
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 620928, 17 pages
doi:10.1155/2010/620928

Research Article
Optimality Conditions for Approximate Solutions
in Multiobjective Optimization Problems

Ying Gao,1 Xinmin Yang,1 and Heung Wing Joseph Lee2

1 Department of Mathematics, Chongqing Normal University, Chongqing 400047, China
2 Department of Applied Mathematics, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

Correspondence should be addressed to Ying Gao, gaoyingimu@163.com

Received 18 July 2010; Accepted 25 October 2010

Academic Editor: Mohamed El-Gebeily

Copyright q 2010 Ying Gao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study first- and second-order necessary and sufficient optimality conditions for approximate
(weakly, properly) efficient solutions of multiobjective optimization problems. Here, tangent cone,
ε-normal cone, cones of feasible directions, second-order tangent set, asymptotic second-order
cone, and Hadamard upper (lower) directional derivatives are used in the characterizations. The
results are first presented in convex cases and then generalized to nonconvex cases by employing
local concepts.

1. Introduction

The investigation of the optimality conditions is one of the most attractive topics of
optimization theory. For vector optimization, the optimality solutions can be characterized
with the help of different geometrical concepts. Miettinen and Mäkelä [1] and Huang and
Liu [2] derived several optimality conditions for efficient, weakly efficient, and properly
efficient solutions of vector optimization problems with the help of several kinds of cones.
Engau andWiecek [3] derived the cone characterizations for approximate solutions of vector
optimization problems by using translated cones. In [4], Aghezzaf and Hachimi obtained
second-order optimality conditions by means of a second-order tangent set which can be
considered an extension of the tangent cone; Cambini et al. [5] and Penot [6] introduced
a new second-order tangent set called asymptotic second-order cone. Later, second-order
optimality conditions for vector optimization problems have been widely studied by using
these second-order tangent sets; see [7–9].
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During the past decades, researchers and practitioners in optimization had a keen
interest in approximate solutions of optimization problems. There are several important
reasons for considering this kind of solutions. One of them is that an approximate solution of
an optimization problem can be computed by using iterative algorithms or heuristic methods.
In vector optimization, the notion of approximate solution has been defined in several ways.
The first concept was introduced by Kutateladze [10] and has been used to establish vector
variational principle, approximate Kuhn-Tucker-type conditions and approximate duality
theorems, and so forth, (see [11–20]). Later, several authors have proposed other ε-efficiency
concepts (see, e.g., White [21]; Helbig [22] and Tanaka [23]).

In this paper, we derive different characterizations for approximate solutions by
treating convex case and nonconvex cases. Giving up convexity naturally means that
we need local instead of global analysis. Some definitions and notations are given in
Section 2. In Section 3, we derive some characterizations for global approximate solutions of
multiobjective optimization problems by using tangent cone, the cone of feasible directions
and ε-normal cone. Finally, in Section 3, we introduce some local approximate concepts
and present some properties of these notions, and then, first and second-order sufficient
conditions for local (properly) approximate efficient solutions of vector optimization
problems are derived. These conditions are expressed bymeans of tangent cone, second-order
tangent set and asymptotic second-order set. Finally, some sufficient conditions are given for
local (weakly) approximate efficient solutions by using Hadamard upper (lower) directional
derivatives.

2. Preliminaries

Let Rn be the n-dimensional Euclidean space and let Rn
+ be its nonnegative orthant. Let C

be a subset of Rn, then, the cone generated by the set C is defined as cone(C) = ∪α≥0αC,
and intC and clC referred to as the interior and the closure of the set C, respectively. A set
D ⊂ Rn is said to be a cone if coneD = D. We say that the cone D is solid if intD/= ∅, and
pointed if D ∩ (−D) ⊂ {0}. The cone D is said to have a base B if B is convex, 0/∈ clB and
D = coneB. The positive polar cone and strict positive polar cone of D are denoted by D+

and Ds+, respectively.
Consider the following multiobjective optimization problem:

min
{
f(x) : x ∈ S

}
, (2.1)

where S ⊂ Rn is an arbitrary nonempty set, f : S → Rm. As usual, the preference relation ≤
defined in Rm by a closed convex pointed coneD ⊂ Rm is used, which models the preferences
used by the decision-maker:

y, z ∈ Y, y ≤ z ⇐⇒ y − z ∈ −D. (2.2)

We recall that x0 ∈ S is an efficient solution of (2.1) with respect to D if (f(x0) −D) ∩
f(S) = {f(x0)}. x0 ∈ S is a weakly efficient solution of (2.1) with respect to D if (f(x0) −
intD) ∩ f(S) = ∅ (in this case, it is assumed that D is solid). x0 ∈ S is a Benson properly
efficient solution (see [24]) of (2.1)with respect toD if cl cone(f(S)+D−f(x0))∩ (−D) = {0}.
x0 ∈ S is a Henig’ properly efficient solution (see [24]) of (2.1) with respect to D if x0 ∈
E(f,D′), for some convex cone D′ with D \ {0} ⊂ intD′.
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Definition 2.1 (see [18, 25]). Let q ∈ D \ {0} be a fixed element, and ε ≥ 0.

(i) x ∈ S is said to be a weakly εq-efficient solution of problem (2.1) if (f(S) − f(x) +
εq) ∩ (− intD) = ∅ (in this case it is assumed that D is solid).

(ii) x ∈ S is said to be a efficient εq-solution of problem (2.1) if (f(S)−f(x)+εq)∩(−D\
{0}) = ∅.

(iii) x ∈ S is said to be a properly εq-efficient solution of problem (2.1), if cl cone(f(S) +
εq +D − f(x)) ∩ (−D) = {0}.

The sets of εq-efficient solutions, weakly εq-efficient solutions, and properly εq-
efficient solutions of problem (2.1) are denoted by AE(f, S, εq), WAE(f, S, εq), and
PAE(f, S, εq), respectively.

Remark 2.2. If ε = 0, then εq-efficient solution, weakly εq-efficient solution, and properly εq-
efficient solution reduce to efficient solution, weakly efficient solution and properly efficient
solution of problem (2.1).

Definition 2.3. Let Z ⊂ Rm be a nonempty convex set.
The contingent cone of Z at z ∈ Z is defined as

T(z, Z) =
{
d ∈ Rm : there exists tj ↓ 0 and dj −→ d such that z + tjdj ∈ Z

}
. (2.3)

The cone of feasible directions of Z at z ∈ Z is defined as

F(z, Z) = {d ∈ Rm : there exists t > 0 such that z + td ∈ Z}. (2.4)

Let ε ≥ 0, the ε-normal set of Z at z ∈ Z is defined as

Nε(z, Z) =
{
y ∈ Rm : yT (x − z) ≤ ε, ∀x ∈ Z

}
. (2.5)

Lemma 2.4 (see [26]). LetN,K ⊂ Rm be closed convex cones such thatN ∩K = {0}. Suppose that
K is pointed and locally compact, or intK+ /= ∅, then, (−N+) ∩Ks+ /= ∅.

3. Cone Characterizations of Approximate Solutions: Convex Case

In this section, we assume that f(S) is a convex set.

Theorem 3.1. Let x ∈ S and ε ≥ 0. If

F
(
f(x), f(S)

) ∩ (−εq −D \ {0}) = ∅, (3.1)

then x ∈ AE(f, S, εq).

Proof. Suppose, on the contrary, that x /∈AE(f, S, εq), then, there exist x ∈ S and p ∈ D \ {0}
such that f(x) − f(x) + εq = −p. That is, f(x) = f(x) + (−εq − p). Therefore, −εq − p ∈
F(f(x), f(S)), which is a contradiction to F(f(x), f(S)) ∩ (−εq −D \ {0}) = ∅. This completes
the proof.
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Theorem 3.2. Let x ∈ S.

(i) If T(f(x), f(S)) ∩ (−D \ {0}) = ∅, then x ∈ PAE(f, S).

(ii) Let ε > 0, and D is solid set and q ∈ intD. If T(f(x), f(S)) ∩ (−εq −D \ {0}) = ∅, then
x ∈ PAE(f, S, εq).

Proof. (i) Suppose, on the contrary, that x/∈PAE(f, S), then, there exists q ∈ −D \ {0} such
that q ∈ cl cone(f(S) − f(x) +D). Hence, there exist λn ∈ R+, xn ∈ S and qn ∈ D, n ∈ N such
that λn(f(xn) − f(x) + qn) → q. Since q /= 0, there exists n ∈ N such that λn > 0.

Since f(S) is convex set, cl cone(f(S) − f(x)) = T(f(x), f(S)). Hence, cl cone(f(S) −
f(x)) ∩ (−D \ {0}) = ∅. From Lemma 2.4, there exists u ∈ Ds+ such that 〈u, y〉 ≥ 0, for all
y ∈ cl cone(f(S) − f(x)).

On the other hand, from u ∈ Ds+, we have 〈u, q〉 < 0. Therefore, there exists n1 ∈
N such that 〈u, f(xn1) − f(x) + qn1〉 < 0, and so 〈u, f(xn1) − f(x)〉 < 0, which deduces a
contradiction, and the proof is completed.

(ii) Now, we let ε > 0. From T(f(x), f(S)) ∩ (−εq −D \ {0}) = ∅, we have

T
(
f(x), f(S)

) ∩ (− intD) = ∅. (3.2)

In fact, if there exists p ∈ Rm such that p ∈ T(f(x), f(S)) ∩ (− intD), then, from q ∈ intD
and ε > 0, there exists λ > 0 such that p1 = −λp − εq ∈ D \ {0}. Hence, −εq − p1 = λp ∈
T(f(x), f(S)) ∩ (−εq −D \ {0}), which is a contradiction to the assumption.

Since f(S) is a convex set, cl cone(f(S) − f(x)) = T(f(x), f(S)). Hence,

cl cone
(
f(S) − f(x)

) ∩ (− intD) = ∅. (3.3)

By using the convex separation theorem, there exists u ∈ Rm \ {0} such that 〈u, y〉 ≥ 0, for all
y ∈ − intD and 〈u, y〉 ≤ 0, for all y ∈ cl cone(f(S) − f(x)). It is easy to get that 〈u, y〉 ≥ 0, for
all y ∈ −D. Hence, 〈u, y〉 > 0, for all y ∈ − intD.

Suppose, on the contrary, that x/∈ PAE(f, S, εq), then, there exists y ∈ Rm such that

y ∈ cl cone
(
f(S) + εq +D − f(x)

) ∩ (−D \ {0}), (3.4)

and there exist yn ∈ cone(f(S) + εq +D − f(x)), for all n ∈ N such that yn → y. That is, there
exist λn ≥ 0, xn ∈ S and pn ∈ D, for all n ∈ N such that yn = λn(f(xn) + εq + pn − f(x)), for all
n ∈ N. Since y /= 0, there exists n1 ∈ N such that λn > 0, for all n ≥ n1. From ε > 0, q ∈ intD
and pn ∈ D, for all n ∈ N, we have εq + pn ∈ intD, for all n ∈ N. Therefore,

〈
u, yn

〉
= λn

{〈
u, f(xn) − f(x)

〉
+
〈
u, εq + pn

〉}
< λn

〈
u, f(xn) − f(x)

〉 ≤ 0, ∀n ≥ n1. (3.5)

Which implies 〈u, y〉 < 0. On the other hand, from y ∈ −D \ {0}, we have 〈u, y〉 ≥ 0, which
yields a contradiction. This completes the proof.

Remark 3.3. If ε = 0, then the conditions of Theorems 3.1 and 3.2 are also necessary(see [2]).
But for ε > 0, these are not necessary conditions, see the following example.
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Example 3.4. Let D = R2
+, q = (1, 1)T , S = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0},f : S → R2, f(x) = x,

ε = 1/2 and x = (1/2, 1/2)T , then, x ∈ AE(f, S, εq) and x ∈ PAE(f, S, εq). But F(f(x), f(S)) =
R2 = T(f(x), f(S)). Hence, F(f(x), f(S)) ∩ (−εq −D \ {0})/= ∅ and T(f(x), f(S)) ∩ (−εq −D \
{0})/= ∅.

Theorem 3.5. Let x ∈ S, ε ≥ 0, D be a solid set and q ∈ intD. If there exists u ∈ −(D+ \ {0})
such that 〈−u, q〉 ≥ 1 and u ∈ Nε(f(x), f(S)), then x ∈ WAE(f, S, εq). Conversely, if x ∈
WAE(f, S, εq), then there exists u ∈ −(D+ \ {0}) such that 〈−u, q〉 = 1 and u ∈ Nε(f(x), f(S)).

Proof. Assume that, there exists u ∈ −(D+ \{0}) such that 〈−u, q〉 ≥ 1 and u ∈ Nε(f(x), f(S)).
Suppose, on the contrary, that x/∈WAE(f, S, εq), then, there exist p ∈ − intD and x ∈ S such
that p = f(x)−f(x)+εq. From u ∈ −(D+\{0}) and 〈−u, q〉 ≥ 1, we have 〈u, f(x)−f(x)+εq〉 > 0.
Hence,

〈
u, f(x) − f(x)

〉
> −〈u, εq〉 ≥ ε. (3.6)

On the other hand, from u ∈ Nε(f(x), f(S)), we have 〈u, f(x) − f(x)〉 ≤ ε, which is a
contradiction to the above inequality. Hence, x ∈ WAE(f, S, εq).

Conversely, let x ∈ WAE(f, S, εq), then, (f(S) − f(x) + εq)∩ (− intD) = ∅. Since f(S) is
convex andD is a convex cone, there exists u ∈ −(D+ \ {0}) such that 〈u, f(x) − f(x) + εq)〉 ≤
0, for all x ∈ S. Since q ∈ intD, there exists u ∈ −(D+ \ {0}) such that 〈−u, q〉 = 1 and
〈u, f(x) − f(x) + εq〉 ≤ 0, for all x ∈ S. Therefore, 〈u, f(x) − f(x)〉 ≤ −〈u, εq〉 = ε, for all x ∈ S,
which implies u ∈ Nε(f(x), f(S)). This completes the proof.

Theorem 3.6. Let x ∈ S and ε ≥ 0. If there exists u ∈ −Ds+ such that 〈−u, q〉 ≥ 1 and u ∈
Nε(f(x), f(S)), then x ∈ PAE(f, S, εq). Conversely, assume that D is a locally compact set, if x ∈
PAE(f, S, εq), then there exists u ∈ −Ds+ such that 〈−u, q〉 = 1 and u ∈ Nε(f(x), f(S)).

Proof. Assume that, there exists u ∈ −Ds+ such that 〈−u, q〉 ≥ 1 and u ∈ Nε(f(x), f(S)).
Suppose, on the contrary, that x/∈ PAE(f, S, εq), then, there exists p ∈ Rm such that

p ∈ cl cone
(
f(S) + εq +D − f(x)

) ∩ (−D \ {0}), (3.7)

and there exists pn ∈ cone(f(S) + εq + D − f(x)), for all n ∈ N such that pn → p. From
u ∈ Ds+ and p ∈ (−D \ {0}), we have 〈u, p〉 > 0. Hence, there exists n1 ∈ N such that
〈u, pn〉 > 0, for all n ≥ n1. From pn ∈ cone(f(S) + εq + D − f(x)), for all n ∈ N, there exist
λn ≥ 0, xn ∈ S, and qn ∈ D such that pn = λn(f(xn) + εq + qn − f(x)), for all n ∈ N. Therefore,
〈u, f(xn)+εq+qn−f(x)〉 > 0, for all n ≥ n1, which combing with qn ∈ D and 〈−u, q〉 ≥ 1 yields
〈u, f(xn)− f(x)〉 > −〈u, εq〉 ≥ ε, for all n ≥ n1, which is a contradiction to u ∈ Nε(f(x), f(S)).
Hence, x ∈ PAE(f, S, εq).

Conversely, let x ∈ PAE(f, S, εq), then,

cl cone
(
f(S) + εq +D − f(x)

) ∩ (−D) = {0}. (3.8)

Since f(S) is a convex set, cl cone(f(S) + εq + D − f(x)) is a closed convex cone. From
Lemma 2.4, there exists u ∈ (−D)s+ = −Ds+ such that u ∈ −(cl cone(f(S) + εq + D − f(x)))+.
Since q ∈ intD,Ds+ and (cl cone(f(S)+εq+D−f(x)))+ are cone, there exists u ∈ (−D)s+ such
that 〈−u, q〉 = 1 and u ∈ −(cl cone(f(S) + εq +D − f(x)))+.
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Now, we prove that u ∈ Nε(f(x), f(S)). That is, 〈u, f(x) − f(x)〉 ≤ ε, for all x ∈ S.
From u ∈ −(cl cone(f(S) + εq +D − f(x)))+, we have

〈
u, f(x) − f(x) + εq + p

〉 ≤ 0, ∀x ∈ S, p ∈ D. (3.9)

Since 0 ∈ D and 〈−u, q〉 = 1, we have

〈
u, f(x) − f(x)

〉 ≤ −〈u, εq〉 = ε, ∀x ∈ S. (3.10)

Which implies u ∈ Nε(f(x), f(S)). This completes the proof.

Example 3.7. Let D = R2
+, q = (1, 1)T , S = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0},f : S → R2, f(x) = x,

ε = 1/2 and x = (1/2, 1/2)T , then, x ∈ WAE(f, S, ε) and x ∈ PAE(f, S, ε). Let u = −(1/2, 1/2)T ,
then 〈u, p〉 = 1 and u ∈ Nε(f(x), f(S)) = {x ∈ R2 : x1 + x2 ≥ −1, x1 ≤ 0, x0 ≤ 0}.

Remark 3.8. (i) If ε = 0 and D = Rm
+ , then Theorems 3.1 and 3.5 reduce to the corresponding

results in [1].
(ii) In [1], the cone characterizations of Henig’ properly efficient solution were

derived. We know that Henig’ properly efficient solution equivalent to Benson properly
efficient solution, when D is a closed convex pointed cone(see [24]). Therefore, if ε = 0 and
D = Rm

+ , Theorems 3.2 and 3.6 reduce to the corresponding results in [1].

4. Cone Characterizations of Approximate Solutions: Nonconvex Case

In this section, f(S) is no longer assumed to be convex. In nonconvex case, the corresponding
local concepts are defined as follows.

Definition 4.1. Let q ∈ D \ {0} be a fixed element and ε ≥ 0.

(i) x ∈ S is said to be a local weakly εq-efficient solution of problem (2.1), if there exists
a neighborhood V of x such that (f(S ∩ V ) − f(x) + εq) ∩ (− intD) = ∅ (in this case,
it is assumed that D is solid).

(ii) x ∈ S is said to be a local εq-efficient solution of problem (2.1), if there exists a
neighborhood V of x such that (f(S ∩ V ) − f(x) + εq) ∩ (−D \ {0}) = ∅.

(iii) x ∈ S is said to be a local properly εq-efficient solution of problem (2.1), if there
exists a neighborhood V of x such that cl cone(f(S∩V )+εq+D−f(x))∩(−D) = {0}.

The sets of local εq-efficient solutions, local weakly εq-efficient solutions and local
properly εq-efficient solutions of problem (2.1) are denoted by LAE(f, S, εq), LWAE(f, S, εq)
and LPAE(f, S, εq), respectively.

If ε = 0, then, (i), (ii), and (iii) reduce to the definitions of local weakly efficient
solution, local efficient solution and local properly efficient solution, respectively, and
the sets of local (weakly, properly) efficient solutions of problem (2.1) are denoted by
LE(f, S) (LWE(f, S), LPE(f, S)), respectively.
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Definition 4.2 (see [4, 5]). Let Z ⊂ Rm and y, v ∈ Rm.

(i) The second-order tangent set to Z at (y, v) is defined as

T2(Z, y, v
)
=
{
d ∈ Rm : ∃tn ↓ 0, ∃dn −→ d such that yn = y + tnv +

1
2
t2ndn ∈ Z, ∀n ∈ N

}
.

(4.1)

(ii) The asymptotic second-order tangent cone to Z at (y, v) is defined as

T ′′(Z, y, v
)
=
{
d ∈ Rm : ∃(tn, rn) ↓ (0, 0), ∃dn −→ d

such that
tn
rn

−→ 0, yn = x + tnv +
1
2
tnrndn ∈ Z, ∀n ∈ N

}
.

(4.2)

In [4–9], some properties of second-order tangent sets have been derived, see the
following Lemma.

Lemma 4.3. Let y ∈ clZ and v ∈ Rm, then,

(i) T2(Z, y, v) and T ′′(Z, y, v) are closed sets contained in cl cone [cone (Z − y) − v], and
T ′′(Z, y, v) is a cone.

(ii) If v /∈ T(y,Z), then T2(Z, y, v) = T ′′(Z, y, v) = ∅. If v ∈ T(y,Z), then T2(Z, y, v) ∪
T ′′(Z, y, v)/= ∅. If y ∈ intZ, then T2(Z, y, v) = T ′′(Z, y, v) = Rm, and T2(Z, y, 0) =
T ′′(Z, y, 0) = T(y,Z).

(iii) Let Z is convex. If v ∈ T(y,Z) and T ′′(Z, y, v)/= ∅, then T2(Z, y, v) ⊂ T ′′(Z, y, v) =
cl cone [cone(Z − y) − v] = T(v, T(Z, y)).

Definition 4.4 (see [27]). LetK ⊂ Rn and φ : K → R be a nonsmooth function. The Hadamard
upper directional derivative and the Hadamard lower directional derivative derivative of φ
at x ∈ K in the direction d ∈ Rn are given by

φ′
+(x, d) = lim

t↓0
sup
h→ d

φ(x + th) − φ(x)
t

,

φ′
−(x, d) = lim

t↓0
inf
h→ d

φ(x + th) − φ(x)
t

.

(4.3)

Lemma 4.5 (see [7]). Let Y be a finite-dimensional space and y0 ∈ E ⊂ Y . If the sequence yn ∈
E \ {y0} converges to y0, then there exists a subsequence (denoted the same) yn such that (yn −
y0)/tn converges to some nonnull vector u ∈ T(y0, E), where tn = ‖yn − y0‖, and either (yn − y0 −
tnu)/(1/2)t2n converges to some vector z ∈ T2(E, y0, u)∩u⊥ or there exists a sequence rn → 0+ such
that tn/rn → 0 and (yn −y0 − tnu)/(1/2)tnrn converges to some vector z ∈ T ′′(E, y0, u)∩ u⊥ \ {0},
where u⊥ denotes the orthogonal subspace to u.

In the following theorem, we derive several properties of local (weakly, properly)
approximate efficient solutions.
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Theorem 4.6. (i) Let intD/= ∅, then, for any fixed q ∈ D \ {0},

LWE
(
f, S
) ⊂
⋂

ε>0

LWAE
(
f, S, εq

)
. (4.4)

Conversely, if x ∈ S, and there exists a neighborhood V of x such that (f(S ∩ V ) − f(x)) ∩ (−εq −
intD) = ∅, for all ε > 0, that is, x ∈ WAE(f, S ∩ V , εq), for all ε > 0, then x ∈ LWE(f, S).

(ii) For any fixed q ∈ D \ {0}, LE(f, S) ⊂ ⋂ε>0 LAE(f, S, εq). Conversely, if x ∈ S and there
exists a neighborhood V of x such that for any fixed q ∈ D \ {0} and ε > 0, (f(S ∩ V ) − f(x)) ∩
(−εq −D \ {0}) = ∅, then x ∈ LE(f, S).

(iii) For any fixed q ∈ D \ {0}, LPE(f, S) ⊂ ⋂ε>0 LPAE(f, S, εq). Conversely, if x ∈ S and
there exists a neighborhood V of x such that for any fixed q ∈ D \ {0} and ε > 0, cone(f(S ∩
V ) − f(x) + εq +D) is a closed set, and (cl cone(f(S ∩ V ) − f(x) + εq + D)) ∩ (−D) = {0}, then
x ∈ LPE(f, S).

Proof. (i) Let x ∈ LWE(f, S), then, there exists a neighborhood V1 of x such that f(S ∩ V1) −
f(x) ∩ (− intD) = ∅. From q ∈ D \ {0}, we have

f(S ∩ V1) − f(x) ∩ (−εq − intD
)
= ∅, ∀ε > 0. (4.5)

Which implies x ∈ ⋂ε>0 LWAE(f, S, εq).
Conversely, we assume that there exists a neighborhood V of x such that x ∈

WAE(f, S ∩ V , εq), for all ε > 0. Suppose, on the contrary, that x /∈LWE(f, S), then, for any
neighborhood V of xf(S ∩ V ) − f(x) ∩ (− intD)/= ∅. Take V = V , then, there exist p ∈ intD
and x ∈ S ∩ V such that f(x) − f(x) = −p. Therefore, if ε > 0 is sufficiently small, we
have f(x) − f(x) = −p = − εq − (p − εq) ∈ − εq − intD, which is a contradiction to
x ∈ WAE(f, S ∩ V , εq), for all ε > 0. This completes the proof.

(ii) It is easy to see that LE(f, S) ⊂ ⋂ε>0 LAE(f, S, εq).
Conversely, we assume that there exists a neighborhood V of x such that for any fixed

q ∈ D \ {0} and ε > 0, (f(S ∩ V ) − f(x)) ∩ (−εq −D \ {0}) = ∅. Suppose, on the contrary, that
x /∈LE(f, S), then, for any neighborhood V of x, we have f(S∩V )−f(x)∩(−D\{0})/= ∅. Take
V = V , then, there exist p ∈ D \ {0} and x ∈ S ∩ V such that f(x) − f(x) = −p. Take q = p/2
and ε = 1, then, f(x) − f(x) = −p = −εq − p/2 ∈ −εq −D \ {0}, which is a contradiction to the
assumption. This completes the proof.

(iii) It is easy to see that LPE(f, S) ⊂ ⋂ε>0 LPAE(f, S, εq).
Conversely, we assume that there exists a neighborhood V of x such that for any fixed

q ∈ D \ {0} and ε > 0, cone(f(S ∩ V ) − f(x) + εq + D) is a closed set, and (cl cone(f(S ∩
V ) − f(x) + εq +D)) ∩ (−D) = {0}. Suppose, on the contrary, that x/∈ LPE(f, S), then, for any
neighborhood V of x, we have cl cone(f(S∩V )−f(x)+D)∩ (−D \ {0})/= ∅. Take V = V , then,
there exist λ > 0, p1 ∈ D \ {0}, p2 ∈ D and x ∈ S ∩ V such that λ(f(x) − f(x) + p2) = −p1. Take
q = p1/2λ and ε = 1, similar to the proof of (ii) we can complete the proof.
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Theorem 4.7. Let f be a continuous function on S, x ∈ S, and ε > 0.

(i) If T(f(x), f(S)) ∩ (−εq −D) = ∅, then x ∈ LAE(f, S, εq).

(ii) If T(f(x), f(S)) ∩ (−εq −D)/= ∅, and for each v ∈ T(f(x), f(S)) ∩ (−εq −D)

T2(f(S), f(x), v
) ∩ v⊥ ∩ (−cl cone (D + εq + v

))
= ∅,

T ′′(f(S), f(x), v
) ∩ v⊥ ∩ (−cl cone(D + εq + v

))
= {0},

(4.6)

then x ∈ LAE(f, S, εq).

Proof. (i) Let T(f(x), f(S)) ∩ (−εq − D) = ∅. Suppose, on the contrary, that x/∈ LAE(f, S, εq),
then, there exists xn ∈ S and xn → x such that f(xn) − f(x) + εq ∈ −D \ {0}, for all n ∈ N.
Since f is a continuous function and D is a pointed cone, f(xn)/= f(x), for all n ∈ N and
f(xn) → f(x). Therefore, (f(xn) − f(x))/‖f(xn) − f(x)‖ → d ∈ T(f(x), f(S)).

On the other hand, for any n ∈ N, we have

f(xn) − f(x)
∥
∥f(xn) − f(x)

∥
∥ ∈ − 1

∥
∥f(xn) − f(x)

∥
∥
(
εq +D \ {0})

⊂ −
(

εq +D \ {0} +
(

1
∥
∥f(xn) − f(x)

∥
∥ − 1

)

εq

)

.

(4.7)

Since f(xn) → f(x) and q ∈ D \ {0}, there exists n1 ∈ N such that

(
1

∥
∥f(xn) − f(x)

∥
∥ − 1

)

εq ∈ D, ∀n ≥ n1. (4.8)

Hence, d ∈ −(εq +D), which is a contradiction to the assumption. This completes the proof.
(ii) Suppose, on the contrary, that x /∈ LAE(f, S, εq). Similar to the proof of (i), we have

there exists xn → x such that

f(xn) − f(x)
∥∥f(xn) − f(x)

∥∥ −→ d ∈ T
(
f(x), f(S)

) ∩ (−εq −D
)
. (4.9)

Let tn = ‖f(xn) − f(x)‖ and zn = (2/tn)((f(xn) − f(x))/tn − d), for all n ∈ N. Similar to
the proof of Lemma 4.3, we have there exists z ∈ Rm such that z ∈ T2(f(S), f(x), d) ∩ d⊥ ∩
−cl cone(εq + D + d) or z ∈ T ′′(f(S), f(x), d) ∩ d⊥ \ {0} ∩ −cl cone (εq + D + d), which is a
contradiction to the assumptions. This completes the proof.
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Corollary 4.8. Let f be a continuous function on S, x ∈ S and ε = 0.

(i) If T(f(x), f(S)) ∩ (−D) = {0}, then x is a local efficient solution of problem (2.1).

(ii) If T(f(x), f(S)) ∩ (−D \ {0})/= ∅, and for each v ∈ T(f(x), f(S)) ∩ (−D \ {0})

T2(f(S), f(x), v
) ∩ v⊥ ∩ (−cl cone (D + v)) = ∅,

T ′′(f(S), f(x), v
) ∩ v⊥ ∩ (−cl cone (D + v)) = {0},

(4.10)

then x is a local efficient solution of problem (2.1).

Proof. The proof is similar to Theorem 4.7.

Remark 4.9. If f(S) is convex, then the condition (ii) of Theorem 4.7 is equivalent to the
following condition

(ii)′ T(f(x), f(S)) ∩ (−εq −D)/= ∅, and for each v ∈ T(f(x), f(S)) ∩ (−εq −D)

0/∈ T2(f(S), f(x), v
)
, T ′′(f(S), f(x), v

) ∩ v⊥ ∩ (−cl cone (D + εq + v
))

= {0}, (4.11)

since T2(f(S), f(x), v) ⊂ T ′′(f(S), f(x), v) by Lemma 4.3(iii).

Theorem 4.10. Let f be continuous on S, x ∈ S, and ε ≥ 0.

(i) Assume that D has a compact base B, p = αb for b ∈ B and α > 0, and there exists δ > 0
such that (f(S) − f(x)) ∩ δU ⊂ T(f(x), f(S)). If T(f(x), f(S)) ∩ (−εq −D \ {0}) = ∅,
then x ∈ LPAE(f, S, εq).

(ii) Assume that T(f(x), f(S))∩ (−εq−D \ {0})/= ∅, and there exists β > 0 such that for each
d ∈ (T(f(x), f(S)) \ {0}) ∩ (−εq −D + βU) the following conditions hold

T2(f(S), f(x), d
) ∩ d⊥ ∩ (−cl cone (D + εq + βU + d

))
= ∅,

T ′′(f(S), f(x), d
) ∩ d⊥ ∩ (−cl cone(D + εq + βU + d

))
= {0},

(4.12)

then x ∈ LPAE(f, S, εq), where,U denotes the closed unit ball of Rm.

Proof. (i) Let T(f(x), f(S)) ∩ (−εq −D \ {0}) = ∅, then, T(f(x), f(S)) ∩ (−λεb − B) = ∅, for all
λ > 0. The assumptions and the separation result [28, page 9] implies that for any λ > 0 there
exists a neighborhood Vλ of 0 such that

T
(
f(x), f(S)

) ∩ (−λεb − B + Vλ) = ∅. (4.13)

Suppose, on the contrary, that x/∈LPAE(f, S, εq), then, for any neighborhood V of 0, we have

cl cone
(
f

(
S ∩
(
x +

V

n

))
− f(x) + εq +D

)
∩ (−D \ {0})/= ∅. (4.14)
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Therefore,

cl cone
(
f

(
S ∩
(
x +

V

n

))
− f(x) + εq +D

)
∩ −B /= ∅. (4.15)

That is, for any n ∈ N there exist zn ∈ cl cone(f(S ∩ (x + V/n)) − f(x) + εq + D) ∩ (−B),
and so, for any n ∈ N there exists λk

n ≥ 0, xk
n ∈ S ∩ (x + V/n) and pkn ∈ D such that zkn =

λk
n(f(xk

n) − f(x) + εq + pkn) and zkn → zn. Since zkn → zn, there exists k1 ∈ N such that
zkn ∈ zn + V , for all k ≥ k1. By zkn = λk

n(f(x
k
n) − f(x) + εq + pkn), we have

λk
n

(
f
(
xk
n

)
− f(x)

)
∈ zn + V − λk

n

(
εq + pkn

)
, ∀k ≥ k1. (4.16)

Let pkn = βknθ
k
n for βkn ≥ 0 and θkn ∈ B, then,

λk
n

1 + λk
nβ

k
n

(
f
(
xk
n

)
− f(x)

)
∈ −
(

− zn

1 + λk
nβ

k
n

+
λk
nβ

k
nθ

k
n

1 + λk
nβ

k
n

)

− αελk
nb

1 + λk
nβ

k
n

+
V

1 + λk
nβ

k
n

. (4.17)

Let γkn = −zn/(1 + λk
nβ

k
n) + λk

nβ
k
nθ

k
n/(1 + λk

nβ
k
n), then, γkn ∈ B, since B is a convex set, and so,

λk
n

1 + λk
nβ

k
n

(
f
(
xk
n

)
− f(x)

)
∈ −γkn − αελk

nb

1 + λk
nβ

k
n

+
V

1 + λk
nβ

k
n

, ∀k ≥ k1. (4.18)

On the other hand, from xk
n ∈ S ∩ (x + V/n), we have xk

n → x when n → ∞ and k → ∞.
Since f is a continuous function, f(xk

n) → f(x)when n → ∞ and k → ∞, which combining
with the assumption (f(S)−f(x))∩δU ⊂ T(f(x), f(S)) yields there exist n1 ∈ N and kn1 ∈ N
such that

f
(
xk
n1

)
− f(x) ∈ (f(S) − f(x)

) ∩ δU ⊂ T
(
f(x), f(S)

)
, ∀k ≥ kn1 . (4.19)

From zn1 /= 0, there exists kn1 ∈ N such that λk
n1

> 0, for all k ≥ kn1 . Take k2 = max{kn1 , kn1},
and let λ = αλk2

n1/(1 + λk2
n1β

k2
n1) > 0. Since V is an arbitrary set, it follows that

λk2
n1

1 + λk2
n1β

k2
n1

(
f
(
xk2
n1

)
− f(x)

)
∈ (−B − λεb + Vλ). (4.20)

Which is a contradiction to (4.13). This completes the proof.
(ii) Suppose, on the contrary, that x /∈LPAE(f, S, ε), then, for any γ > 0 and n ∈ N, we

have

cl cone
(
f

(
S ∩
(
x +

γU

n

))
− f(x) + εq +D

)
∩ (−D \ {0})/= ∅. (4.21)

Let V = γU. Similar to the proof of (i), we have for any n ∈ N there exist λk
n ≥ 0, xk

n ∈
S ∩ (x + V/n), and pkn ∈ D such that zkn = λk

n(f(x
k
n) − f(x) + εq + pkn) and zkn → zn. It is
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obvious that f(xk
n)/= f(x). Otherwise, zn ∈ (εq +D) ∩ (−D \ {0}), which is a contradiction to

the assumption that D is a pointed cone. Since zn /= 0 and zkn → zn, there exists k1 ∈ N such
that λk

n > 0 and zkn ∈ zn + V , for all k ≥ k1. From xk
n ∈ S ∩ (x + V/n), we have xk

n → x, when
n → ∞ and k → ∞. Since f is a continuous function and f(xk

n)/= f(x), it is easy to see that
(f(xk

n) − f(x))/‖f(xk
n) − f(x)‖ → d ∈ T(f(x), f(S)). From zkn = λk

n(f(x
k
n) − f(x) + εq + pkn),

we have for sufficiently large n, k ∈ N

f
(
xk
n

) − f(x)
∥∥
∥f
(
xk
n

)
− f(x)

∥∥
∥
=

zkn − λk
n

(
εq + pkn

)

λk
n

∥∥
∥f
(
xk
n

)
− f(x)

∥∥
∥
. (4.22)

On the other hand, we have

zkn − λk
n

(
εq + pkn

)

λk
n

∥
∥∥f
(
xk
n

)
− f(x)

∥
∥∥
∈ −εq −D + V, (4.23)

for sufficiently large k, n ∈ N. In fact, for sufficiently large k, n ∈ N

zkn − λk
n

(
εq + pkn

)

λk
n

∥
∥∥f
(
xk
n

)
− f(x)

∥
∥∥
∈ zn + V − λk

n

(
εq +D

)

λk
n

∥
∥∥f
(
xk
n

)
− f(x)

∥
∥∥

. (4.24)

Hence,

zkn − λk
n

(
εq + pkn

)

λk
n

∥∥
∥f
(
xk
n

)
− f(x)

∥∥
∥
∈ −εq −D +

V

λk
n

∥∥
∥f
(
xk
n

)
− f(x)

∥∥
∥
, (4.25)

when k and n sufficiently large enough. Since γ > 0 is arbitrary,

f
(
xk
n

) − f(x)
∥
∥∥f
(
xk
n

)
− f(x)

∥
∥∥
=

zkn − λk
n

(
εq + pkn

)

λk
n

∥
∥∥f
(
xk
n

)
− f(x)

∥
∥∥
−→ d ∈ (−εq −D + βU

) ∩ T
(
f(x), f(S)

)
. (4.26)

Let tkn = ‖f(xk
n) − f(x)‖ and zkn = (2/tkn)((f(x

k
n) − f(x))/tkn − d). Similar to the proof of

Lemma 4.3, we have there exists z ∈ Rm such that z ∈ T2(f(S), f(x), d)∩d⊥∩−cl cone(εq+D+
d+βU) or z ∈ T ′′(f(S), f(x), d)∩d⊥ \{0}∩−cl cone (εq+D+d+βU), which is a contradiction
to the assumptions. This completes the proof.
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Remark 4.11. If f(S) is convex, then the conditions (i) and (ii) of Theorem 4.10 are equivalent
to (i)′ and (ii)′′, respectively.

(i)′ D has a compact base B, p = αb for some b ∈ B, α > 0, and T(f(x), f(S)) ∩ (−εq −
D \ {0}) = ∅.

(ii) T(f(x), f(S)) ∩ (−εq − D \ {0})/= ∅, and there exists β > 0 such that for each d ∈
(T(f(x), f(S)) \ {0}) ∩ (−εq −D + βU)

0/∈ T2(f(S), f(x), d
)
, T ′′(f(S), f(x), d

) ∩ d⊥ ∩ (−cl cone (D + εq + βU + d
))

= {0}.
(4.27)

Remark 4.12. The conditions of Theorem 4.7, Corollary 4.8 and Theorem 4.10 are not
necessary conditions, see Examples 4.14 and 4.15.

Now, we give some examples to verify the results of Theorem 4.7, Theorem 4.10 and
Corollary 4.8.

Example 4.13. Let D = R2
+, S = {(x1, x2) ∈ R2 : x2 ≥ |x1|3/2},f : S → R2, f(x1, x2) =

(x1, x2)T ,q = (1, 1)T , and ε > 0. We consider x = (0, 0)T ∈ S. It is easy to see that
T(f(x), f(S)) ∩ (−εq − D) = ∅ and f(S) − f(x) ⊂ T(f(x), f(S)). That is, the condition (i)
of Theorem 4.10 is valid, and x ∈ LPAE(f, S, εq) = PAE(f, S, εq), for all ε > 0.

If we let 0 < ε < 1 and x = (ε, ε3/2)T ∈ S, then, T(f(x), f(S)) ∩ (−εq − D)/= ∅. But the
condition (ii) of Theorem 4.10 is valid. Hence, x ∈ LPAE(f, S, ε) = PEA(f, S, ε).

Let ε = 0, then, T(f(x), f(S))∩ (−D \{0})/= ∅. But for all d ∈ T(f(x), f(S))∩ (−D \{0}),
the condition (ii) of Corollary 4.8 satisfies (see Example 3.7 in [7]), and x is an efficient
solution of this problem, since f(S) is a convex set. But for any β > 0, it is easy to
check that there exists d ∈ (T(f(x), f(S)) \ {0}) ∩ (−D + βU) such that T ′′(f(S), f(x), d) =
T2(f(S), f(x), d) = cl cone(D + d + βU) = R2. In fact, for any β > 0, take d = (β/2, β/2)T ∈
(T(f(x), f(S))\ {0})∩ (−D+βU), then, T ′′(f(S), f(x), d) = T2(f(S), f(x), d) = cl cone(D+d+
βU) = R2 and d⊥ = {y = (y1, y2)T ∈ R2 : y1+y2 = 0}. Hence, the condition (ii) of Theorem 4.10
is false, and x is not a properly efficient solution of this problem.

Example 4.14. Let D = R2
+,q = (1, 1)T , S = {(x1, x2)T : x1 + x2 ≥ 0} ∪ {(x1, x2) ∈ R2 : x1 ≥

1} ∪ {(x1, x2) ∈ R2 : x2 ≥ 1},f(x) : S → R2 and f(x) = x. Take x = (0, 0)T , then, it is easy to
see that there exists δ > 0 such that (f(S) − f(x)) ∩ δU ⊂ T(f(x).f(S)) and T(f(x), f(S)) ∩
(−εq − D \ {0}) = ∅, for all ε ≥ 0. Hence, x ∈ LPAE(f, ε, p), for all ε ≥ 0. But x is not a global
properly efficient solution, where,U is closed unit ball of R2.

We let 0 < ε < 1 and x = (ε, ε)T ∈ S, then, T(f(x), f(S)) ∩ (−εq − D \ {0})/= ∅, for all
ε > 0, and (ii) in Theorem 4.10 is false. In fact, for any β > 0 and d ∈ T(f(x), f(S)) ∩ (−εq −
D + βU) ⊂ − intR2

+, T
2(f(x), f(S), d) = T ′′(f(x), f(S), d) = R2, since f(x) ∈ int(f(S)). But

x ∈ LPAE(f, S, ε). This implies that the conditions of Theorem 4.10 are not necessary.

Example 4.15. Let D = R2
+, S = {(x1, x2) ∈ R2 : x2 ≥ |x1|}, f : S → R2, f(x1, x2) = (x1, x2)T ,q =

(1, 1)T and ε = 1. We consider x = εq ∈ S. It is easy to see that x ∈ LAE(f, S, εq) = AE(f, S, εq).
But T(f(x), f(S)) ∩ (−εq − D) = {(y1, y2)

T ∈ R2 : y1 ≤ −1, y2 ≤ −1, y2 ≥ y1}/= ∅, and the
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condition (ii) of Theorem 4.7 is false. In fact, if we take d = (−2,−2)T ∈ T(f(x), f(S)) ∩
(−εq−D), then, d⊥ = {(y1, y2)T : y1+y2 = 0}, −cl cone(D+εq+d) = R2 and T ′′(f(S), f(x), d) =
{(y1, y2)T ∈ R2 : y2 ≥ y1}. Therefore, T ′′(f(S), f(x), v)∩vT ∩(−cl cone(D+εq+v)) = {(y1, y2) ∈
R2 : y1 + y2 = 0, y1 ≤ 0}.

Example 4.16. Let D = R2
+, S = {(x1, x2) ∈ R2 : x2 = |x1|3/2},f : S → R2, f(x1, x2) = (x1, x2)T ,

q = (1, 1)T , and ε > 0. We consider x = (0, 0)T ∈ S. It is easy to see that T(f(x), f(S)) ∩ (−εq −
D) = ∅ and f(S) − f(x) ⊂ T(f(x), f(S)). That is, the condition (i) of Theorem 4.7 is valid, and
x ∈ LPAE(f, S, εq) = PAE(f, S, εq), for all ε > 0.

Theorem 4.17. Let x ∈ S, ε ≥ 0 andD = Rm
+ .

(i) If f ′
−(x, d)∩(−εq− intRm

+ ) = ∅, for any unit vector d ∈ T(x, S), then x ∈ LWAE(f, S, εq).

(ii) If f ′
−(x, d)∩(−εq−Rm

+ \{0}) = ∅, for any unit vector d ∈ T(x, S), then x ∈ LAE(f, S, εq).

Where, f ′
−(x, d) = ((f ′

−)1(x, d), . . . , (f
′
−)m(x, d))

T .

Proof. (i) Suppose, on the contrary, that x/∈LWAE(f, S, εq), then, there exists xk ∈ S \ {x},
k ∈ N and xk → x such that f(xk) − f(x) ∈ − εq − intRm

+ . Let dk = (xk − x)/‖xk − x‖ and
tk = ‖xk − x‖, then, tk → 0, dk → d ∈ T(x, S) and ‖d‖ = 1. Hence,

f(xk) − f(x)
tk

=
f(x + tkdk) − f(x)

tk
∈ −εq − intRm

+ −
(

1
tk

− 1
)
εq. (4.28)

Since tk ↓ 0, there exists k1 ∈ N such that (f(xk) − f(x))/tk ∈ −εq − intRm
+ , for all k ≥ k1.

Hence,

fi(xk) − fi(x)
tk

+ εqi < 0, ∀i ∈ {1, . . . , m}, k ≥ k1. (4.29)

Therefore,

(
f ′
−
)
i(x, d) + εqi = lim

t↓0
inf
h→d

fi(x + th) − fi(x)
t

+ εqi

≤ lim inf
n→∞

fi(x + tndn) − fi(x)
tn

+ εqi < 0, ∀i ∈ {1, . . . , m}.
(4.30)

Which is a contradictions to the assumption. This completes the proof.
(ii) Similar to the proof of (i), we have there exists xk ∈ S\{x}, k ∈ N and xk → x such

that f(xk) − f(x) ∈ −εq − Rm
+ \ {0}. Hence, there exists k1 ∈ N such that (f(xk) − f(x))/tk ∈

−εq − Rm
+ \ {0}, for all k ≥ k1. It is easy to see that, if we take an appropriate subsequences xk

n
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and tkn of xk and tk, respectively, then there exist an index i0 ∈ {1, . . . , m}, n0 ∈ N and k0 ∈ N
such that

fi
(
xk
n

) − fi(x)

tkn
+ εqi ≤ 0, ∀i ∈ {1, . . . , m}, ∀k ≥ k0, n ≥ n0,

fi0
(
xk
n

) − fi0(x)

tkn
+ εqi0 < 0, ∀k ≥ k0, n ≥ n0.

(4.31)

Therefore, (f ′
−)i(x, d) + εqi ≤ 0, for all i ∈ {1, . . . , m}, and (f ′

−)i0(x, d) + εqi0 < 0, which is a
contradiction to the assumption. This completes the proof.

Remark 4.18. The following necessary conditions for ε-local weakly (efficient) solutions may
not be true.

x ∈ LWAE
(
f, S, εq

)
=⇒ f ′

−(x, d) ∩
(−εq − intRm

+
)
= ∅, ∀d ∈ T(x, S).

x ∈ LAE
(
f, S, εq

)
=⇒ f ′

−(x, d) ∩
(−εq − Rm

+ \ {0}) = ∅, ∀d ∈ T(x, S).
(4.32)

See the following example.

Example 4.19. Let f(x) = (f1(x), f2(x))T : R → R2,

f1(x) =

⎧
⎨

⎩
x sin

1
x
, x /= 0,

0, x = 0,
(4.33)

f2(x) = x,ε = 2/π , q = (1, 1)T , S = {x ∈ R : −2/π ≤ x ≤ 2/π}. Consider the following
problem:

min
x∈S

f(x). (MP)

It is easy to see that x = 0 is an εq-efficient solution of (MP), but, {d ∈ R : (f ′
−(x, d) + εq) ∈

− intR2
+} ∩ T(x, S)/= ∅. In fact,

(
f1
)′
−(x, d) = lim

t↓0
inf
h↓d

f1(th) − f1(0)
t

= lim
t↓0

inf
h↓d

h sin
1
th

= −|d|, ∀d ∈ R. (4.34)

(f2)
′
−(x, d) = d, for all d ∈ R. It is obvious that −1 ∈ {d ∈ R : (f ′

−(x, d) + εq) ∈ − intR2
+}. On the

other hand, T(x, S) = R. Hence, {d ∈ R : (f ′
−(x, d) + εq) ∈ − intR2

+} ∩ T(x, S)/= ∅.
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