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Abstract: In this paper, we propose a new algorithm of mapping dynamic indoor environments. Instead of 
accurate but expensive laser, we employ sonar and camera to map dynamic structured indoor environments. 
Based on fuzzy-tuned grid-based map (FTGBM), we use two methods: sonar temporal difference (STD) and 
statistical background subtraction (SBS), to detect and track moving objects when mapping dynamic 
environments. The former is a consistency-based method realized by monitoring a sequence of temporal lattice 
maps for a certain number of measurement periods to detect moving objects by using sonars; and the latter is a 
background subtraction technique which adopts an expectation maximization (EM) learned 3-class mixture of 
Gaussians to model the nonstationary background relied on sufficient update during mapping process. After 
finding the moving objects, we propose a fuzzy-tuned integration (FTI) method to incorporate the results of 
motion detection into the mapping process. The simulation and experiment demonstrate the capabilities of our 
approach. 
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1. Introduction 
 
Robotic mapping is referred to the process of generating 
spatial models of physical environments from sensor 
measurements through navigating in the environment. 
This procedure is generally regarded as one of the most 
important problems in the pursuit of building truly 
autonomous mobile robots. Over the past two decades, 
the field has been received considerable attention, 
because generation and maintenance of environmental 
maps are often inherently necessary for mobile robots in 
order to perform complex tasks in partially known or 
unknown environments. At present, this field has 
matured to a point where detailed maps of large-scale 
complex environments can be built in real-time, 
specifically indoors (Thrun, S. et al 1998a ; 1998b ; 2001a ; 
2002 ; Bosse, M. et al 2004). Many existing techniques are 
robust to noise and can cope with variety of structured 
environments. However, the majority of existing 
mapping approaches are designed for static 
environments. They assume that the mobile robot is the 
only moving object in the map world. Nevertheless, , the 
real worlds, where robots are deployed, are usually 
dynamic. That is, some objects in the environments do 
often change states over time. In an office, for instance, 
the location of desks may have been changed, and doors 
may be opened or closed, etc. In particular, to map a 
crowded environment, there also exits multiple moving 
objects in the perceptual range of the robot. For example, 
there may be many people walking through a corridor of  

 
 
 
an office building during office hours who are within the 
sensor range of the robot during the mapping process. In  
this context, such people moving in or out the scene will 
have a serious influence on the resulting map since it 
would contain evidence about these people at the 
corresponding locations. But when the robot later returns 
to this location and scans the area a second time using 
such localization methods as (Thrun, S. et al 2001b; Fox, 
D. et al 1999), the pose estimates would be less accurate, 
because the new measurements do not contain any 
features corresponding to those people, thus resulting in 
spurious objects in the map and consequently affects the 
future tasks (Hähnel, D. et al 2003a ; 2003b). Therefore, an 
autonomous mobile robot should be equipped with the 
capacity to be conscious of the changes around it and to 
filter out the spurious models of moving objects when 
building maps and to constantly update its map of the 
environment, if it is going to perform services in real 
world. 

In this paper, we extend our pervious work (Ip, Y.L. et al 
2002 ; Chow, K.M. et al 2002) which is able to model the 
static environments and propose a mapping technique 
allowing a mobile robot to map the dynamic 
environments, with the assumption that the odometry is 
perfect, so that localizatoion problem is not considered in 
this work. Particularly, we use fuzzy-tuned grid-based 
map (FTGBM) (similar idea as in our previous work 
(Chow, K.M. et al 2002)) to model the environment. We 
suggest two methods: sonar temporal difference (STD) 
and statistical background subtraction (SBS) to detect 
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moving objects. The former is a consistency-based 
method realized by monitoring a sequence of temporal 
lattice maps for a certain number of measurement 
periods to detect moving objects by using sonars; and the 
latter is a statistical background subtraction technique 
which adopts an expectation maximization (EM) learned 
3-class mixture of Gaussians to model the nonstationary 
background based on sufficient update during mapping 
process. After obtaining the motion information, we 
propose fuzzy-tuned integration (FTI) to incorporate the 
results of above two types of motion detection to filter the 
moving objects out of the resulting map. Additionally, 
since Bayesian update rule is used in FTGBM, our 
approach also has the capability to estimate and update 
the states of the dynamic objects in robot workplace. 
The rest of this paper is organized as follows. After 
discussing the related work in the following section, we 
will briefly present basic notation and definition about 
the fuzzy system and fuzzy-tuned grid-based map 
building method in Section 3. We will describe the sonar 
temporal difference by sonar sensor in Section 4 and 
statistical background subtraction by camera in Section 5, 
and then report the fuzzy-tuned integration to 
incorporate the motion tracking results into the resulting 
map in Section 6. And Section 7 will contain our 
simulation and experiments to illustrate the capabilities 
and the robustness of our approach. Finally, conclusions 
and future work will be presented in Section 8. 
 
 
2. Related Work 
 
Approaches to mapping problem can be roughly 
classified into two major paradigms: occupancy grid-
based maps and topological maps. The occupancy grid-
based maps, like our previous work (Chow, K.M. et al 
2002) are generated from stochastic estimates of the 
occupancy state of an object in a given cell. It is rather 
easy to construct and maintain them, whereas topological 
maps are graph-like spatial representations (Remolina, E. 
& Kuipers, B. 2004). Nodes in such graphs correspond to 
distinct situations, places, or landmarks (such as corners). 
They are connected by arcs if there has a direct path 
between them. Furthermore, Thrun, S. (1998a) 
successfully integrated these two paradigms to build a 
metric-topological map, thus gaining the advantages 
from both methods. However, all these approaches 
assume that the environment is almost static during the 
mapping process, although they can tackle a certain 
mount of noise in the sensor data. But in dynamic 
environments where moving objects are appearing or 
disappearing in the perceptual range and states of the 
objects are changing over time, robots have to be 
equipped additional ability to deal with such additional 
noise comparing with the static environments. Otherwise, 
the resulting maps can not be usable for localization or 
navigation. 

Recently, there has been work on updating maps in 
dynamic environments. Thrun, S. et al. (2000) and  
Burgard, W. et al. (1999) update a given static map using 
the most recent sensor information to deal with people in 
the environment. Fox D. et al. (1999) propose a filtering 
technique to identify range measurements that do not 
correspond to the given world model, and then to update 
the robot position using only those measurements which 
are with high probability produced by known objects 
contained in the map. Montemerlo et al. (2002) present an 
approach to simultaneous localization and people 
tracking. More recently, there also exist several 
approaches to mapping in dynamic environments which 
contain moving objects in perceptual range of the robots. 
Biswas, R. et al. (2002) and Anguelov, D. et al. (2002) 
derive an approximate Expectation-Maximization (EM) 
algorithm for learning object shape parameters at both 
levels of the hierarchy, using local occupancy grid maps 
for representing shape. Andrade-cetto et al. (2002) 
combine the landmark strength validation and Kalman 
filtering for map updating and robot position estimation 
to learn moderately in dynamic indoor environments. 
Montemerlo et al. (2002a) employ a Rao-Blackwellized 
particle filter to solve the simultaneous localization and 
people tracking problem based on a prior accurate map 
of the corresponding static environment, which is similar 
with FastSLAM (Montemerlo et al. (2002b)). Hähnel et al. 
(2003) present a probabilistic approach to map populated 
environments by using Sample-based Joint Probability 
Data Association Filters (SJPDAFs) to track people in the 
data obtained with the laser range scanners of the robot 
like Schulz, D. et al. (2001; 2003). The results of the people 
tracking are integrated into a scan alignment process and 
into the map generation process, thus filtering out the 
spurious objects in the resulting maps. Wang C.-C. (2004) 
solves the problem of simultaneous localization, mapping 
and moving object tracking in crowded urban 
environments. He establishes a mathematical framework 
to integrate SLAM and DATMO (Detection and Tracking 
Moving Objects). The idea is to identify and keep track of 
moving objects in order to improve the quality of the 
map. Wolf et al. (2005) propose an online algorithm for 
SLAM in dynamic environments, which is based on 
maintaining two occupancy grid maps: one for static 
objects and another for dynamic ones, and a third 
landmark map with which localization is solved. This 
method is limited to moderately dynamic indoor 
environments, especially the narrow assumption of 
localization implementation. But the algorithm has 
advantages that it is robust to detect dynamic entities 
both when they move in and out robot's field of view.  
However, virtually all state-of-art approaches use SICK 
scanning laser range-finders. While the SICK is ideal for 
this because of the accurate and detailed range 
information provided, there are drawbacks. In particular, 
the SICK laser sanner is expensive and quite heavy and 
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bulky. It seems that these methods can not be assigned to 
cost effective sensor systems such as sonars. 
In our work, we propose a new technique of mapping 
dynamic environments. We respectively use sonar 
sensors and camera to detect moving objects, and then 
fuzzy-tuned integrate the results of motion detection to 
filter out the moving objects from the resulting map. 
Additionally, we use Bayesian update rule in fuzzy-
tuned grid-based map to estimate and refine the states of 
some dynamic objects which change slowly. 
 
3. Fuzzy System and Fuzzy-Tuned Grid-Based Map 
(FTGBM) 
 
3.1. Notation and Definition of Fuzzy System 
Consider a fuzzy model with n inputs and a single 
output. The fuzzy rule base can be formulated as:  
z njjjR ...21 : If 1x is 1

1
jA and 2x is 2

2
jA and … and 

nx is nj
nA then njjjy ...21 is njjjB ...21 . 

z ix : The ith input variable. 

z njjjy ...21 : The output variable corresponding to the 

rule njjjR ...21 . 
z iN : The number of fuzzy subsets of input i. 
z n : The number of input variables. 
z ij

iA : The ij th fuzzy set of input i where ij =1, 2, …, 

iN , i=1, 2, …, n. 

z njjjB ...21 : The output fuzzy set corresponding to 
rules njjjR ...21 where 

ij =1, 2, …, iN , i=1, 2, …, n. 

z 
njjj

o
...21 : The center of output fuzzy set njjjB ...21 . 

z )( iA
xij

i
μ : The fuzzy membership function for the 

ij th 

fuzzy set of input i. 
Assuming singleton fuzzifier, product inference engine 
and centre average defuzzifier (Wang, L. X. 1997), and 

the crisp fuzzy model output 
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3.2. Fuzzy-Tuned Grid-Based Map (FTGBM) 
We adopt fuzzy-tuned grid-based mapping technique to 
generate a basic global map and will update this basic 
map in following sections by filtering out the spurious 
objects and refining the dynamic object states. Here, the 
fuzzy-tuned grid-based map algorithm is similar with 
our previous work (Chow, K. M. et al 2002). Therefore, 
we only briefly review this algorithm to make this paper 
readable on its own. Interested readers may refer to 
(Chow, K. M. et al 2002) for further details. 
In this approach, the probability distribution function 
(pdf) of the sonar sensor model is tuned by a set of fuzzy 
rules based on the maximum probability of the grid cell 

within the sensor cone. Similar to traditional approaches, 
the occupancy grid probabilities of the state s(Ci) of grid 
cell Ci for the environmental map P[s(Ci) = occ | x] = 0.5 
means unknown or unexplored region. P[s(Ci) = occ | x] = 
1 means that the grid cell Ci is occupied and vice-versa. 
The fuzzy-tuned sonar sensor model (pdf) is shown in 
Eq.2, considering the example of a range sensor 
characterized by Gaussian uncertainty in both radial and 
angular directions. In Eq. 2, where 

z r : The sensor range measurement of the sonar 
sensor. 

z z : The true parameter space range value. 

z θ : The azimuth angle measured with respect to the 
beam central axis. 

z ok : The parameter that corresponds to the space is 

occupied. 

z 2
rσ : The variance of the measure. 

z θ : The parameter that will be tuned by fuzzy model 
and corresponds to the mean azimuth angle 
measured with respect to the beam central axis. 

z 2
θσ : The parameter that will be tuned by fuzzy 

model and corresponds to the variance of the 
angular probability. 

z εk : The parameter that corresponds to the empty 

space and will be tuned by the fuzzy model. 
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A plot of ),|( θzrp corresponding to sensor measurement 
at 0.7m is shown in Fig. 1 which fairly accurately 
represents the radial and angular uncertainty. 
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Fig. 1. Occupancy probability ),|( θzrp in 2D case 
 
After obtaining the sonar sensor model pdf, we use 
Bayesian update rule (Eq.3) to update the occupancy 
probabilities of the grid cells. 
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where P[s(Ci) = occ | {r}t] is the prior occupancy grid 
probability of grid cell Ci based on observations {r} = {r1, 
r2, . . . , rt}, P[s(Ci) = occ | {r} t+1] is the new occupancy grid 
probability of grid cell Ci based on observation up to rt+1. 
The fuzzy-tuned grid-based map-building algorithm is 
an incremental method, as most traditional mapping 
algorithms, i.e. it only add specific features in the map 
model and never removes the old features. Hence, the 
global map contains all the sensor information, surely 
including spurious models of moving objects. In order to 
filter out such spurious models, we use following motion 
detecting methods and fuzzy-tuned integrating 
technique, thus getting the resulting map only contains 
stable stationary objects. 
 
4. Sonar Temporal Difference (STD) 
 
The fundamental idea to identify temporal changes in the 
surrounding environment of a robot is to monitor a 
temporal sequence of spatial observations and then to 
determine how these observations differ from each other. 
An inconsistency between two temporally subsequent 
observations is a strong indication of a potential motion 
in the environment. Such inconsistency is mainly caused 
by dynamic objects in a dynamic indoor environment. In 
computer vision literature, temporal difference is simple 
and popular method for detecting moving objects with a 
static observer. However, for a moving mobile robot, it in 
itself is not sufficient to unequivocally identify moving 
objects. Here, we propose a new scheme to detect moving 
objects using sonar sensors called sonar temporal 
difference (STD) borrowing from the etymology in the 
computer vision literature, which is realized by 
monitoring sensor-based information called time-variant 

map (TVM) along the time axis with a certain time 
duration of τ ( nt=τ , t is sampling time) and 
simultaneously filtering out the same information, i.e. 
stationary objects, thus obtaining the trajectories and 
outliers of moving objects during time span τ . Note that 
all the sensor information has been transformed into the 
same global coordinate frame. 
 
4.1. Time-Variant Map (TVM) 
Sonar temporal difference is realized by monitoring a 
temporal sequence of time-variant maps (TVMs). This 
procedure is not new and we have borrowed it from 
(Han, Y. et al 2001; Prassler, E. & Scholz, J. 2000). We also 
adopt occupancy grid model to represent time-variant 
map because it is easy to incorporate the result of sonar 
temporal difference into the resulting fuzzy-tuned grid-
based map. Elfes, A. (1989) introduced the occupancy 
grid map. It includes the projection of the range scans on 
a 2D rectangular lattice and the annotation of each cell 
with the time tags of the measurements that fall into it. 
Each grid corresponds to a small spatial region in the real 
world. 
In occupancy grid-based mapping procedure, every time 
that new measurements are available, a significant 
amount of time is spent in updating the posterior 
including free space or stationary object state from 
Bayesian update rule (Eq.3). However, it is less important 
in the context of short-term motion detection since all the 
sensor data information is synchronically registered in 
fuzzy-tuned grid-based map. Hence, we only update the 
occupancy probabilities of those cells in local sensor cone 
at time t while all other cells remain untouched. Fig. 2 
clearly shows the relevant transformation. It should be 
noted that our experimental platform is Pioneer 1 mobile 
robot (Active media  1998a) that only has seven sonar 
sensors, five in front and two at each side, separated by 
15-degrees. Here, we are only concerned with the front 
75-degree region. Therefore, there is only a 75-degree 
cone shown in Fig. 2b. We call this representation a time-
variant map. Building such maps is rather simple: in each 
sensor measurement at time t, the cell that corresponds to 
the object detection is labeled with this time tag t. The tag 
means that the cell occupied at time t. No other cells are 
updated during this operation. Therefore, the temporal 
changing features of the environment are captured by the 
sequence of time-variant maps: TVMt, TVMt-1, …, TVMt-n. 
An example of such a sequence is shown in Fig.3 (a)-(c). 
Note that the maps are already transformed into the same 
frame of reference. 
 
4.2. Detecting Moving Objects 
Due to the noise and uncertainty inherently in the sonar 
sensors, to keep false moving object detection events at a 
low rate, we do not track single cells that are apparently 
moving, but the cluster ensembles of coherently moving 
cells into distinct objects even though which may be only 
part of certain object. The cell clustering algorithm here  
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Fig. 2. (a) The kinematical transformation; (b) Local 
sensor cone; (c) Image frame transformation  
 
is temporarily simple: to check the adjacent cells, if 
occupied, they are considered as the same class, 
otherwise considered as different ones. In this work, we 
use Sonar Temporal Difference with a sequence of time-
variant maps to detect moving objects. We consider the 
set of cells in TVMt which carry a time tag t (occupied at 
time t) and test whether the corresponding cells in TVMt-1 

were occupied too, i.e., carry a time tag t-1. If 
corresponding cells in TVMt, TVMt-1 carry time tags t and 
t-1, respectively, then we interpret the spatial region 
circumscribed by these cells occupied by a stationary 
object satCELL . If, however, the cells in TVMt-1 carry a 

time tag different from t-1 or no time tag at all, then the 
occupation of the cells in TVMt must be due to a moving 
object movCELL . If it is detected as a stationary object, we 

filter this object out of the time-variant map by simply 
freeing the corresponding occupied cells, while the 
moving objects stay left in the time-variant map. Fig. 3d 
shows the result of Sonar Temporal Difference based on 
the sequence of time-variant maps shown in Fig. 3a-3c. 
Note that here we consider only the two most recent 
maps, TVMt and TVMt-1, for detecting moving objects. 
This limits our motion detection resolution, since objects 
that move very slowly as compared to the sensor 
sampling rate will not be detected as moving. This 
problem can be alleviated by selecting an appropriate 
value of n ( tn /τ= ) and by using Bayesian update rule 
which can update the dynamic object states in fuzzy-
tuned grid-based map. The outline of Sonar Temporal 
Difference algorithm is shown in pseudo-code in Table1. 
 
 
Begin Algorithm MotionDetection_STD 
FOR each cell class ccx, t representing an object x in TVMt 
FOR each cell ci, t in ccx, t 
FOR each corresponding cell ci, t-1, …, ci, t-k, …, ci, t-n in TVMt-1, 
…, TVMt-k, …, TVMt-n 
IF ci, t-k carries a time tag t-k THEN 
ci is occupied by a stationary object 
ELSE 
ci is occupied by a moving object 

IF majority of cells ci, t in ccx, t is moving THEN 
cell class ccx, t is moving, i.e. CELLmov 
ELSE 
cell class ccx, t is stationary, i.e. CELLsat 
IF CELLsat THEN 
free the corresponding occupied cells 
ELSE IF CELLmov THEN 
do nothing 
End Algorithm 
Table 1. Sonar Temporal Difference Algorithm 
 
 

(a)                    (b)

(c)                    (d)  
Fig. 3. A sequence of time-variant maps describing a 
simple environment, different gray levels represent the 
age of observation, darker ones corresponding to the 
more recent 
 
5. Statistical Background Subtraction (SBS) 
 
A common method to track motion in image sequences is 
background subtraction between an estimate of the image 
without moving objects and the current image. Previous 
researcher (Rittscher, J. et al 2000; Ren Y. et al 2003; Rowe 
S. & Blake, A. 1996) have shown that the disruption can 
be somewhat suppressed by using statistical model of 
background in image-subtraction to find motion. Here, 
we also adopt a statistical method to model the 
background: a 3-class mixture of Gaussians, which is 
learned by using Expectation-Maximization (EM) 
algorithm (Dempster, A. P. et al 1977). We consider the 
intensity values of a particular pixel over time as an 
independent statistical process called “pixel process” 
(refer to Fig.3). In a structured indoor environment, due 
to the lighting changes, scene changes, and moving 
objects, the distribution of each pixel is fitted with 
multiple Gaussians. Since illumination is one of the 
important components in indoor environments, it is 
necessary to discriminate the shadows from background 
and foreground. Therefore, we adopt a 3-class mixture of 
Gaussians to model the pixel process. Since it is hard to 
estimate the distribution of foreground along the image 
sequence, we adopt uniform distribution to represent it. 
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where 
z ωF,ωB,ωS: Weights of the three distributions in the 

mixture, respectively. 
z μxB, μxS: Means of the two Gaussians in the mixture, 

respectively. 
z σxB, σxS: Standard deviations of the two Gaussians in 

the mixture, respectively. 
z R: Parameter of the uniform distribution in the 

mixture, decided by the valid range of the intensity 
value. Usually it is 256.  

In the learning stage, we use EM algorithm to estimate 
the model parameters by given a training sequence like 
(Rowe S. & Blake, A. 1996). It should be noted that EM 
algorithm is not guaranteed to find global maximum and 
very sensitive to the starting point. That is, the algorithm 
will not converge quickly and fail to fit the distribution 
properly, if given a poor initial estimate of the 
distribution. In our work, we empirically determine the 
initialization similar with (Rittscher, J. et al 2000). 
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Fig. 3. Intensity histogram of a particular pixel over 
15min (a) in a dynamic indoor environment and 
corresponding emission model (b) 
 
5.1. Motion Detection 
In our work, when new frame is available, we have to 
compensate the sensor motion in order to use 
background subtraction to detect foreground objects. 
That is, we map each pixel in current frame xC into 

background frame. Due to the errors in feature 
localization, motion estimation etc., this map process is 
not very accurate. So, at best, we predicate a position Bx̂ , 

i.e. BF xx ˆα=Τ , where Τ  is the transition matrix for 
background motion compensation and α is a nonzero 
scalar. We use iterative closed point (ICP) algorithm to 
determine Τ : Using a reasonably good initial guess of 
the relative transformation, a set of salient landmarks are 
chosen from front image (i.e. current frame) and 
background. 

},,2,1,{},,,2,1,{ ,, nilLnilL iBBiFF LL ==== .  

iFl ,  and iBl ,  are the corresponding landmarks in current 

and background frame respectively. The better estimate 
of the relative transformation Τ is iterated by least-
square-estimation (LSE) method. Because the motion 
compensation is not accurate, that is  Bx̂  will not 
definitely the corresponding pixel xF, in order to comprise 
this approximate alignment, we adopt another Gaussian 
model called alignment Gaussian model (AGM) (Fig.4), 
which centers at Bx̂  with covariance matrix Σ  in a 
validation region 

Bx̂ℜ  similar with SGD in (Ren Y. et al 

2003). 
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Σ  is important for determining the size of AGM and will 
be different from pixel to pixel. But here for 
computational simplicity, we assume it is constant and 

estimated by Eq.(8). With Σ̂  is estimated, as coefficient β 
increases, the size of AGM increase and different results 
of the detection are obtained accordingly. In our work, 
since the environment is structured, we select a proper β 
empirically. Therefore, for a particular pixel in current 
frame xF, there is a corresponding AGM in the 
background map. If xF belongs to any of the background 
Gaussians of its AGM, it is labeled as background. If no 
corresponding background distribution can be found in 
its AGM, the pixel xF is regarded as foreground. 

 
Bakground frame Current frame

AGM
(CURR-->BKG)

AGM
(BKG-->CURR)

Bx̂ℜ

Bx

Fx̂ℜ

Fx

Fig. 4. Illustration of xB, xF with their AGMs 
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5.2. Background Update 
Everything above works well while the background is 
adequately updated. But this is not easy for a moving 
background, especially when there is an occlusion and/or 
uncovered background. Here we use the similar 
approach with (Ren, Y. et al 2003) to update 
nonstationary background. We briefly report the 
algorithm as Table 2. For details, please refer to (Ren Y. et 
al 2003). And a preliminary experimental result of 
proposed algorithm is shown in Fig. 5. 
 
Begin Algorithm Background_Update 
Initialization with the first frame: 
Number_of_GausssianÅ1 
Gaussian[1].MeanÅPixel_Value of frame 1 
Gaussian[1].VarianceÅ 2σ  
FOR Frame 2 to N 
Motion compensation and obtaining Fx̂  

Find ),( **
jFx ξ  

Gaussian_NumberÅ *
jξ ; ValueÅ *

Fx  

IF DDi >  THEN 

Number_of_Gaussian++ 
Gaussian[Number_of_Gaussian].MeanÅ Fx̂  

Gaussian[Number_of_Gaussian].VarianceÅ 2σ  
ELSE 

Gaussian[Gaussian_Number].Count++ 
Update the parameters of Gaussian[Gaussian_Number] with 
Value 
END IF 
Find ][max

__1
jGaussian

GaussianofNumberj≤≤

 

Update the background 
END FOR 
End Algorithm 
Table 2. Background Update Algorithm 
 
6. Fuzzy-Tuned Integration (FTI) 
 
After detecting moving objects respectively by the sonar 
sensors and the uncalibrated camera, we need to 
integrate these two different sources into the result global 
map with filtering out the spurious objects. However, 
since the camera is uncalibrated, that is, lack of the inter-
parameters of the camera, we can not know the precise 
distance measurement from images, additionally, the 
sonar is also not very accurate because of the uncertainty 
in radial and angular, therefore, we can not directly use 
traditional multisensor fusion (Castellanos, J. A. et al 
2001) which requires precise sensor-sensor calibration to 
integrate these two detection results into a common 
reference frame.  

 

(a)

(b)

(c)

(d)  
Fig. 5. Motion detection with nonstationary background. (a) background map mosaic; (b) a sequence of original images; 
(c) motion detection using common background subtraction; (d) motion detection using proposed statistical background 
subtraction 



International Journal of Advanced Robotic Systems, Vol. 3, No. 3 (2006) 
 

206   

In order to achieve a reliable integration, in this paper, 
we propose Fuzzy-Tuned Integration (FTI) algorithm to 
find out the spurious objects in the fuzzy-tuned grid-
based map, which needs two necessary parameters: 
location and size of the spurious objects in the resulting 
map, and then filter them out. To design this fuzzy 
system, we first define the input variables and output 
variables as follows: 
 
Input Variables 
z ),(_ yxCentroidB : The centroid of  

movBLOB  in 

robot frame. 
z ),(_ yxCentroidC : The centroid of movCELL  in 

robot frame. 
z SizeB _ : The size of the 

movBLOB  in vision frame 

in number of pixels. 
z SizeC _ : The size of the movCELL  in grid-based 

map in number of grids. 
 
Output Variables 
z ),(_ yxCentroidO : The centroid of update region 

in robot frames. 
z SizeO _ : The size of update region in number of 

grids. 
 
 
Tables 3-5 show the fuzzy rule-base for tuning the 
output variables, and the membership functions and 
linguistic states are in Fig. 6. where 
 
z IW: The image width (in our experiment, this 

value is fixed at 160 pixels) 
z IH: The image height (in our experiment, this 

value is fixed at 120 pixels) 
z CW: The maximum width of the local sensor cone 
z CH: The maximum height or range in the local 

sensor cone 
 
Note that in this fuzzy system, the image coordinate 
has been transformed into the robot frame according to 
Fig. 2. 
 
 
 
 
 
 

  B_Centroid.x 

  VS S M L VL 
VS VS S S M M 
S VS S M M L 
M S S M L L 
L M M M L VL 

C_Centroid.
x 

VL L M L L VL 
Table 3. Fuzzy rule table corresponding to O_Centroid.x 

  B_Centroid.y 

  NB NS Z PS PB 
NB NB NS NS Z Z 
NS NB NS Z Z PS 
Z NS NS Z PS PS 
PS Z Z Z PS PB 

C_Centroid.
y 

PB PS Z PS PS PB 
Table 4. Fuzzy rule table corresponding to O_Centroid.y 

 
  B_Size 

  VS S M L VL 
VS VS S S L VL 
S S S M L VL 
M M M M L VL 
L L L L L VL 

C_Size 

VL VL VL VL VL VL 
Table 5. Fuzzy rule table corresponding to 
O_SizeEverything explained above works fine under 
the assumption that motion correspondence problem 
has been well solved, that is the moving object pair 
respectively detected by sonar sensor and un-calibrated 
camera already finely associated to each other. 
However, this problem can seriously damage the 
resulting map if the motion correspondence is not well 
done. In computer vision literature, there already exist 
many approaches to solve this problem, such as track-
splitting, joint likelihood, multiple hypothesis 
algorithm etc. Cox has a good review to this problem in 
(Cox, I. J. 1993). In our work, we use the Nearest-
Neighbor algorithm to solve the detected moving object 
association. The nearest-neighbor algorithm is the 
simplest suboptimal data-association algorithm, which 
assumes that each measurement originates from the 
closest corresponding feature, in our experiment, where 
closest is defined using the Euclidean distance of the 
centroids of the detected moving objects formulated by 
Eq.11. Note that ),(_ yxCentroidB  and ),(_ yxCentroidC  
were transformed into the same coordinate frame 
according to Fig.2. 

|),(_),(_| yxCentroidCyxCentroidBDIST −=          (11) 
Since our experiment is performed in the indoor 
dynamic environment which is structured and also has 
not many moving objects to detect and track, hence the 
nearest-neighbor algorithm can satisfy our need. So, 
our fuzzy-tuned integration works only when we find 
there exist corresponding moving objects, i.e. only 
when 

correspondDIST σ> , where 
correspondσ  is motion 

correspondence threshold obtained by trial and error. 
The whole outline of proposed fuzzy-tuned integration 
algorithm is shown in pseudo-code in Table 6. 
 
Begin Algorithm FuzzyTunedIntegration 
FOR each detected moving objects by camera in image, i.e. 

),(_ yxCentroidB  
FOR each detected moving objects by sonar in grid map, i.e. 
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),(_ yxCentroidC  
Computing DIST  
IF correspondDIST σ>  THEN 

Incorporating the results of two types of motion detection by 
using fuzzy-tuned integration and filter these spurious 
objects out of the grid-based map 
ELSE 
Do nothing 
Improving the resulting grid-based map by freeing much 
isolated occupied grids 
Waiting for next map update cycle 
End Algorithm 
Table 6. Fuzzy-tuned integration algorithm 
 
 
7. Simulation and Experimental Results 
 
7.1. Simulation Study 
In this simulation study, we try to illustrate that the 
Bayesian update rule used in our proposed algorithm is 
capable to update dynamic object states like slow 
relocation.  To explain the results more easily, we only 
consider the one-dimension environment and assume 
that the sensor measurement is ir  and there is a 

dynamic obstacle which changes its location over time.  
The motion profile of the object is shown as follows: 

z Location 1: Obstacle is stayed 1m away from the 

sensor. i.e. { ir =1m, i =1,2,…,8}  
z Location 2: Obstacle is moved to 1.6m away from 

the sensor. i.e. { ir =1.6m, i =9,10,…,16} 

z Location 3: Obstacle is moved to 0.5m away from 
the sensor. i.e. { ir =0.5m, i =17,18,19,…} 

The profiles of occupancy probabilities corresponding 
to 7th, 8th, 15th, 16th, 23rd, 24th readings for our proposed 
algorithm are shown in Fig. 7. From this Fig., we can 
observe that our algorithm can provide good estimate 
of the obstacle position when is moved from Location 1 
to Location 2 and from Location 2 to Location 3. 
Therefore, it can be concluded that this algorithm is 
suitable for updating the states of dynamic objects. 
 

7.2. Experimental Study 
The goal of the experiment is to illustrate that fuzzy 
integration of two detection techniques, STD and SBS, 
into the mapping process leads to a better global 
resulting map since spurious objects were filtered out. 
The experiment was carried out on the Pioneer 1 robot 
in the corridor at HKPU. The robot is equipped with 
one uncalibrated camera with a fixed angle and seven 
sonar sensors, five locating front, separated by 15-
degree each, and two locating at each side. The driving 
mechanism is by means of 2 reversible DC motors with 
wheel encoders to update the location by dead 
reckoning. The software is written in C language and 

Saphira software (ActivMedia 1998) with API libraries 
has been used to obtain the sonar 
 

 
Fig. 6. Membership functions and output consequence 
fuzzy sets corresponding to fuzzy rule base in Tab.3-5. 
 
data and to perform the localization to estimate the 
current position and orientation of the robot. The 
navigation is not autonomous in the present 
implementation. The robot is manually navigated to 
predefined locations such that to avoid the dead 
reckoning error due to slip. The sonar sensors were 
measurements in a range up to 3 meters around the 
robot which were considered relevant for mapping, and 
the maximum distance of the camera visual zone we 
concerned in this experiment is also around 3 meters 
which can highly improve the quality of the fuzzy-
tuned integration. Fig. 8 shows the hand-measured 
model of this environment to be mapped. 
During mapping, there were several (up to three) 
people walking in front of the robot. Fig. 9 shows the 
robot during the mapping process. Fig. 10a shows the 
raw range sonar measurements which were obtained 
by the robot and the map obtained without people 
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filtering. And the resulting map obtained with our 
proposed algorithm is shown in Fig. 10b. Both maps 
have a resolution of 50mm per cell. As seen from Fig. 
10a, there are a many cells in the resulting grid map, 
which have a high occupancy probability since people 
covered the corresponding area while the robot was 
mapping the environment. If, however, we use the 
proposed algorithm and filter out the most of moving 
objects (here is people), the effect of the people is 
seriously reduced in the resulting map (see Fig. 10b).  

Fig. 7. The result of the algorithm to update the state of 
dynamic object 
 
Therefore, as see from Fig. 10(a-b), the algorithm is 
more reliable for mapping in dynamic environments 
than fuzzy-tuned grid-based mapping method as well 
as traditional mapping methods. 
 

 
Fig. 8. Hand-measured model of the corridor in HKPU  
 
Note that sine the robot has only seven sonar sensors, 
five located forward, separated by 15-degree each and 
two at both sides. Additionally our camera faces 
forward at a fixed angle. Thus both sensors only have a 
limited measurement zone (about 75-degree). 
Considering these limits, we assume d that people only 
walked in front of the robot during the experiment. 
And since localization problem was temporarily 
ignored in this paper and we used odemetric 
measurements to localize the robot’s position with pre-
defined landmarks, there must be some dead reckoning 
errors. Thus the resulting map was not rectangular 
compared with the hand-measured map. The 
localization problem will be addressed in future work. 

landmark point

Fig. 9. Pioneer 1 mobile robot is mapping a dynamic 
corridor environment. 

 
8. Conclusions 
 

In this paper, we have presented a new solution to map 
structured indoor dynamic environments that 
incorporates motion tracking into mapping process. 
The two methods used in motion tracking are sonar 
temporal difference and statistical background 
subtraction methods. The former is constructed by 
monitoring a sequence of temporal local maps. The 
latter is achieved based on sufficient background 
update with a 3-class mixture of Gaussians. After 
detecting the dynamic entries, due to no accurate 
transformation between image plane and robot local 
frame, we applied a fuzzy system to integrate these two 
methods to filter out the spurious objects from the 
resulting map. We demonstrated that detection of 
dynamic entries can benefit the maping process. 
Simulation and experimental results show the 
capability of the proposed algorithm.  
As the main focus of this work is the fuzzy integration 
of motion detection into mapping, localization 
temporarily is not an issue. As the future work, we will 
incorporate localization into this work to solve the 
problem of simultaneous localization and mapping 
(SLAM) in dynamic environments. We also plan to 
extend this work to deal with more complex 
environments. We will investigate alternative 
algorithms of detecting moving objects to improve the 
accuracy and efficiency of the motion detection and 
accordingly improve the resulting map.
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(a) 

 

 
(b) 

 
Fig. 10. (a) Fuzzy-tuned grid-based map without filtering out moving objects; (b) Resulting map of proposed algorithm 
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