pruning also reduces the number of parameters. Model pruning can be unstructured,

structured, or a mix. Unstructured pruning methods zero weights based on an estimation of

their contribution, such as their magnitude or change in magnitude during training [17, 33].

Structured pruning methods remove weights in groups based on the model’s architecture.

Layers can be dropped after pre-training [31] with comparable performance to those that

train for layer pruning [13]. Quantization reduces the number of bits used to represent model

parameters. Standard quantization reduces parameters from 32-bit floating point to 8-bit

integer [42]. There are more extreme quantization methods, such as reducing parameters to

ternary values {−1, 0, 1} [45]. LLM.int8() is a method to quantize a model’s weights without

significant performance drops on models with less than 175 billion parameters. Speedups

with LLM.int8() are observed when a large enough batch size is fit into a smaller number of

GPUs [12].

Automatic mixed precision (AMP) reduces the precision of the weights. With AMP, GPU

operations that can be run with half-precision are run with 16 bits and other operations are

run with full 32 bits ([28]). AMP has minimal impact on model performance ([14]).

Two attention approximation strategies based on the attention weight matrix being sparse

are sparse attention and factorized attention [14]. Star-Transformer, Sparse Transformer,

and Linformer are examples of sparse attention approximations as they achieve subquadratic

complexity by choosing which connections to keep [16, 6, 2]. Factorized attention methods,

like Linformer, factorize matrices to reduce their ranks and the complexity of the attention

operation without noticeably impacting performance [39].

Many attention approximations fail to produce speedups as they fail to address memory

4

complexity. FlashAttention restructures the attention to reduce the number of reads and

writes as I/O is a bottleneck for GPU operations, achieving 2−4× speedup [10]. FlashAtten-

tion2 improves work sharing, increasing GPU block occupation and reducing shared memory

access for 2× more speedup [8]. Flash-Decoding makes similar observations and optimizes

for decoding by parallelizing key value computations and reducing them to achieve 20−50×

speedup [9].

A similar bottleneck with attention is the GPU waiting for instructions from Python. A

solution is torch.compile, which just-in-time compiles Pytorch models and functions into

kernels [40]. torch.compile aims to reduce the time the GPU spends waiting for instructions

and the number of reads and writes.

An unrelated method to accelerate inference is speculation. Speculative decoding, also

known as speculative sampling, leverages a smaller model to generate guesses and validate

them with the larger model [4, 23]. This guarantees at least one additional token will be

generated with each run of the larger model.

Some optimizations may lead to worse performance depending on the hardware used.

One solution is to dynamically select architecture and optimizations to balance performance

and throughput given the hardware used [7]. More hardware-related optimizations include

designing hardware for specialized operations, skipping redundant operations, pipeline op-

erations, and optimizing loops [7].

5

CHAPTER 3

METHODOLOGY

We investigate how various optimizations impact bits-per-character (BPC), encoding time,

and decoding time. Since the goal is lossless text compression, we extract the first 5 105-byte

excerpts from text8 [24] to test our compressor on. The text8 dataset is composed of 108

bytes of text from Wikipedia and is used as a compression benchmark.

The size of the input data, size of the compressed data, time to encode the data, and time

to decode the data are measured. We test how automatic mixed precision (AMP), FlashAt-

tention, FlashAttention2, torch.compile, 8-bit quantization, and various layer dropping

strategies perform individually. From those results, we select one subset of optimizations to

combine and test on a larger excerpt (106-bytes) from text8.

BPC compressed number of bits / input number of bytes

encoding speed input number of bytes / encoding time

decoding speed input number of bytes / decoding time

compression rate compressed number of bytes / input number of bytes

compression rate ratio compression rate / baseline compression rate

coding speed (encoding + decoding speed) / 2

coding time encoding + decoding time

speedup coding time / baseline coding time

Table 3.1: Measurements

6

3.1 Compressor

We implement a baseline compressor that converts text into tokens, feeds those tokens into

OpenAI’s GPT-2 small model, and encodes the input with arithmetic coding based on the

logits output from the model. We use an open-source implementation of arithmetic coding

[27]. The following pseudocode explains how coding and decoding take place. One simplifi-

cation from the pseudocode is that the models have an input token limit. The solution is to

choose a window size and adjust the input window of tokens as needed. The pseudocode of

arithmetic coding is also simplified.

Algorithm 1 Encoding

1: Read text from input file

2: Tokenize text

3: N = number of tokens

4: Encode N

5: Give the first token and cumulative uniform probability table to the encoder

6: while i ≤ N do

7: Input the tokens before token i to GPT-2

8: Transform the logits from GPT-2 into probabilities with softmax

9: Construct a cumulative probability table with the probabilities

10: Give the ith token and the cumulative probability table to the encoder

7

Algorithm 2 Decoding

1: Read bytes from the compressed input

2: Decode N

3: Give the cumulative uniform probability table to the decoder

4: while i ≤ N do

5: Input the decoded tokens before token i to GPT-2

6: Transform the logits from GPT-2 into probabilities with softmax

7: Construct a cumulative probability table with the probabilities

8: Give the cumulative probability table to the decoder to get token i

9: Convert tokens to text and output decompressed input

Algorithm 3 Arithmetic Encoder

1: Set high to half of max integer value

2: Set low to 0

3: while not finished do

4: Take symbol and cumulative probability table

5: Use the symbol to index into the cumulative probability table

6: Update range’s high and low with the symbol’s high and low values

7: Shift bits to the buffer and write any underflow bits until high and low

have different top bit values

8: Delete the second highest bit and increment underflow bit count until low’s

top two bits ̸= 01 or high’s top two bits ̸= 10

9: Flush buffered bits

8

Algorithm 4 Arithmetic Decoder

1: Set high to half of max integer value

2: Set low to 0

3: while not finished do

4: Take cumulative probability table

5: Use cumulative probability table to convert coding range

6: Calculate a value with the converted range

7: Shift until find the highest symbol with low less than the value

8: Update range’s high and low with the symbol’s high and low values

9: Shift bits from the buffer until high and low have different top bit values

10: Transform second highest bit with a bit from the buffer until low’s top two

bits ̸= 01 or high’s top two bits ̸= 10

11: Return symbol

3.2 Determinism

We follow PyTorch’s guidelines on enforcing determinism [29]. This is necessary as when the

model’s output is nondeterministic, arithmetic coding may impact decode a token incorrectly.

Once one token is decoded incorrectly, the probability model becomes incorrect, leading to

subsequent tokens being decoded incorrectly.

3.3 Optimizations

We implement several optimizations: AMP [28], FlashAttention [10, 8], layer dropping [31],

torch.compile [40], and 8-bit quantization [12]. For layer dropping, we test the dropping

top, symmetric, old alternating, even alternating, and bottom layer strategies [31]. We drop

layers using a ratio instead of a fixed number of layers. For a model with 12 layers like

GPT-2, ratio 2 drops 12 ∗ 1
2
= 6 layers, ratio 3 drops 12 ∗ 1

3
= 4 layers, and ratio 6 drops

9

12 ∗ 1
6
= 2 layers. This will hopefully lead to similar speedups across models with different

numbers of layers.

We measure the BPC, the encoding time, and the decoding time for each optimization.

We also check if the decompressed output matches the input. We select a combination of

optimizations that are likely to preserve low BPC and increase throughput. We run an

ablation study with DistilGPT2, GPT-2, and GPT-2 medium and compare the performance

of the optimized compressor with the baseline on a larger excerpt.

3.4 Hardware

We run our experiments on RTX 2080 and RTX A6000 GPUs. At the time of experimenta-

tion, FlashAttention optimizations did not support running on RTX 2080.

3.5 Window Sizes

Generally, BPC should decrease as window size increases - having more context allows GPT-2

to model the data better. However, there is a bug with DistilGPT2 and GPT-2 around 1024

tokens (the maximum allowed number of tokens), so we use 1023 tokens as our maximum

window size. We test our compressor with window sizes of 128, 256, 512, 768, and 1023.

10

CHAPTER 4

EXPERIMENTS

In preliminary experiments, we investigate automatic mixed precision (AMP), torch.compile,

8-bit quantization, 15 layer dropping strategies, FlashAttention, and FlashAttention2. From

our results, we select AMP, torch.compile, symmetric layer dropping, and FlashAttention2

for further experimentation. We test AMP with torch.compile, AMP with torch.compile

and symmetric layer dropping, and AMP with torch.compile and FlashAttention2 for our

final experiments. The compressor with torch.compile decompresses output unequal to

the input once in the preliminary, which could have been due to chance. The compressor

with torch.compile fails multiple times in the final experiments. Our compressor does not

fail otherwise. Numbers are available in the Appendix.

4.1 Preliminary Experiments

Figure 4.1: BPC vs window size

11

Bits-per-character (BPC) generally decreases as the model is given more context. There are

exceptions with layer dropping, likely due to information lost with model pruning. Non-

pruning optimizations result in negligible BPC increases, and pruning more layers results in

more significant BPC increases.

Figure 4.2: speed vs window size

As window size increases, encoding and decoding speeds decrease. Non-pruning optimiza-

tions are slower than the baseline with the smallest window size but become faster than the

baseline with larger window sizes. 8-bit quantization is the exception, likely slower due to us-

ing single batch inference. Also, the encoding and decoding speed for pruning optimizations

seem to be grouped by the ratio of layers dropped.

12

Figure 4.3: compression rate ratio and speedup

Change in compression rate ratio seems stable for optimizations over different window

sizes. Speedup varies for AMP, torch.compile, 8-bit quantization, FlashAttention, and

FlashAttention2.

Figure 4.4: speedup vs window size

Generally, speedups increase with window size.

13

4.2 Final Experiments

Figure 4.5: Final: BPC vs window size

The line between 768 tokens and 1023 tokens is removed since we expect BPC to continue

decreasing until some point. As expected, larger models achieve lower BPC, though that no

longer holds after pruning.

14

Figure 4.6: speed vs window size

Encoding and decoding speeds generally decrease as window size increases. The combined

optimization of AMP, torch.compile, and FlashAttention2 is an exception as its speed is

fixed. This might be due to torch.compile with FlashAttention2 needing to recompile more

due to hitting cache limits.

15

Figure 4.7: compression rate ratio and speedup

Changes in compression rate ratios vary for symmetric layer droppings over different

models and window sizes. Speedup also varies.

Figure 4.8: speedup vs window size

When measuring speedups across models and GPUs, the 95% confidence intervals overlap,

making it difficult to conclude which optimization achieves higher speedups. Overall, as

window size increases, speedups increase.

16

4.3 General Results

All calculations use GPT-2 with a window size of 128 tokens and no optimizations as the

baseline.

Figure 4.9: Increasing context vs model size

Increasing model size leads to a greater increase in compression rate for a smaller decrease

in speed.

model number of parameters

distilGPT2 82M

GPT-2, symmetric drop 1
6

103.3M

GPT-2 124M

GPT-2 medium, symmetric drop 1
6

295.8M

GPT-2 medium 355M

Table 4.1: Model Size

17

Figure 4.10: Smaller window: distillation vs pruning

Figure 4.11: Larger window: distillation vs pruning

At small and large contexts, a distilled or smaller model does better than dropping 1
6

of the layers of the larger model. In most cases, the smaller model is also faster than the

pruned model.

18

Figure 4.12: BPC and coding speed trade-off with 7-Zip

7-Zip has a BPC of 1.696 and a coding speed of 1988071.57 bytes/second on enwik8 [25].

While arithmetic coding with GPT-2 achieves a lower BPC, it is much slower. Even with

optimizations, 7-Zip is at least 900− 10, 000× faster.

19

CHAPTER 5

CONCLUSION

Increasing GPT-2’s model size yields a greater decrease in BPC than increasing GPT-2’s

context window with a smaller speed decrease. Similarly, switching to a smaller or distilled

model leads to less increase in BPC than pruning a sixth of a model’s layers. Since increasing

model size is more effective than increasing context, non-pruning optimizations are only

sometimes useful, as most speedups are achieved at larger window sizes.

Future work includes exploring distillation, pruning, memory-based optimizations, and

multi-batch compression. Comparing how different distillation methods impact compression

and throughput may lead to improved performance and higher speedups. More sophisticated

model pruning methods may yield smaller compression rate losses for similar speedups.

Flash-Decoding and memory-aware, sparse attention approximations have the potential for

significant speedups. For multi-batch compression, there would be a trade-off between speed

and compression as each division of the input loses context at the chunk’s start. Finally, it

remains to test how optimizations impact autoregressive models other than GPT-2.

20

REFERENCES

[1] Fabrice Bellard. “Lossless Data Compression with Neural Networks”. In: (2019).

[2] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document

Transformer. 2020. arXiv: 2004.05150 [cs.CL].

[3] Tom Brown et al. “Language Models are Few-Shot Learners”. In: Advances in Neural

Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates,

Inc., 2020, pp. 1877–1901. url: https://proceedings.neurips.cc/paper_files/

paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

[4] Charlie Chen et al. Accelerating Large Language Model Decoding with Speculative Sam-

pling. 2023. arXiv: 2302.01318 [cs.CL].

[5] Emily Cheng, Corentin Kervadec, and Marco Baroni. “Bridging Information-Theoretic

and Geometric Compression in Language Models”. In: Proceedings of the 2023 Confer-

ence on Empirical Methods in Natural Language Processing. Ed. by Houda Bouamor,

Juan Pino, and Kalika Bali. Singapore: Association for Computational Linguistics,

Dec. 2023, pp. 12397–12420. doi: 10.18653/v1/2023.emnlp-main.762. url: https:

//aclanthology.org/2023.emnlp-main.762.

[6] Rewon Child et al. Generating Long Sequences with Sparse Transformers. 2019. arXiv:

1904.10509 [cs.LG].

[7] Krishna Teja Chitty-Venkata et al. “A survey of techniques for optimizing transformer

inference”. In: J. Syst. Archit. 144.C (Nov. 2023). issn: 1383-7621. doi: 10.1016/j.

sysarc.2023.102990. url: https://doi.org/10.1016/j.sysarc.2023.102990.

21

https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2302.01318
https://doi.org/10.18653/v1/2023.emnlp-main.762
https://aclanthology.org/2023.emnlp-main.762
https://aclanthology.org/2023.emnlp-main.762
https://arxiv.org/abs/1904.10509
https://doi.org/10.1016/j.sysarc.2023.102990
https://doi.org/10.1016/j.sysarc.2023.102990
https://doi.org/10.1016/j.sysarc.2023.102990

[8] Tri Dao. “FlashAttention-2: Faster Attention with Better Parallelism and Work Par-

titioning”. In: (2023).

[9] Tri Dao et al. “Flash-Decoding for long-context inference”. In: (2023).

[10] Tri Dao et al. “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-

Awareness”. In: Advances in Neural Information Processing Systems. 2022.

[11] Grégoire Delétang et al. Language Modeling Is Compression. 2024. arXiv: 2309.10668

[cs.LG].

[12] Tim Dettmers et al. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale.

2022. arXiv: 2208.07339 [cs.LG].

[13] Angela Fan, Edouard Grave, and Armand Joulin. Reducing Transformer Depth on

Demand with Structured Dropout. 2019. arXiv: 1909.11556 [cs.LG].

[14] Quentin Fournier, Gaétan Marceau Caron, and Daniel Aloise. “A Practical Survey

on Faster and Lighter Transformers”. In: 55.14s (July 2023). issn: 0360-0300. doi:

10.1145/3586074. url: https://doi.org/10.1145/3586074.

[15] Mohit Goyal et al. DZip: improved general-purpose lossless compression based on novel

neural network modeling. 2020. arXiv: 1911.03572 [cs.LG].

[16] Qipeng Guo et al. Star-Transformer. 2022. arXiv: 1902.09113 [cs.CL].

[17] Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding. 2016. arXiv:

1510.00149 [cs.CV].

[18] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural

Network. 2015. arXiv: 1503.02531 [stat.ML].

[19] David A. Huffman. “A Method for the Construction of Minimum-Redundancy Codes”.

In: Proceedings of the IRE 40.9 (1952), pp. 1098–1101. doi: 10.1109/JRPROC.1952.

273898.

[20] Albert Q. Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL].

22

https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/1909.11556
https://doi.org/10.1145/3586074
https://doi.org/10.1145/3586074
https://arxiv.org/abs/1911.03572
https://arxiv.org/abs/1902.09113
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1503.02531
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://arxiv.org/abs/2310.06825

[21] Byron Knoll. “CMIX”. In: (2014). url: https://www.byronknoll.com/cmix.html.

[22] G. G. Langdon. “An Introduction to Arithmetic Coding”. In: IBM Journal of Research

and Development 28.2 (1984), pp. 135–149. doi: 10.1147/rd.282.0135.

[23] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast Inference from Transformers

via Speculative Decoding. 2023. arXiv: 2211.17192 [cs.LG].

[24] Matt Mahoney. “About the Test Data”. In: (2011). url: https://www.mattmahoney.

net/dc/textdata.html.

[25] Matt Mahoney. “Large Text Compression Benchmark”. In: (2023). url: https://

www.mattmahoney.net/dc/text.html.

[26] Seyed Iman Mirzadeh et al. “Improved Knowledge Distillation via Teacher Assistant”.

In: Proceedings of the AAAI Conference on Artificial Intelligence 34.04 (Apr. 2020),

pp. 5191–5198. doi: 10.1609/aaai.v34i04.5963. url: https://ojs.aaai.org/

index.php/AAAI/article/view/5963.

[27] nayuki. “Reference arithmetic coding”. In: (2018). url: https://www.nayuki.io/

page/reference-arithmetic-coding.

[28] PyTorch. “Automatic Mixed Precision Package - torch.amp”. In: (2023). url: https:

//pytorch.org/docs/stable/amp.html.

[29] PyTorch. “Reproducibility”. In: (2023). url: https://pytorch.org/docs/stable/

notes/randomness.html.

[30] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In:

(2019).

[31] Hassan Sajjad et al. “On the effect of dropping layers of pre-trained transformer

models”. In: Computer Speech & Language 77 (2023), p. 101429. issn: 0885-2308.

doi: https : / / doi . org / 10 . 1016 / j . csl . 2022 . 101429. url: https : / / www .

sciencedirect.com/science/article/pii/S0885230822000596.

23

https://www.byronknoll.com/cmix.html
https://doi.org/10.1147/rd.282.0135
https://arxiv.org/abs/2211.17192
https://www.mattmahoney.net/dc/textdata.html
https://www.mattmahoney.net/dc/textdata.html
https://www.mattmahoney.net/dc/text.html
https://www.mattmahoney.net/dc/text.html
https://doi.org/10.1609/aaai.v34i04.5963
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://ojs.aaai.org/index.php/AAAI/article/view/5963
https://www.nayuki.io/page/reference-arithmetic-coding
https://www.nayuki.io/page/reference-arithmetic-coding
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/notes/randomness.html
https://pytorch.org/docs/stable/notes/randomness.html
https://doi.org/https://doi.org/10.1016/j.csl.2022.101429
https://www.sciencedirect.com/science/article/pii/S0885230822000596
https://www.sciencedirect.com/science/article/pii/S0885230822000596

[32] David Salomon.Data Compression: The Complete Reference. Berlin, Heidelberg: Springer-

Verlag, 2006. isbn: 1846286026.

[33] Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement Pruning: Adaptive

Sparsity by Fine-Tuning. 2020. arXiv: 2005.07683 [cs.CL].

[34] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine Translation of

Rare Words with Subword Units. 2016. arXiv: 1508.07909 [cs.CL].

[35] C. E. Shannon. “A mathematical theory of communication”. In: The Bell System

Technical Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.1538- 7305.1948.

tb01338.x.

[36] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023.

arXiv: 2307.09288 [cs.CL].

[37] Chandra Shekhara Kaushik Valmeekam et al. LLMZip: Lossless Text Compression

using Large Language Models. 2023. arXiv: 2306.04050 [cs.IT].

[38] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-

mation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,

2017. url: https://proceedings.neurips.cc/paper_files/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[39] Sinong Wang et al. Linformer: Self-Attention with Linear Complexity. 2020. arXiv:

2006.04768 [cs.LG].

[40] William Wen. “Introduction to torch.compile”. In: (2024). url: https://pytorch.

org/tutorials/intermediate/torch_compile_tutorial.html.

[41] Qizhe Xie et al. “Self-Training With Noisy Student Improves ImageNet Classifica-

tion”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2020, pp. 10684–10695. doi: 10.1109/CVPR42600.2020.01070.

[42] Canwen Xu and Julian McAuley. A Survey on Model Compression and Acceleration

for Pretrained Language Models. 2022. arXiv: 2202.07105 [cs.CL].

24

https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/1508.07909
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2306.04050
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2006.04768
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://doi.org/10.1109/CVPR42600.2020.01070
https://arxiv.org/abs/2202.07105

[43] Yibo Yang, Stephan Mandt, and Lucas Theis. “An Introduction to Neural Data Com-

pression”. In: Found. Trends. Comput. Graph. Vis. 15.2 (Apr. 2023), pp. 113–200. issn:

1572-2740. doi: 10.1561/0600000107. url: https://doi.org/10.1561/0600000107.

[44] Zhilin Yang et al. XLNet: Generalized Autoregressive Pretraining for Language Under-

standing. 2020. arXiv: 1906.08237 [cs.CL].

[45] Wei Zhang et al. “TernaryBERT: Distillation-aware Ultra-low Bit BERT”. In: Pro-

ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Ed. by Bonnie Webber et al. Online: Association for Computational Lin-

guistics, Nov. 2020, pp. 509–521. doi: 10.18653/v1/2020.emnlp-main.37. url:

https://aclanthology.org/2020.emnlp-main.37.

[46] Haoran Zhao et al. “Highlight Every Step: Knowledge Distillation via Collaborative

Teaching”. In: IEEE Transactions on Cybernetics 52.4 (2022), pp. 2070–2081. doi:

10.1109/TCYB.2020.3007506.

25

https://doi.org/10.1561/0600000107
https://doi.org/10.1561/0600000107
https://arxiv.org/abs/1906.08237
https://doi.org/10.18653/v1/2020.emnlp-main.37
https://aclanthology.org/2020.emnlp-main.37
https://doi.org/10.1109/TCYB.2020.3007506

APPENDIX

Failures

Trials in which the decompressed output is different from the input are counted as failures.

There are 75 trials per preliminary experiment and 5 trials per final experiment.

Optimization Model Failures

torch.compile GPT-2 1

Table 5.1: Preliminary Experiment Failures on 2080

26

Optimization Model Failures

AMP, torch.compile DistilGPT2 1

AMP, torch.compile GPT-2 3

AMP, torch.compile GPT-2 Medium 2

AMP, torch.compile, symmetric 2 GPT-2 1

AMP, torch.compile, symmetric 2 GPT-2 Medium 3

AMP, torch.compile, symmetric 3 DistilGPT2 1

AMP, torch.compile, symmetric 3 GPT-2 2

AMP, torch.compile, symmetric 3 GPT-2 Medium 3

AMP, torch.compile, symmetric 6 DistilGPT2 1

AMP, torch.compile, symmetric 6 GPT-2 2

AMP, torch.compile, symmetric 6 GPT-2 Medium 3

Table 5.2: Final Experiment Failures on 2080

27

Optimization Model Failures

AMP, torch.compile DistilGPT2 1

AMP, torch.compile GPT-2 1

AMP, torch.compile, symmetric 2 GPT-2 1

AMP, torch.compile, symmetric 3 DistilGPT2 1

AMP, torch.compile, symmetric 3 GPT-2 1

AMP, torch.compile, symmetric 6 DistilGPT2 1

AMP, torch.compile, symmetric 6 GPT-2 1

AMP, torch.compile, symmetric 6 GPT-2 Medium 2

AMP, torch.compile, FlashAttention2 DistilGPT2 1

Table 5.3: Final Experiment Failures on A6000

28

BPC & Coding Speed

Optimization Model BPC 128 BPC 256 BPC 512 BPC 768 BPC 1023

baseline GPT-2 1.18 1.14 1.12 1.10 1.10

AMP GPT-2 1.18 1.14 1.12 1.10 1.10

torch.compile GPT-2 1.18 1.14 1.12 1.10 1.10

quantize GPT-2 1.20 1.16 1.14 1.13 1.12

top 6 GPT-2 2.00 1.95 1.93 1.90 1.89

top 3 GPT-2 2.36 2.31 2.28 2.24 2.22

top 2 GPT-2 2.66 2.66 2.66 2.64 2.63

odd-alt 6 GPT-2 1.31 1.29 1.27 1.27 1.27

odd-alt 3 GPT-2 1.43 1.42 1.40 1.41 1.41

odd-alt 2 GPT-2 2.32 2.34 2.37 2.64 2.79

even-alt 6 GPT-2 1.68 1.64 1.63 1.61 1.61

even-alt 3 GPT-2 1.68 1.66 1.64 1.64 1.63

even-alt 2 GPT-2 1.76 1.76 1.72 1.77 1.80

symmetric 6 GPT-2 1.33 1.30 1.29 1.29 1.29

symmetric 3 GPT-2 1.48 1.47 1.46 1.47 1.47

symmetric 2 GPT-2 1.67 1.67 1.66 1.68 1.69

bottom 6 GPT-2 2.37 2.39 2.37 2.43 2.58

bottom 3 GPT-2 4.20 4.21 4.20 4.13 4.26

bottom 2 GPT-2 4.71 4.58 4.23 4.24 4.16

Table 5.4: Preliminary BPC on 2080

29

Optimization Model Speed 128 Speed 256 Speed 512 Speed 768 Speed 1023

baseline GPT-2 572.31 524.28 269.21 173.19 123.60

AMP GPT-2 486.24 478.20 398.44 270.68 188.69

torch.compile GPT-2 465.09 408.91 315.18 201.58 142.82

quantize GPT-2 422.66 329.91 207.78 135.48 99.26

top 6 GPT-2 678.03 607.84 311.28 200.80 142.18

top 3 GPT-2 780.44 693.28 363.89 236.37 169.09

top 2 GPT-2 940.43 824.15 443.33 289.48 207.42

odd-alt 6 GPT-2 640.91 593.90 305.64 198.30 141.49

odd-alt 3 GPT-2 742.32 668.26 357.88 232.92 167.51

odd-alt 2 GPT-2 908.20 801.65 432.44 285.60 207.22

even-alt 6 GPT-2 668.95 607.34 308.28 199.88 142.73

even-alt 3 GPT-2 778.42 705.57 362.48 236.61 169.47

even-alt 2 GPT-2 925.13 829.51 440.67 288.79 207.65

symmetric 6 GPT-2 637.66 586.59 307.08 197.39 141.89

symmetric 3 GPT-2 746.10 671.63 356.56 233.28 167.87

symmetric 2 GPT-2 891.15 790.72 431.21 281.11 206.49

bottom 6 GPT-2 650.43 588.76 307.86 198.24 142.14

bottom 3 GPT-2 792.54 711.10 365.86 237.54 170.75

bottom 2 GPT-2 956.89 835.49 444.69 289.19 209.75

Table 5.5: Preliminary Coding Speed on 2080

30

Optimization Model BPC 128 BPC 256 BPC 512 BPC 768 BPC 1023

baseline GPT-2 1.18 1.14 1.12 1.10 1.10

AMP GPT-2 1.18 1.14 1.12 1.11 1.10

AMP, FlashAttention GPT-2 1.18 1.14 1.12 1.11 1.10

AMP, FlashAttention2 GPT-2 1.18 1.14 1.12 1.11 1.10

Table 5.6: Preliminary BPC on A6000

Optimization Model Speed 128 Speed 256 Speed 512 Speed 768 Speed 1023

baseline GPT-2 715.56 704.23 550.15 368.12 253.49

AMP GPT-2 598.47 596.87 565.55 397.01 279.29

AMP, FlashAttention GPT-2 647.62 637.24 588.66 491.23 413.51

AMP, FlashAttention2 GPT-2 660.99 656.86 604.27 486.41 418.65

Table 5.7: Preliminary Coding Speed on A6000

31

Optimization Model BPC 128 BPC 256 BPC 512 BPC 768 BPC 1023

baseline DistilGPT2 1.34 1.30 1.28 1.28 1.78

baseline GPT-2 1.21 1.17 1.15 1.14 1.14

baseline GPT-2 Medium 1.09 1.06 1.04 1.03 1.03

AMP, torch.compile DistilGPT2 1.34 1.30 1.28 1.28 1.78

AMP, torch.compile GPT-2 1.21 1.17 1.15 1.14 1.14

AMP, torch.compile GPT-2 Medium 1.09 1.06 1.04 1.03 1.03

symmetric 2 DistilGPT2 1.90 1.93 1.94 1.96 1.97

symmetric 2 GPT-2 1.73 1.73 1.72 1.74 1.76

symmetric 2 GPT-2 Medium 1.89 1.92 1.88 1.82 1.86

symmetric 3 DistilGPT2 1.67 1.65 1.65 1.65 1.71

symmetric 3 GPT-2 1.53 1.51 1.51 1.51 1.51

symmetric 3 GPT-2 Medium 1.48 1.47 1.47 1.48 1.47

symmetric 6 DistilGPT2 1.50 1.47 1.47 1.48 1.52

symmetric 6 GPT-2 1.36 1.34 1.33 1.33 1.33

symmetric 6 GPT-2 Medium 1.22 1.20 1.18 1.18 1.19

Table 5.8: Final BPC on 2080

32

Optimization Model Speed 128 Speed 256 Speed 512 Speed 768 Speed 1023

baseline DistilGPT2 443.21 435.16 357.61 260.46 192.48

baseline GPT-2 270.50 265.58 237.15 167.30 119.16

baseline GPT-2 Medium 249.74 206.86 101.90 63.32 45.35

AMP, torch.compile DistilGPT2 620.87 600.15 474.25 318.19 256.46

AMP, torch.compile GPT-2 169.62 163.51 188.81 210.07 176.65

AMP, torch.compile GPT-2 Medium 360.89 252.22 179.12 83.26 50.97

symmetric 2 DistilGPT2 808.68 765.21 661.87 473.24 304.53

symmetric 2 GPT-2 273.56 285.53 260.56 255.47 250.31

symmetric 2 GPT-2 Medium 520.03 534.58 356.46 157.00 112.14

symmetric 3 DistilGPT2 758.38 722.24 641.42 477.34 249.52

symmetric 3 GPT-2 205.46 231.00 218.28 221.45 265.04

symmetric 3 GPT-2 Medium 603.67 433.70 215.02 92.46 84.89

symmetric 6 DistilGPT2 681.50 652.30 537.63 359.43 281.67

symmetric 6 GPT-2 199.53 190.91 180.36 317.53 187.83

symmetric 6 GPT-2 Medium 428.99 329.68 175.52 119.60 59.72

Table 5.9: Final Coding Speed on 2080

33

Optimization Model BPC 128 BPC 256 BPC 512 BPC 768 BPC 1023

baseline DistilGPT2 1.34 1.30 1.28 1.28 1.78

baseline GPT-2 1.21 1.17 1.15 1.14 1.14

baseline GPT-2 Medium 1.09 1.06 1.04 1.03 1.03

AMP, torch.compile DistilGPT2 1.35 1.31 1.28 1.28 1.77

AMP, torch.compile GPT-2 1.22 1.18 1.16 1.15 1.14

AMP, torch.compile GPT-2 Medium 1.10 1.07 1.04 1.04 1.03

symmetric 2 DistilGPT2 1.90 1.93 1.94 1.96 1.97

symmetric 2 GPT-2 1.73 1.74 1.73 1.75 1.77

symmetric 2 GPT-2 Medium 1.89 1.93 1.88 1.83 1.86

symmetric 3 DistilGPT2 1.67 1.65 1.65 1.65 1.71

symmetric 3 GPT-2 1.53 1.52 1.51 1.51 1.52

symmetric 3 GPT-2 Medium 1.48 1.47 1.47 1.49 1.47

symmetric 6 DistilGPT2 1.50 1.48 1.48 1.48 1.52

symmetric 6 GPT-2 1.37 1.34 1.33 1.33 1.33

symmetric 6 GPT-2 Medium 1.23 1.20 1.18 1.19 1.19

FlashAttention2 DistilGPT2 1.35 1.31 1.28 1.28 1.77

FlashAttention2 GPT-2 1.22 1.18 1.16 1.14 1.14

FlashAttention2 GPT-2 Medium 1.10 1.07 1.04 1.04 1.03

Table 5.10: Final BPC on A6000

34

Optimization Model Speed 128 Speed 256 Speed 512 Speed 768 Speed 1023

baseline DistilGPT2 1204.61 1152.00 873.00 610.07 423.30

baseline GPT-2 713.30 702.88 525.70 345.08 234.94

baseline GPT-2 Medium 382.39 370.72 223.03 139.60 89.42

AMP, torch.compile DistilGPT2 1518.13 1483.36 1206.50 819.37 549.54

AMP, torch.compile GPT-2 417.78 305.34 308.15 385.16 316.79

AMP, torch.compile GPT-2 Medium 211.97 212.95 207.10 186.62 128.31

symmetric 2 DistilGPT2 2135.53 2017.88 1659.49 1199.47 857.58

symmetric 2 GPT-2 751.93 711.20 678.37 650.12 540.68

symmetric 2 GPT-2 Medium 400.61 396.38 381.00 336.63 237.13

symmetric 3 DistilGPT2 1899.06 1840.12 1475.98 1046.32 722.87

symmetric 3 GPT-2 511.46 573.83 550.64 528.95 436.19

symmetric 3 GPT-2 Medium 313.24 185.15 300.99 263.21 180.65

symmetric 6 DistilGPT2 1714.02 1655.07 1025.30 644.92 494.86

symmetric 6 GPT-2 495.06 483.50 450.78 428.16 366.16

symmetric 6 GPT-2 Medium 257.08 254.93 247.70 268.37 183.54

FlashAttention2 DistilGPT2 692.11 787.41 765.99 731.31 692.77

FlashAttention2 GPT-2 466.15 460.28 446.11 432.45 421.10

FlashAttention2 GPT-2 Medium 246.58 241.77 236.52 232.00 227.23

Table 5.11: Final Coding Speed on A6000

35

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ALGORITHMS
	INTRODUCTION
	RELATED WORKS
	METHODOLOGY
	Compressor
	Determinism
	Optimizations
	Hardware
	Window Sizes

	EXPERIMENTS
	Preliminary Experiments
	Final Experiments
	General Results

	CONCLUSION
	REFERENCES
	APPENDIX

