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Evolutionary computation algorithms have recently been explored to extract features and applied to face recognition. However
these methods have high space complexity and thus are not efficient or even impossible to be directly applied to real world
applications such as face recognition where the data have very high dimensionality or very large scale. In this paper, we propose a
new evolutionary approach to extracting discriminant features with low space complexity and high search efficiency. The proposed
approach is further improved by using the bagging technique. Compared with the conventional subspace analysis methods such as
PCA and LDA, the proposed methods can automatically select the dimensionality of feature space from the classification viewpoint.
We have evaluated the proposed methods in comparison with some state-of-the-art methods using the ORL and AR face databases.
The experimental results demonstrated that the proposed approach can successfully reduce the space complexity and enhance the
recognition performance. In addition, the proposed approach provides an effective way to investigate the discriminative power of
different feature subspaces.
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1. Introduction

Biometrics has become a promising technique for personal
authentication. It recognizes persons based on various traits,
such as face, fingerprint, palmprint, voice, and gait. Most
biometric systems use the images of those traits as inputs
[1]. For example, 2D face recognition systems capture facial
images from persons and then recognize them. However,
there are many challenges in implementing a real-world face
recognition system [2–4]. A well-known challenge is the
“curse of dimensionality,” which is also a general problem
in pattern recognition [5]. It refers to the fact that as
the dimension of data increases, the number of samples
required for estimating the accurate representation of the
data grows exponentially. Usually, the spatial resolution of
a face image is at least hundreds of pixels and usually
will be tens of thousands. From the statistical viewpoint,
it will require tens of thousands of face samples to deal
with the face recognition problem. However, it is often
very difficult, even impossible, to collect so many samples.
The dimensionality reduction techniques, including feature

selection and extraction, are therefore widely used in face
recognition systems to solve or alleviate this problem. In this
paper, we will present a novel evolutionary computation-
based approach to dimensionality reduction.

The necessity of applying feature extraction and selec-
tion before classification has been well demonstrated by
researchers in the realm of pattern recognition [5, 6]. The
original data are often contaminated by noise or contain
much redundant information. Direct analysis on them
could then be biased and result in unsatisfied classification
accuracy. On the other hand, the raw data are usually
of very high dimensionality. Not only does this lead to
expensive computational cost but also causes the “curse
of dimensionality.” This may lead to poor performance in
applications such as face recognition.

Feature extraction and selection are slightly different.
Feature selection seeks for a subset of the original features.
It does not transform the features but prunes some of them.
Feature extraction, on the other hand, tries to acquire a
new feature subset to represent the data by transforming
the original data. Mathematically, given an n × N sample
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Figure 1: Linear feature extraction: from the subspace viewpoint.

matrix X = [x1x2 · · · xN ] (n is the original dimension of
samples, and N is the number of samples), a linear feature
extraction algorithm could use an n × m transform matrix
W to transform the data as Y = WTX = [y1y2 · · · yN ],
where “T” is the transpose operator. Here, 0 < m � n is
the dimension of the transformed feature subspace. Figure 1
illustrates this process. Suppose that the original data lie in
the n-dimensional spaceV0. Feature extraction is then to find
out one of its subspaces which has the best discriminability
and is called feature subspace, say the m-dimensional space
V1. In linear cases, an optimal projection basis of the feature
subspace, {w1,w2, . . . ,wm ∈ Rn}, can be calculated such that
certain criterion is optimized. These basis vectors compose
the column vectors in the transform matrix W .

Feature extraction is essentially a kind of optimization
problem, and several criteria have been proposed to steer
the optimization, for example, minimizing reconstruction
error, maximizing reserved variance while reducing redun-
dancy, and minimizing the within-class scatterance while
maximizing the between-class scatterance, and so forth.
Using such criteria, many feature extraction algorithms have
been developed. Two well-known examples are Principal
Component Analysis (PCA) [7] and Linear Discriminant
Analysis (LDA) [5]. They represent two categories of sub-
space feature extraction methods [8] that are widely used in
face recognition [3, 9–17]. In the context of face recognition,
various feature subspaces have been studied [16, 17], for
example, the range space of Sb and the null space of Sw.
Here, Sb and Sw are the between-class and within-class scatter
matrixes, defined as Sb = (1/N)

∑L
j=1 Nj(Mj − M)(Mj −

M)T and Sw = (1/N)
∑L

j=1

∑
i∈I j (xi −Mj)(xi −Mj)

T , where

M = ∑N
i=1 xi/N is the mean of all the N training samples,

and Mj =
∑

i∈I j xi/Nj is the mean of samples in the jth
class ( j = 1, 2, . . . ,L). A significant issue involved in these
methods is how to determine m, that is, the dimension of
the feature subspace. Unfortunately, neither PCA nor LDA
gives systematic ways to determine the optimal dimension in
the sense of classification accuracy. Currently, people usually
choose the dimension by experience [9, 10, 18]. For example,
the dimensionality of PCA-transformed space is set to 20
or 30 or (N − 1), where “N” is the number of samples,
and the dimensionality of LDA-transformed space is set to
(L − 1), where “L” is the number of classes. However, such
method does not necessarily guarantee the best classification
performance as we will show in our experiments. In addition,
it is impractical or too expensive to search the whole solution

space blindly in real applications such as face recognition
because of the very high dimensionality of the original data.

Recently, some researchers [18–32] have explored the
use of evolutionary computation (EC) methods [28] for
feature selection and extraction. In these methods, the
solution space is searched in guided random way, and
the dimensionality of the feature subspace is automatically
determined. Although these methods successfully avoid the
manual selection of feature subspace dimensionality and
good results have been reported on both synthetic and real-
world datasets, most of them have very high space complexity
and are often not applicable for high dimensional or large
scale datasets [29]. In this paper, by using genetic algorithms
(GA) [30], we will propose an evolutionary approach to
extracting discriminant features for classification, namely,
evolutionary discriminant feature extraction (EDFE). The
EDFE algorithm has low space complexity and high search
efficiency. We will further improve it by using the bagging
technique. Comprehensive face recognition experiments
have been performed on the ORL and AR face databases.
The experimental results demonstrated the success of the
proposed algorithms in reducing the space complexity and
enhancing the recognition performance. In addition, the
proposed method provides a way to experimentally compare
the discriminability of different subspaces. This will benefit
both researchers and engineers in analyzing and determining
the best feature subspaces.

The rest of this paper is organized as follows. Sections
2 and 3 introduce in detail the proposed EDFE and bagging
EDFE (BEDFE) algorithms. Section 4 shows the face recogni-
tion experimental results on the ORL and AR face databases.
Section 5 gives some discussion on the relation between the
proposed approach and relevant methods. Finally, Section 6
concludes the paper.

2. Evolutionary Discriminant
Feature Extraction (EDFE)

This section presents the proposed EDFE algorithm, which is
based on GA and subspace analysis. Algorithm 1 shows the
procedures of EDFE.

2.1. Data Preprocessing: Centralization and Whitening. All
the data are firstly preprocessed by centralization, that is, the
total mean is subtracted from them:

xi = xi −M, i = 1, 2, . . . ,N. (1)

The centralization applies a translational transformation to
the data so that their mean is moved to the origin. This helps
to simplify subsequent processing without loss of accuracy.

Generally, the components of data could span various
ranges of values and could be of high order of magnitude. If
we calculate distance-based measures like scatterance directly
on the data, the resulting values can be of various orders of
magnitude. As a result, it will be difficult to combine such
measures with others. This is particularly serious in defining
fitness for GA-based methods. Therefore, we further whiten
the centralized data to normalize their variance to unity.
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Step 1.
Preprocess the data using whitened principal component analysis (WPCA).

- Centralization
- Whitening

Step 2.
Calculate a search space for the genetic algorithm (GA).

- For example, the null space of Sw and the range space of Sb
- Heuristic knowledge can be used in defining search spaces

Step 3.
Use GA to search for an optimal projection basis in the search space defined in Step 2.
3.1. Randomly generate a population of candidate projection bases.
3.2. Evaluate all individuals in the population using a predefined fitness function.
3.3. Generate a new population using selection, crossover and mutation according to the

fitness of current individuals.
3.4. If the stopping criterion is met, retrieve the optimal projection basis from the fittest

individual and proceed to Step 4; otherwise, go back to 3.2 to repeat the evolution loop.
Step 4.
Use a classifier to classify new samples in the feature subspace obtained in Step 3.

- For example, Nearest Mean Classifier (NMC)

Algorithm 1: Procedures of the proposed EDFE algorithm.

This is done by the eigenvalue decomposition (EVD) on the
covariance matrix of data. Let λ1 ≥ λ2 ≥ · · · ≥ λn(≥ 0)
be the eigenvalues of St = (1/N)

∑N
i=1(xi −M)(xi −M)T and

α1,α2, . . . ,αn the corresponding eigenvectors. The whitening
transformation matrix is then

WWPCA =
[

α1√
λ1

α2√
λ2
· · · αN−1√

λN−1

]

. (2)

Here, we set the dimensionality of the whitened space to
(N−1), the rank of the covariance matrix. This means that we
keep all the directions with nonzero variances, which ensures
that no potential discriminative information is discarded
from the data in whitening. Let X and X̃ be the centralized
and whitened data, then we have

X̃ =WT
WPCAX. (3)

It can be easily proven that S̃t = (1/N)X̃X̃T = IN−1,
where IN−1 is the (N − 1) dimensional identity matrix. In
addition to normalizing the data variance, this whitening
process also decorrelates the data components. For simplic-
ity, we denote the preprocessed data in the whitened space
still by X , omitting the tildes.

2.2. Calculating the Constrained Search Space. Unlike existing
GA-based feature extraction algorithms, the proposed EDFE
algorithm imposes some constraints on the search space so
that the GA can search more efficiently in the constrained
space. This idea originates from the fact that guided search,
given correct guidance, is always better than blind search. It
is widely accepted that heuristic knowledge, if properly used,
could significantly improve the performance of systems.
Keeping this in mind, we combine the EDFE algorithm with
a scheme of constraining the search space as follows.

According to the Fisher criterion

WLDA = arg max
W

{

JLDA(W) = WTSbW

WTSwW

}

, (4)

the most discriminative directions are most probably lying
in the subspaces generated from Sw and Sb. Researchers
[16, 17] have investigated the null space of Sw, denoted by
null(Sw), and the range space of Sb, denoted by range(Sb),
using analytical methods. It can be proved that the solution
to (4) lies in these subspaces. We will use the EDFE algorithm
to search for discriminant projection directions in null(Sw),
range(Sw), and range(Sb), respectively, and compare their
discriminability in recognizing faces. In this section, we
present a method to calculate these three spaces. If some
other subspace is considered, it is only needed to take its basis
as the original basis of the search space.

Before proceeding to the detailed method of calculating
the basis for null(Sw), range(Sw), and range(Sb), we first give
the definitions of these three subspaces as follows

null(Sw) = {v | Swv = 0, Sw ∈ Rn×n, v ∈ Rn
}

, (5)

range(Sw) = {v | Swv /= 0, Sw ∈ Rn×n, v ∈ Rn
}

, (6)

range(Sb) = {v | Sbv /= 0, Sb ∈ Rn×n, v ∈ Rn
}
. (7)

According to the definitions of Sw and Sb, the ranks of them
are, respectively,

rank(Sw) = min{n,N − L}, rank(Sb) = min{n,L− 1}.
(8)

These ranks determine the numbers of vectors in the bases
of range(Sw), null(Sw), and range(Sb). Next, we introduce an
efficient method to calculate the basis.

To get a basis of range(Sw), we use the EVD again.
However, in real applications of image recognition, the
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dimensionality of data, n, is often very high. This makes
it computationally infeasible to conduct EVD directly on
Sw ∈ Rn×n. Instead, we calculate the eigenvectors of Sw from
another N ×N matrix S′w [9]. Let

Hw = [x1x2 · · · xN ] ∈ Rn×N , (9)

then

Sw = 1
N
HwH

T
w . (10)

Note that the data have already been centralized and
whitened. Let

S′w =
1
N
HT

wHw, (11)

and suppose (λ,α′) to be an eigenvalue and the associated
eigenvector of S′w, that is,

S′wα
′ = λα′. (12)

Substituting (7) into (8) gives

1
N
HT

wHwα
′ = λα′. (13)

Multiplying both sides of (9) with Hw, we have

1
N
HwH

T
wHwα

′ = λHwα
′. (14)

With (10) and (6), there is

Sw · (Hwα
′) = λ · (Hwα

′), (15)

which proves that (λ,Hwα′) are the eigenvalue and eigenvec-
tor of Sw. Therefore, we first calculate the rank(Sw) dominant
eigenvectors of S′w, (α′1,α′2, . . . ,α′rank(Sw)), which have largest
positive associated eigenvalues. A basis of range(Sw) is then
given by

Brange(Sw) = {αi = Hwα
′
i | i = 1, 2, . . . , rank(Sw)

}
. (16)

The basis of range(Sb) can be calculated in a similar way.
Suppose that the N column vectors of Hb ∈ Rn×N consist of
Mj ( j = 1, 2, . . . ,L) with Nj entries, then Sb = (1/N)HbH

T
b .

Let S′b = (1/N)HT
b Hb and {β′i | i = 1, 2, . . . , rank(Sb)} be

its rank(Sb) dominant eigenvectors. The basis of range(Sb) is
then

Brange(Sb) = {βi = Hbβ
′
i | i = 1, 2, . . . , rank(Sb)

}
. (17)

Based on the basis of range(Sw), it is easy to get the basis
of null(Sw) through calculating the orthogonal complement
space of range(Sw).

2.3. Searching: An Evolutionary Approach

2.3.1. Encoding Individuals. Binary individuals are widely
used owing to their simplicity; however, the specific def-
inition is problem dependent. As for feature extraction,

a1 b1 b2 bn−1ana2

Coefficients Selection bits

··· ···

Figure 2: The individual defined in EDFE. Each coefficient is
represented by 11 bits.

it depends on how the projection basis is constructed.
The construction of projection basis vectors is to generate
candidate transformation matrixes for the GA algorithm.
Usually, the whole set of candidate projection basis vectors
are encoded in an individual. This is the reason why the
space complexity of existing GA-based feature extraction
algorithms is so high. For example, in EP [18], one individual
has (5n2−4n) bits, where n is the dimensionality of the search
space. In order to reduce the space complexity and make
the algorithm more applicable for high dimensional data, we
propose to construct projection basis vectors using the linear
combination of the basis of search space and the orthogonal
complement technique. As a result, only one vector is needed
to encode for each individual.

First, we generate one vector via linearly combining the
basis of the search space. Suppose that the search space is Rn

and let {ei ∈ Rn | i = 1, 2, . . . ,n} be a basis of it, and let {ai ∈
R | i = 1, 2, . . . ,n} be the linear combination coefficients.
Then we can have a vector as follows:

v =
n∑

i=1

aiei. (18)

Second, we calculate a basis of the orthogonal complement
space in Rn of V = span{v}, the space expanded by v. Let
{ui ∈ Rn | i = 1, 2, . . . ,n − 1} be the basis, and U =
span{u1,u2, . . . ,un−1}, then

Rn = V ⊕U , (19)

where “⊕” represents the direct sum of vector spaces, and

U = V⊥, (20)

where “⊥” denotes the orthogonal complement space.
Finally, we randomly choose part of this basis as the
projection basis vectors.

According to the above method of generating projection
basis vectors, the information encoded in an individual
includes the n combination coefficients and (n− 1) selection
bits. Each coefficient is represented by 11 bits with the
leftmost bit denoting its sign (“0” means negative and “1”
positive) and the remaining 10 bits representing its value as a
binary decimal. Figure 2 shows such an individual, in which
the selection bits b1, b2, . . . , bn−1, taking a value of “0” or “1,”
indicate whether the corresponding basis vector is chosen
as a projection basis vector or not. The individual under
such definition has (12n − 1) bits. Apparently, it is much
shorter than that by existing GA-based feature extraction
algorithms (such as EP), and consequently the proposed
EDFE algorithm has a much lower space complexity.
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2.3.2. Evaluating Individuals. We evaluate individuals from
two perspectives, pattern recognition and machine learning.
Our ultimate goal is to accurately classify data. Therefore,
from the perspective of pattern recognition, an obvious
measure is the classification accuracy in the obtained feature
subspace. In fact, almost all existing GA-based feature extrac-
tion algorithms use this measure in their fitness functions.
They calculate this measure based on the training samples or
a subset of them. However, after preprocessing the data using
WPCA, the classification accuracy on the training samples
is always almost 100%. In [26], Zheng et al. also pointed
this out when they used PCA to process the training data.
They then simply ignored its role in evaluating individuals.
Different from their method, we keep this classification term
in the fitness function but use a validation set, instead
of the training set. Specifically, we randomly choose from
the Nva samples to create a validation set Ωva and use the
remaining Ntr = (N − L × Nva) samples as the training
set Ωtr. Assume that Nc

va(D) samples in the validation set
are correctly classified in the feature subspace defined by
the individual D on the training set Ωtr; the classification
accuracy term for this individual is then defined as

ζa(D) = Nc
va(D)
Nva

. (21)

From the machine learning perspective, the general-
ization ability is an important index of machine learning
systems. In previous methods, the between-class scatter is
widely used in fitness functions. However, according to the
Fisher criterion, it is better to simultaneously minimize the
within-class scatter and maximize the between-class scatter.
Thus, we use the following between-class and within-class
scatter distances of samples in the feature subspace:

db(D) = 1
N

L∑

j=1

Nj

(
Mj −M

)T(
Mj −M

)
,

dw(D) = 1
L

L∑

j=1

1
Nj

∑

i∈I j
(yi −Mj)

T
(
yi −Mj

)
(22)

to measure the generalization ability as

ζg(D) = db(D)− dw(D). (23)

Here, M and Mj , j = 1, 2, . . . ,L, are calculated based on {yi |
i = 1, 2, . . . ,N} in the feature subspace.

Finally we define the fitness function as the weighted sum
of the above two terms:

ζ(D) = πaζa(D) + (1− πa)ζg(D), (24)

where πa ∈ [0, 1] is the weight. The accuracy term ζa in this
fitness function lies in interval [0, 1]. Thus, it is reasonable to
make the value of the second generalization term ζg be of a
similar magnitude order to ζa. This verifies the motivation of
data preprocessing by centralizing and whitening.

2.3.3. Generating New Individuals. To generate new indi-
viduals from the current generation, we use three genetic

operators, selection, crossover, and mutation. The selection
is based on the relative fitness of individuals. Specifically, the
ratio of the fitness of an individual to the total fitness of
the population determines how many times the individual
will be selected as parent individuals. After evaluating all
individuals in the current population, we select (S− 1) pairs
of parent individuals from them, where S is the size of the
GA population. Then the population of the next generation
consists of the individual with the highest fitness in the
current generation and the (S−1) new individuals generated
from these parent individuals.

The crossover operator is conducted under a given
probability. If two parent individuals are not subjected to
crossover, the one having higher fitness will be chosen into
the next generation. Otherwise, two crossover points are
randomly chosen, one of which is within the coefficient
bits and the other is within the selection bits. These two
points divide both parent individuals into three parts, and
the second part is then exchanged between them to form
two new individuals, one of which is randomly chosen as an
individual in the next generation.

At last, each bit in the (S−1) new individuals is subjected
to mutation from “0” to “1” or reversely under a specific
probability. After applying all the three genetic operators, we
have a new population for the next GA iteration.

2.3.4. Imposing Constraints on Searching. As discussed be-
fore, to further improve the search efficiency and the
performance of the obtained projection basis vectors, some
constraints are necessary for the search space. Thanks to the
linear combination mechanism used by the proposed EDFE
algorithm, it is very easy to force the GA to search in a
constrained space. Our method is to construct vectors by
linearly combining the basis of the constrained search space,
instead of the original space. Take null(Sw), the null space
of Sw, as an example. Suppose that we want to constrain the
GA to search in null(Sw). Let {αi ∈ Rn | i = 1, 2, . . . ,m}
be the eigenvectors of Sw associated with zero eigenvalues.
They form a basis of null(Sw). After obtaining a vector v
via linearly combining the above basis, we have to calculate
the basis of the orthogonal complement space of V =
span{v} in the constrained search space null(Sw), but not
the original space Rn (referring to Section 2.1). For this
purpose, we first calculate the isomorphic space of V in Rm,
denoted by V̂ = span{PTv}, where P = [α1α2 · · ·αm] is
an isomorphic mapping. We then calculate a basis of the

orthogonal complement space of V̂ in Rm. Let {β̂i ∈ Rm |
i = 1, 2, . . . ,m − 1} be the obtained basis. Finally, we map

this basis back into null(Sw) through {βi = Pβ̂i ∈ Rn | i =
1, 2, . . . ,m− 1}.

The following theorem demonstrates that {βi | i =
1, 2, . . . ,m − 1} comprise a basis of the orthogonal comple-
ment space of V in null(Sw).

Theorem 1. Assume that A ⊂ Rn is an m-dimensional space,
and P = [α1α2 · · ·αm] is an identity orthogonal basis of A,
where αi ∈ Rn, i = 1, 2, . . . ,m. For any v ∈ A, suppose that

V̂ = span{PTv} ⊂ Rm. Let {β̂i ∈ Rm | i = 1, 2, . . . ,m − 1}
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be an identity orthogonal basis of the orthogonally complement

space of V̂ in Rm, then {βi = Pβ̂i ∈ Rn | i = 1, 2, . . . ,m− 1} is
a basis of the orthogonally complement space of V = span{v}
in A.

Proof. See Appendix 6.

3. Bagging EDFE

The EDFE algorithm proposed above is very applicable to
high-dimensional data because of its low space complexity.
However, since it is based on the idea of subspace methods
like LDA, it could suffer from the outlier and over-fitting
problems when the training set is large. Moreover, when
there are many training samples, the null(Sw) becomes small,
resulting in poor discrimination performance in the space.
Wang and Tang [33] proposed to solve this problem using
two random sampling techniques, random subspace and
bagging. To improve the performance of the EDFE algorithm
on large scale datasets, we propose to incorporate the bagging
technique into the EDFE algorithm and hence develop
the bagging evolutionary discriminant feature extraction
(BEDFE) algorithm.

Bagging (acronym for Bootstrap AGGregatING), pro-
posed by Breiman [34], uses resampling to generate several
random subsets (called random bootstrap replicates) from
the whole training set. From each replicate, one classifier is
constructed. The results by these classifiers are integrated
using some fusion scheme to give the final result. Since
these classifiers are trained from relatively small bootstrap
replicates, the outlier and over-fitting problems for them are
expected to be alleviated. In addition, the stability of the
overall classifier system can be improved by integration of
several (weak) classifiers.

Like Wang and Tang’s method, we randomly choose some
classes from all the classes in the training set. The training
samples belonging to these classes compose a bootstrap
replicate. Usually, the unchosen samples become useless in
the learning process. Instead, we do not overlook these
data, but rather use them for validation and calculate the
classification accuracy term in the fitness function. Below are
the primary steps of the BEDFE algorithm.

(1) Preprocess the data using centralizing and whitening.

(2) Randomly choose some classes, say L̂ classes, from
all the L classes in the training set. The samples
belonging to the L̂ classes compose a bootstrap
replicate used for training, and those belonging to
the other (L − L̂) classes are used for validation.
Totally, K replicates are created (different replicates
could have different classes).

(3) Run the EDFE algorithm on each replicate to learn
a feature subspace. In all, K feature subspaces are
obtained.

(4) Classify each new sample using a classifier in the
K feature subspaces, respectively. The resulting K
results are combined by a fusion scheme to give the
final result.

There are two key steps in the BEDFE algorithm: how to
do validation and classification, and how to fuse the results
from different replicates. In the following we present our
solutions to these two problems.

3.1. Validation and Classification. As shown above, a training
replicate is created from the chosen L̂ classes. Based on this
training replicate, an individual in the EDFE population
generates a candidate projection basis of feature subspace.
All the samples in the training replicate are projected into
this feature subspace. The generalization term in the fitness
function is then calculated from these projections. To obtain
the value of the classification accuracy term, we again
randomly choose some samples from all the samples of each
class in the (L − L̂) validation classes to form the validation
set. We then project the remaining samples in these classes to
the feature subspace and calculate the mean as the prototype
for each validation class according to the projections. Finally,
the chosen samples are classified based on these prototypes
using a classifier. The classification rate is used as the value of
the classification accuracy term in the fitness function.

After running the EDFE algorithm on all the replicates,
we get K feature subspaces as well as one projection basis
for each of them. For each feature subspace, all the training
samples (including the samples in training replicates and
validation classes) are projected into the feature subspace,
and the means of all classes are calculated as the prototypes
of them. To classify a new sample, we first classify it in each of
the K feature subspaces based on the class prototypes in that
space and then fuse the K results to give the final decision,
which is introduced in the following part.

3.2. The Majority Voting Fusion Scheme. A number of fusion
schemes [35, 36] have been proposed in literature of multiple
classifiers and information fusion. In the present paper,
we only focus on Majority Voting for its intuitiveness and
simplicity. Let {Mk

j ∈ Rlk | j = 1, 2, . . . ,L; k = 1, 2, . . . ,K}
be the prototype of class j in the kth feature subspace,
whose dimensionality is lk. Given a new sample (represented
as a vector), we first preprocess it by centralization and
whitening; that is, the mean of all the training samples is
subtracted from it, and the resulting vector is projected into
the whitened PCA space learned from the training samples.
Denote by xt the preprocessed sample. It is projected into
each of the K feature subspaces, resulting in ykt in the kth
feature subspace, and classified in these feature subspaces,
respectively. Finally, the Majority Voting scheme is employed
to fuse the classification results obtained in the K feature
subspaces.

Majority Voting is one of the simplest and most popular
classifier fusion schemes. Take the Nearest Mean Classifier
(NMC) and the kth feature subspace as an example. The
NMC assigns xt to the class ck ∈ {1, 2, . . . ,L} such that

∥
∥
∥ykt −Mk

ck

∥
∥
∥ = min

j∈{1,2,...,L}

∥
∥
∥ykt −Mk

j

∥
∥
∥. (25)

In other words, it votes for the class whose prototype
is closest to ykt . After classifying xt in all the K feature
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Table 1: General information and settings of the used databases.

Database Sub number Size number Image/Sub number Train number Validation number Test number

ORL 40 92× 112 10 4(2) 1(3) 5

AR 120 80× 100 14 6(3) 1(4) 7
a

From the first column to the last column: the name of the database, the number of subjects, the size of images, the number of images per subject, the number
of training samples per subject, the number of validation samples per subject, and the number of test samples per subject.
bThe numbers in parentheses are the numbers of samples per validation subject used by BEDFE to calculate the class prototypes and to evaluate the training
performance.

subspaces, we get K results {ck | k = 1, 2, . . . ,K}. Let Votes(i)
be the number of votes obtained by class i, that is,

Votes(i) = #
{
ck = i | k = 1, 2, . . . ,K

}
, (26)

where “#” denotes the cardinality of a set. The final class label
of xt is determined to be c if

Votes(c) = max
i∈{1,2,...,L}

Votes(i). (27)

4. Face Recognition Experiments

Face recognition experiments have been performed on the
ORL and AR face databases. Due to the high dimensionality
of the data, conventional GA-based feature extraction meth-
ods like EP [18] and EDA [37] cannot be directly applied
to these two databases unless reducing the dimensionality
in advance. By contraries, the EDFE and BEDFE algorithms
proposed in this paper can still work very well with them.
As an application of the algorithms, we will use them to
investigate the discriminative ability of the three subspaces,
null(Sw), range(Sw), and range(Sb). We will experimen-
tally demonstrate the necessity of carefully choosing the
dimension of feature subspace. Finally, we will compare the
proposed algorithms with some state-of-the-art methods in
the literature, that is, Eigenfaces [9], Fisherfaces [10], Null-
space LDA [16], EP [18], and EDA+Full-space LDA [32].

4.1. The Face Databases and Parameter Settings. The ORL
database of faces [38] contains 400 face images of 40 distinct
subjects. Each subject has 10 different images, which were
taken at different times. These face images have variant
lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). They also
display slight pose changes. The size of each image is 92 ×
112 pixels, with 256 gray levels per pixel. The AR face
database [39] has much larger scale than the ORL database.
It has over 4000 color images of 126 people (70 men
and 56 women), which have different facial expressions,
illumination conditions, and occlusions (wearing sun-glasses
and scarf). In our experiments, we randomly chose some
images of 120 subjects and discarded the samples of wearing
sun-glasses and scarf. In the resulting dataset, there are 14
face images for each chosen subject, totally 1680 images. All
these images were converted to gray scale images, and the
face portion on them was manually cropped and resized
to 80 × 100 pixels. For both databases, all images were
preprocessed by histogram equalization. Table 1 lists some

(a)

(b)

Figure 3: Some sample images in the (a) ORL and (b) AR face
databases.

general information of the two databases, and Figure 3 shows
some sample images of them.

In the GA algorithm, we set the probability of crossover
to 0.8, the probability of mutation to 0.01, the size of
population to 50, and the number of generations to 100. For
the weight of the classification accuracy term in the fitness
function, we considered the following choices for EDFE:
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. After finding
the weight which gives the best classification accuracy for a
dataset, we adopted it in BEDFE on the dataset. Regarding
the number of bagging replicates in BEDFE, we conducted
experiments for four cases, that is, using 3, 5, 7, and 9
replicates, and then chose the best one among them. The
results will be presented in the following parts.

To create an evaluation face image set, all the sample
images in each database were randomly divided into three
parts: the training set, the validation set, and the test set.
In the experiments on the ORL database, four images were
randomly chosen from the samples of each subject for
training, one image for validation and the remaining five
images for test. In the experiments on the AR database, six
images were randomly chosen for training from the samples
of each subject, one image for validation, and the rest seven
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Table 2: Recognition accuracy of EDFE in different subspaces.

Database Null(Sw) Range(Sw) Range(Sb)

ORL 90.3% 78.1% 79.5%

AR 95.33% 80.95% 81.67%

Table 3: Recognition accuracy of BEDFE in different subspaces.

Database Null(Sw) Range(Sw) Range(Sb)

ORL 91.3% 80.02% 81.14%

AR 96.86% 83.1% 83.38%

Table 4: The mean and standard deviation of recognition accuracy
(%) of the proposed EDFE and BEDFE methods and some other
state-of-the-art methods on the ORL and AR face databases.

Method ORL face database AR face database

Eigenfaces 90.15± 3.2 82.68± 0.9

Fisherfaces 91.6± 1.51 96.99± 0.7

Null-space LDA 89.75± 1.21 96.71± 0.59

EP 80.31± 3.5 N/A

EDA+Full-space LDA 92.5± 2.1 97.02± 0.8

EDFE+Full-space(Sw) 93± 1.8 97.9± 0.7

BEDFE+Full-space(Sw) 95.5± 1.12 98.55± 0.46

images for test. For the methods Eigenfaces, Fisherfaces,
Null-space LDA, and EP, no validation set is required. Thus
we combined the training images and validation images
to form the training set for them. The case was a little
bit different for the experiments with BEDFE, where the
division of samples is on the class level (each subject is
a class). Specifically, we first randomly chose five (seven)
images from each subject to compose the test set of the ORL
(AR) database. Among the remaining images, a subset of
classes was randomly chosen. The samples belonging to these
classes were used for training whereas those belonging to the
other classes composed the validation set. From each class
in the validation set, some samples were randomly chosen
to calculate the prototype of the class, and the remaining
ones were used for evaluation. On the ORL database, two
images of each validation class were randomly chosen for
class prototype calculation, and the other three images of
the class were used to evaluate the training performance. On
the AR database, three images were randomly chosen from
each validation class for computing the class prototype, and
the other four images of the class were used for training
performance evaluation. The last three columns in Table 1
summarize these settings.

Totally, we created 10 evaluation sets from each of the two
databases and ran algorithms over them one by one. We will
use the mean and standard deviation of recognition accuracy
over the 10 evaluation sets to evaluate the performance of
different methods. When applying EP to the ORL databases,
the dimensionality of the data should be reduced in advance
due to the high space complexity of EP. We reduced the data
to a dimension of the number of training samples minus one
using WPCA (note that the role of WPCA here is different

from that in the proposed EDFE algorithm). To evaluate the
performance of Eigenfaces on the databases, we tested all
possible dimensions of PCA-transformed subspace (between
1 andN−1) and found out the one with the best classification
accuracy. As for Fisherfaces, we set the dimension of PCA-
transformed subspace to the rank of St and tried all possible
dimensions of LDA-transformed subspace (between 1 and
L− 1).

4.2. Investigation on Different Subspaces. Three subspaces,
null(Sw), range(Sw), and range(Sb), are thought to contain
rich discriminative information within data [16, 17]. As
mentioned above, the algorithms proposed in this paper pro-
vide a method to constrain the search in a specific subspace.
Hence, we can restrict the algorithms to search for a solution
within that subspace. Here we report our experimental
results in investigating the above three subspaces using the
EDFE and BEDFE algorithms on the ORL and AR databases.

Table 2 shows the average recognition accuracy of EDFE
in the three different subspaces on the ten evaluation sets
of ORL and AR databases. The presented classification
accuracies are the best ones among those obtained using
different weights. On all the ten evaluation sets of both ORL
and AR databases, null(Sw) gives the best results, which are
significant better than the other two subspaces. On the other
hand, there is no big difference between the performance
of range(Sw) and range(Sb). This is not surprising because
in the null space of Sw, if exists, samples in the same class
will be condensed to one point. Then if a projection basis
in it can be found to make the samples of different classes
separable from each other, the classification performance
on these samples will be surely the best. However, for new
samples unseen in the training set, the classification accuracy
on them depends on the accuracy of the estimation of Sw.
Another problem with null(Sw) is that its dimensionality is
bounded by the minimum of the dimensionality of the data
and the difference between the number of samples and the
number of classes. Consequently, as the number of training
samples increases, this null space could become too small to
contain sufficient discriminant information. In this case, we
propose to incorporate the bagging technique to the EDFE
algorithm to enhance its performance. The results of BEDFE
are given in Table 3, from which similar conclusion can be
drawn.

4.3. Investigation on Dimensionality of Feature Subspaces.
In order to show the importance of carefully choosing
the dimensionality of feature subspaces, we calculated the
average recognition accuracy of Eigenfaces and Fisherfaces
on the ten evaluation sets taken from the ORL and AR face
databases when different numbers of features were chosen for
the feature subspaces. The possible dimension of the feature
subspace obtained by Eigenfaces on the ORL evaluation sets
is between 1 and 199 (i.e., the number of samples minus
one), whereas that on the AR evaluation sets is between 1 and
839. As for Fisherfaces, we set the dimension of PCA-reduced
feature subspace to 720 (i.e., the number of samples minus
the number of classes) and tested all the possible dimension
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Figure 4: The curves of the average recognition accuracy of (a) Eigenfaces and (b) Fisherfaces on the ORL face database versus the number
of features or the dimension of feature subspaces. (c) and (d) are the corresponding enlarged last parts of the curves.

of LDA-reduced feature subspace from 1 to 119 (i.e., the
number of classes minus one). According to the experimental
results, the overall trend of recognition accuracy is increasing
as the number of features (i.e., the dimension of feature
subspace) increases. However, the best accuracy is often
obtained not at the largest possible dimension (i.e., the
number of samples minus one in case of Eigenfaces and the
number of classes minus one in case of Fisherfaces). Figures
4 and 5 show the curves of the average recognition accuracy
of Eigenfaces and Fisherfaces on ORL and AR face databases
versus the dimension of feature subspaces (to clearly show
that the best accuracy is achieved not necessarily at the largest
possible dimension, we also display the last part of the curves
in an enlarged view). From these results, we can see that
the dimension at which the best recognition accuracy is
achieved varies with respect to the datasets. Therefore, using
a systematic method like the ones proposed in this paper to
automatically determine the dimension of feature subspaces
is very helpful to a subspace-based recognition system.

4.4. Performance Comparison. Finally, we compared the
proposed algorithms with some state-of-the-art methods in
literature, including Eigenfaces [9], Fisherfaces [10], Null-
space LDA [16], EP [18], and EDA+Full-space LDA [32].
Considering that both null(Sw) and range(Sw) have useful

discriminative information, we ran our proposed EDFE
and BEDFE methods in both null(Sw) and range(Sw) and
then employed the same fusion method used by [32] to
fuse the results obtained in these two subspaces. We called
them EDFE+Full-space(Sw) and BEDFE+Full-space(Sw). We
implemented these methods by using Matlab and evaluated
their performance on the ten evaluation sets of ORL and
AR face databases. But as for the EP method, it is too
computationally complex to be applicable (N/A) on the AR
face database (in Matlab an error of ‘out of memory’ will
be reported to the EP method). We calculated the mean
and standard deviation of the recognition rates for all the
methods. The results are listed in Table 4 (the results of
Eigenfaces and Fisherfaces are according to the best results
obtained in the last subsection).

It can be seen from the results that the proposed
EDFE and BEDFE methods overwhelm their counterpart
methods in the average recognition accuracy. Moreover, by
using the bagging technique, the BEDFE method performs
much more stable than EDFE, and it has the smallest
deviation of recognition accuracy among all the methods.
A possible reason for such improvement on the stability
is that by using smaller training sets and multiple feature
subspace fusion, the outlier and over-fitting problems of
conventional machine learning and pattern recognition
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Figure 5: The curves of the average recognition accuracy of (a) Eigenfaces and (b) Fisherfaces on the AR face database versus the number of
features or the dimension of feature subspaces. (c) and (d) are the corresponding enlarged last parts of the curves.

systems could be alleviated. Moreover, the improvement
on recognition accuracy made by the proposed EDFE and
BEDFE compared with the other methods could be due to
their better generalization ability. In Eigenfaces, Fisherfaces,
Null-space LDA, and EDA+Full-space LDA, the projection
basis used for dimension reduction is directly calculated
from certain covariance or scatter matrix of the training
data. Instead, the methods proposed in this paper begin
the search of optimal projection basis from these directly
calculated ones and iteratively approach the best one via the
linear combination of them. The linear combination not only
ensures that the resulting projection basis still lies in the
feature subspace but also enhances the generalization ability
of the obtained projection basis by adjusting them according
to the recognition accuracy on some validation data.

5. Discussion

In the proposed EDFE and BEDFE algorithms, we take the
classification accuracy term as a part of the fitness function of
the GA. It is then naturally optimized as the GA population
evolves. Unlike existing evolutionary computation-based
feature extraction methods like EP [18], we define this term
on a randomly chosen validation sample set, but not the
training set. Since the validation set’s role is to simulate

new test samples, the performance of the resulting feature
subspace is supposed to be more reliable. We also set up a
Fisher criterion-like term as another part of the GA’s fitness
function and optimize it in an iterative way, avoiding the
matrix inverse operation required by the conventional LDA
method. As a result, the proposed algorithms could alleviate
the small sample size (SSS) problem of LDA.

Current PCA- and LDA-based subspace methods such as
Eigenfaces and Fisherfaces require setting the dimensionality
for the feature subspace in advance. They fail to provide sys-
tematic way to automatically determine the dimensionality
from the classification viewpoint. Since the optimal dimen-
sionality of feature subspace in terms of recognition rates
will vary across datasets, it is desired to select automatically
the optimal dimensionality for specific datasets, instead of
using a predefined one. The proposed EDFE and BEDFE
algorithms provide such a way by employing the stochastic
optimization scheme of GA.

Some other GA-based feature selection/extraction meth-
ods have been also proposed in literature. Although these
GA-based feature selection methods, such as EDA+Full-
space LDA [32], GA-PCA and GA-Fisher [26], have the
advantage in lower space and time requirement, they are
limited in the ability of searching discriminative features. On
the other hand, those GA-based feature extraction methods
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have high space complexity and are thus not applicable to
high dimensional and large scale datasets. For example, in
EP [18], an individual has (5n2 − 4n) bits. In the recently
proposed EDA algorithm [37], the individual has to encode
(n × m) weights, which are between −0.5 and 0.5 (here, n
is the dimension of the original data space, and m is the
dimension of the feature subspace). On the contrary, the
individual in the proposed algorithms has only (12n − 1)
bits (note that in face recognition applications, m is usually
much larger than 12 and a number of bits have to be used
to represent a decimal weight used by EDA). As a result, the
space complexity is significantly reduced in our proposed
methods. After incorporating the bagging technique with
the proposed EDFE algorithm, it becomes more stable by
eliminating possible outliers and fusing different feature
subspaces, and hence more suitable for high-dimensional
and large scale datasets.

Another problem with existing GA-based feature extrac-
tion methods lies in their blind search strategy. Using the
linear combination and orthogonal complement techniques,
the EDFE successfully provides a way to impose constraints
on the search space of GA. This also enables EDFE to
effectively make use of the heuristic information of the dis-
criminative feature subspace to improve its search efficiency
and classification performance. In addition, the proposed
algorithms make it possible to investigate the discriminative
ability of different feature subspaces.

6. Conclusions

In this paper, we proposed an evolutionary approach to
extracting discriminative features, namely, evolutionary dis-
criminant feature extraction (EDFE) as well as its bagging
version (BEDFE). The basic idea underlying the EDFE
algorithm is to use the genetic algorithm (GA) to search for
an optimal discriminative projection basis in a constrained
subspace with the goal of making the data in different clusters
much easier to be separated. The primary contribution of
this paper includes (1) reducing the space complexity of
GA-based feature extraction algorithms; (2) enhancing the
search efficiency, stability, as well as recognition accuracy;
(3) providing an effective way to investigate different feature
subspaces. Experiments on the ORL and AR databases have
been performed to validate the proposed methods.

There are still some issues worthy further study on the
proposed approach. Firstly, it is a supervised linear feature
extraction method. Therefore, how to extend it to nonlinear
cases deserves further study. Secondly, the latest progress in
the research on GA, for example, how to set up an initial
population and how to choose proper GA parameters, could
give us some useful hints on further improving the proposed
methods. Thirdly, more promising results could be obtained
by exploring other criteria to evaluate the feature subspaces
and incorporating them into the evolutionary approach,
for instance, those of recently proposed manifold learning
algorithms [40, 41]. Finally, it could be very interesting to
investigate the discriminability of other subspaces using the
proposed EDFE and BEDFE algorithms.

Appendix

Proof of Theorem 1

Proof. First it can be easily proved that for all i ∈
{1, 2, . . . ,m − 1}, βi ∈ A. Since βi = Pβ̂i =

∑m
j=1 βi jαj , βi

can be represented by a basis of A. Thus βi ∈ A.
Secondly, let us prove A = U ⊕ V , where U = span{β1,

β2, . . . ,βm−1}. This is to prove that {β1,β2, . . . ,βm−1, v} is a

linear independent bundle. Since βi = Pβ̂i and PTP = Em,
which is an m-dimensional identity matrix, we have βTi βj =
β̂Ti β̂ j . However, {β̂i | i = 1, 2, . . . ,m − 1} is an identity
orthogonal basis. Thus, β1,β2, . . . ,βm−1 are orthogonal to
each other.

Furthermore, for all i ∈ {1, 2, . . . ,m − 1}, βTi v =
(Pβ̂i)

Tv = β̂Ti P
Tv. Because {β̂i | i = 1, 2, . . . ,m − 1} is

an identity orthogonal basis of the orthogonal complement

space of V̂ = span{PTv} in Rm, β̂Ti (PTv) should be zero.
Therefore, βTi v = 0, that is, βi is also orthogonal to v.

To sum up, we get that {β1,β2, . . . ,βm−1, v} is a linear
independent bundle containing m orthogonal vectors in the
m dimensional space A. Thus A = U ⊕V .
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