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Abstract. Multiple reference frame motion estimation (MRF-ME) is
one of the most crucial tools in H.264/AVC to improve coding effi-
ciency. However, it disciplines an encoder by giving extra computa-
tional complexity. The required computation proportionally expands
when the number of reference frames used for motion estimation
increases. Aiming to reduce the computational complexity of the en-
coder, various motion vector (MV) composition algorithms for MRF-
ME have been proposed. However, these algorithms only perform
well in a limited range of reference frames. The performance deterio-
rates when motion vector composition is processed from the current
frame to a distant reference frame. In this paper, a reliable track-
ing mechanism for MV composition is proposed by utilizing only the
relevant areas in the target macroblock and taking different paths
through a novel selection process from a set of candidate motion
vectors. The proposed algorithm is especially suited for temporally
remote reference frames in MRF-ME. Experimental results show that
compared with the existing MV composition algorithms, the proposed
one can deliver a remarkable improvement on the rate-distortion per-
formance with similar computational complexity. © 2011 SPIE and IS&T.
[DOI: 10.1117/1.3605574]

1 Introduction
H.264/AVC is an international video coding standard jointly
developed by ITU-T Video Coding Experts Group and
ISO/IEC Moving Picture Experts Group.1, 2 The H.264/AVC
standard has dominated in the video coding standardization
community for the past several years. It has achieved a signif-
icant improvement in rate-distortion efficiency relative to all
previous video coding standards.3, 4 The coding gain mainly
comes from many of new sophisticated techniques such as
the integer transform, deblocking filtering, quarter-sample
accuracy for motion compensation, multiple reference frame
motion estimation (MRF-ME), etc.2, 5, 6

Motion estimation (ME) is a process to find a predic-
tion of pixels in the current frame from a reference frame,
and it is a key step of frame rate up-conversion7–10 and video
coding.11, 12 For frame rate up-conversion, the best prediction
is the one that results in the highest accuracy of motion trajec-

Paper 10209R received Dec. 2, 2010; revised manuscript received Apr. 13,
2011; accepted for publication Jun. 9, 2011; published online Jul. 14, 2011.

1017-9909/2011/20(3)/033003/14/$25.00 C© 2011 SPIE and IS&T

tories. Unlike frame rate up-conversion, ME in video coding
needs to find the best prediction with minimum residual en-
ergy instead of the true motion trajectory. The magnitude of
prediction errors, rather than the accuracy of motion trajec-
tories, is of the greatest importance for video coding. Among
various ME algorithms, the block matching algorithm is con-
sidered the most mature and practically useful one since its
implementation is simple.

The consideration of MRF-ME within the H.264 codec
plays a major role in delivering better coding gain.13 MRF-
ME allows the codec to predict a picture using more than one
reference picture for ME and compensation. It achieves more
accurate prediction and higher coding efficiency, especially
in the cases of uncovered backgrounds, repetitive motions,
highly textured areas, lighting changes, etc.3 A scenario of
MRF-ME using N reference frames is illustrated in Fig. 1. For
each block of the encoded frame, the motion vector (MV) is
obtained by searching all possible locations within the search
window in each reference frame. The optimal location in the
reference frame for the current block being encoded is located
by minimizing the Lagrangian cost function Jmotion

Jmotion (MV, λmotion )

= SAD(s, r ) + λmotion · Rmotion (MV − PMV), (1)

where PMV is the motion vector used for prediction, λmotion is
the Lagrangian multiplier for ME, Rmotion(MV − PMV) is the
estimated number of bits for coding MV, and SAD is the sum
of absolute differences between the original block s and its
reference block r. Adopting the full-search scheme in a frame-
by-frame manner of MRF-ME incurs a considerable compu-
tational complexity in the encoder. The increased complexity
is in proportion to the number of searched frames.14, 15 The
more number of reference frames the encoder uses, the more
demanding complexity it needs.

Various fast algorithms4, 6, 16–27 have been proposed
in the literature to reduce the computational complexity
caused by MRF-ME. These algorithms can be classified
into two categories. The first category is to employ early
termination in MRF-ME by the consideration of the specific
condition at a certain reference frame.6, 14, 15, 17–21 The con-
dition always depends on spatial and temporal correlation
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Fig. 1 ME with multiple reference frames.

in video sequences.16, 27 However, the early termination
approach might select an undesirable reference frame, and
the threshold value for early termination usually relies on
the characteristics of video sequences. In other words, more
reference frames are needed for sequences with fast motion
activities, resulting in increased computational complexity.
The performance of the early termination approach is,
therefore, dependent on the characteristics of the video
sequences.

The second category is to carry out ME with several can-
didate search points through MV composition for each ref-
erence frame.4, 22–27 This type of approach becomes one of
the popular solutions for complexity reduction since it can
be adaptively used in various video sequences and main-
tains coding efficiency. Different MV composition algo-
rithms have been introduced to reduce the computational
complexity in MRF-ME. In Refs. 23–25, MV composition
has adopted forward dominant vector selection (FDVS) for
vector selection criterion between frames, which is consid-
ered as one of the best methods in the MV composition
algorithms of MRF-ME. It reuses the stored MVs between
successive frames to synthesize the MVs of the second to
fifth reference frames, as shown in Fig. 1. Without perform-
ing the ME and computing Jmotion, its computational com-
plexity can be greatly reduced. The algorithms in Refs. 4
and 26 have further used a weighted average of the neigh-
boring MVs after MV composition by FDVS. In Ref. 27, the
median MV in neighboring blocks has also been suggested
for vector selection criterion in MV composition. They can
achieve the desirable coding efficiency in most cases. In the
circumstances of the long distance between the reference
and current frames, these MV composition techniques do not
work efficiently. The reason is that the new composed MVs
might no longer represent the moving contents of the current
macroblock (MB). As a result, prediction errors could not di-
minish as usual. In this case, the quality of the encoded videos
deteriorates.

In this paper, a more faithful algorithm to compose new
MVs has been proposed. The proposed algorithm is suitable
for the case when the temporal distance between the refer-
ence and current frames is large. The success of the proposed
method is based on examining the relevant area of the cur-
rent MB in MV composition. It also tracks several possible
candidates related to the current MB and selects the best can-
didate. The organization of this paper is as follows. In Sec. 2,
we discuss the impacts on the performance of existing MV
composition algorithms when the reference frame is tempo-

rally far away from the current frame. Section 3 describes
our proposed algorithm for MRF-ME. Simulation results are
evaluated in Sec. 4. Finally, some concluding remarks are
provided in Sec. 5.

2 Impact on the Accuracy of Motion Vectors
Composition in Multiple Reference Frame
Motion Estimation

For MV composition, the MVs between successive frames
are estimated by full-search motion estimation and are saved
in a buffer for composing MVs in other reference frames of
MRF-ME by means of various MV composition algorithms.
For the sake of discussion, Fig. 2 defines a number of terms
and notations for the rest of this paper. In Fig. 2, ref(i) is
the ith reference frame from the current frame, frame n, and
the number of searched reference frames, N, is equal to 5
in this example. Only four neighboring MBs within a frame
are illustrated, and MB k

n represents the kth MB in frame n.
The MV of MB k

n referencing to ref(i) is denoted by mvk
n→n−i .

Figure 3 then shows an example of using FDVS in MRF-ME.
Assume that N is equal to 3 in this example. To conduct MV
composition between frame n and the target reference frame,
ref(3), it is required to find the new MV of MB1

n to ref(3), i.e.,
mv1

n→n−3 in dotted arrow shown in Fig. 3(a). For every MB,
FDVS selects one dominant MV carried by a dominant MB
that has the largest overlapping segment with the motion-
compensated MB of MB1

n in the previous reference frame.
Considering the motion-compensated MB of MB1

n overlaps
with four MBs, MB1

n−1, MB2
n−1, MB3

n−1, and MB4
n−1, in

frame n − 1 of Fig. 3(a), MB3
n−1 is chosen as the dominant

MB while its MV, mv3
n−1→n−2, is selected as the dominant

MV. This dominant vector selection process is repeated until
the desired reference frame is reached, i.e.. Ref. 3 in this

Fig. 2 MV composition for ME.
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Fig. 3 FDVS in MRF-ME.

example. Here, mv1
n→n−3 is therefore composed by summing

up the selected dominant MVs across the in-between frames
and can be written as

mv1
n→n−3 = mv1

n→n−1 + mv3
n−1→n−2 + mv3

n−2→n−3. (2)

FDVS can provide promising results for MV composition
for MRF-ME.3, 4 However, in fast-motion video sequences,
the temporal distant reference frame is always used for MRF-
ME due to existence of the fast moving objects. FDVS does
not work well for this scenario. This phenomenon can be
explained as portrayed in Fig. 3(b), which is redrawn from
Fig. 3(a). In frame n − 1, MB3

n−1 is selected to be the dom-
inant MB and the corresponding mv3

n−1→n−2 is used to de-
termine the dominant MB in frame n − 2. It is observed that
only the shaded area of MB3

n−1 is actually relevant to target
MB, MB1

n . Nevertheless, FDVS also utilizes the irrelevant
nonshaded area in MB3

n−1 to compute the dominant MB in
frame n − 2. At the same time, the relevant area of MB1

n fur-
ther diminishes when far away reference frames are used. The
cross-hatch shaded area only occupies a very minor portion
of the dominant MB, MB3

n−2 as depicted in Fig. 3(b). It seri-
ously affects the accuracy of the composed MVs since a large
irrelevant area to the target MB is used to decide the domi-
nant MB in frame n − 3. Figure 4 then illustrates an example
of performing FDVS on the 288th MB extracted from the
201st frame of the “Mobile” sequence. FDVS composes the
new MV of this MB to ref(5), as depicted in Fig. 4(b). From
Fig. 4(b), it is clear that the relevant areas to the 288th MB

(indicated by the cross-hatch shaded areas) quickly diminish
throughout the whole FDVS process. It incurs the inaccu-
racy of the resultant composed MV, which is demonstrated in
Fig. 4(c). In Fig. 4(c), it is found that the resultant composed
MV, (−20,8), from FDVS is significantly deviated from the
MV obtained by full-search ME. It is mainly due to the use of
large irrelevant area for dominant vector selection in FDVS.

Tables 1–6 then show the percentage of MBs using dif-
ferent reference frames of FDVS and the full-search (FS)
algorithm in the case of N = 5. From Tables 1–6, the use
of the first and second reference frames dominates in FDVS
due to the low accuracy of the composed MVs in temporal
remote reference frames. On the other hand, FS exhibits a
different tendency. It is likely to use temporal remote ref-
erences as shown in Tables 1–6. The discrepancy between
FS and FDVS is more obvious for sequences with complex
motion activities such as Mobile and “Tempete.” It is be-
cause the relevant area of the target MB further lessens in far
away reference frames for these complex motion sequences.
Tables 1–6 also show the results of using the median (MED)
algorithm27 for vector composition, and this algorithm en-
counters the same situation under the circumstance of us-
ing temporal distant reference frames in MV composition
for MRF-ME. In other words, both FDVS and the median
algorithms could not achieve satisfactory performance in se-
quences with complex motion since it could not fully track
the relevant information for vector selections. Consequently,
the accuracy of composed results may deteriorate since
some irrelevant information is being contemplated for vector
selections.
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Fig. 4 Example from Mobile of MV composition by FDVS: (a) the 201st frame of Mobile, (b) diminishing relevant areas to 288th MB during
FDVS, and (c) the resultant composed MV of FDVS as compared to full-search.

3 Proposed Vector Selection Algorithm
To overcome the aforementioned drawback of the exist-
ing vector composition algorithms, we propose an efficient
vector composition algorithm for MRF-ME in which only

the relevant area to the target MB is contributed for domi-
nant vector selection, as illustrated in the example shown in
Fig. 5. Similar to the example of FDVS shown in Fig. 3(a),
MB3

n−1 is chosen as the dominant MB in the first MV

Table 1 Distributions of the final selected reference frame for various vector composition algorithms at QP20 for Mobile.

Reference frames FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

ref(1) 53.70% 71.33% 79.30% 64.68%

ref(2) 13.81% 12.26% 10.18% 12.47%

ref(3) 13.71% 7.46% 4.51% 10.03%

ref(4) 9.38% 5.24% 4.04% 7.06%

ref(5) 9.40% 3.71% 1.97% 5.76%
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Table 2 Distributions of the final selected reference frame for various vector composition algorithms at QP20 for Tempete.

Reference frames FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

ref(1) 53.18% 75.75% 84.18% 68.39%

ref(2) 15.90% 10.96% 7.90% 11.62%

ref(3) 16.00% 7.70% 4.51% 10.79%

ref(4) 8.20% 3.19% 2.12% 5.16%

ref(5) 6.72% 2.40% 1.30% 4.04%

composition step. In Fig. 5, it is found that only the shaded
area in MB3

n−1 is the relevant region to MB1
n . In the sec-

ond step of the proposed algorithm, only this shaded area is
used to select the next dominant MB in frame n − 2. By only
considering the relevant region to the target MB1

n , the pro-
posed vector selection algorithm is different from FDVS. For
instance, MB2

n−2 is selected as the dominant MB in frame
n − 2, which shows a different selection result in comparison
with the original FDVS, where MB3

n−2 is picked. In the last
step, only the cross-hatch shaded area in frame n − 2 is used
to determine the next dominant MB in frame n − 3. Conse-
quently, the resultant MV, mv1

n−1→n−3, is different from the
result obtained by using FDVS in Eq. (2), and can be formed
as

mv1
n→n−3 = mv1

n→n−1 + mv3
n−1→n−2 + mv2

n−2→n−3. (3)

The selection process of the proposed algorithm ensures
that only the relevant area of MB1

n is employed in MV com-
position. Since only the relevant area is used, the area for
determining the dominant MB becomes smaller. The situa-
tion is more serious after MV composition in a temporally
remote reference frame. As a consequence, it reduces the
reliability of the resultant MVs. To further improve their re-
liability, another contribution of the proposed algorithm is to
maintain the relevant area to the target MB as large as pos-
sible during MV composition. To do so, other nondominant
areas in the reference frames, but relevant to MB1

n , are also
taken into consideration to enhance the use of the relevant
area in MB1

n . Figure 6 demonstrates the proposed way of
enlarging the relevant area in MV composition by consider-
ing homogeneity of MVs within a moving object in a video
sequence. In the example shown in Fig. 6(a), assume that
mv1

n−1→n−2 is equal to mv3
n−1→n−2 in frame n − 1. In this

case, the shaded areas overlapped with MB1
n−1 and MB3

n−1
are combined, and the new combined area is for determining
the next dominant MB in frame n − 2 as depicted in Fig. 6(b).
By this merging process, the proposed algorithm could keep
the area relevant to the target MB as large as possible in
the MV composition process since homogeneity of MVs is
further considered. Then, the selected MB in frame n − 2 is
MB2

n−2, where the area relevant to MB1
n is larger and more

reliable to decide the dominant MB in frame n − 3. This
merging mechanism is suitable for areas with homogeneous
motion such as MBs in the background and inside the moving
objects.

Nevertheless, the merging process cannot benefit the ob-
ject boundary of a video object since their MVs of MBs are
diverse. In the proposed algorithm, more than one candidate
MB can be adopted in the MV composition process. The
use of multiple candidates is to augment the area relevant to
the target MB in MV composition, as demonstrated in the
example of Fig. 7. In Fig. 7, Ci

n−k denotes the ith can-
didate in frame n − k sorted according to the area of the
overlapping segment. For instance, the overlapping area of
C1

n−k is the largest, while C4
n−k is the smallest in each in-

dividual MV composition step, where k = 1, 2, and 3. For
the sake of simplicity, the example in Fig. 7 only picks up
two-candidate MBs for composing the MV in each step.
In frame n − 1, C1

n−1 and C2
n−1 are the largest and second

largest overlapping segments with the motion-compensated
MB of MB1

n . With the use of multiple candidates, both of
MB3

n−1 and MB4
n−1 are used to determine the next dom-

inant MBs in frame n − 2, respectively. It is because both
of the shaded areas in MB3

n−1 and MB4
n−1 are relevant

to MB1
n . This forms two different paths for MV compo-

sition as illustrated in Figs. 7(a) and 7(b), respectively.

Table 3 Distributions of the final selected reference frame for various vector composition algorithms at QP20 for Foreman.

Reference frames FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

ref(1) 63.29% 75.78% 84.37% 71.10%

ref(2) 14.59% 10.62% 8.10% 11.26%

ref(3) 10.24% 6.57% 4.09% 8.07%

ref(4) 6.02% 3.66% 1.94% 4.94%

ref(5) 5.87% 3.38% 1.50% 4.64%
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Table 4 Distributions of the final selected reference frame for various vector composition algorithms at QP20 for Salesman.

Reference frames FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

ref(1) 30.15% 37.25% 49.29% 34.73%

ref(2) 66.80% 56.48% 42.61% 57.63%

ref(3) 0.76% 0.95% 1.95% 1.19%

ref(4) 1.85% 4.90% 5.27% 5.86%

ref(5) 0.44% 0.42% 0.88% 0.60%

Figure 7(a) shows the path due to the use of C1
n−1 for

further MV composition. In this case, four possible candi-
dates including C2

n−2, C3
n−2, C4

n−2, and C5
n−2 in frame n − 2

are considered in the next step. On the other hand, Fig. 7(b)
depicts another path due to the contribution from C2

n−1. This
path only generates one possible candidate, C1

n−2, in frame
n − 2 for the consideration of MV composition in the next
step. Among these five candidates, C1

n−2 and C2
n−2 are the

largest and second largest overlapping segments with the
corresponding MBs, MB3

n−2 and MB2
n−2, respectively. This

process continues until reaching the desired reference frame.
In addition, the path using the candidate MB with the sec-
ond largest overlapping segment, C2

n−1, in frame n − 1 of
Fig. 7(b) provides an alternative path to compose the new
MV. In Fig. 7(b), it is found that the cross-hatch shaded area
in frame n − 2 for determining the dominant MB in frame
n − 3 is even larger than that of Fig. 7(a). In spite of the
largest overlapping segment of C1

n−1 in frame n − 1, there
is no guarantee that it is still the largest overlapping seg-
ment in frame n − 2, as shown in Fig. 7(b). With the help of
multiple-candidate MBs for each reference frame, the possi-
bility of keeping the MBs with the large relevant area to the
target MB is higher during MV composition. It is because
of there being only three reference frames in this working
example, that two candidates for each step are sufficient.
The proposed algorithm can also adopt a flexible number of
possible candidates if more reference frames are needed in
ME.

In conclusion, the proposed algorithm only uses the area
relevant to the target MB for dominant vector selection
and keeps the area relevant to the target MB as large as
possible during MV composition. In contrast, FDVS only
considers the largest overlapping segment with motion-

compensated MB of the target MB. Both relevant and non-
relevant areas are taken into account for dominant vector
selection, which may reduce the reliability of the resultant
MVs.

Figure 8 then shows a flowchart and a working example
for the proposed algorithm. For simplicity, two candidate
MBs are selected for each MV composition step and the tar-
get reference frame is assumed to be ref(3). For each MB in
the current frame, say MB1

n , its motion compensated MB in
frame n − 1 is divided into four segments that overlap four
MBs (MB1

n−1, MB2
n−1, MB3

n−1, and MB4
n−1), as denoted by

the four shaded segments in Fig. 8(a). The proposed algo-
rithm mainly consists of three steps: 1. merging, 2. multiple-
candidate selection, and 3. MV composition, which are then
summarized as follows:

1. Merging: Check the homogeneity of neighboring
MVs. If yes, merge the segments with the same MV.
Otherwise, skip the merging process.

Example: In Fig. 8(b), the shaded segments of MB1
n−1

and MB3
n−1 are merged in frame n − 1.

2. Multiple-candidate selection: Label all merged and
nonmerged segments as Ci

n−1, where i = {1,2, . . . ,k}
and k represent the total number of segments. Calcu-
late all areas of Ci

n−1, and then rank Ci
n−1 according to

the area. Select the largest and second largest shaded
segments.

Example: In Fig. 8(b), the three shaded segments after
merging are C1

n−1, C2
n−1, and C3

n−1 in frame n − 1.
Then, C1

n−1 and C2
n−1 are picked for possible candidates

in the next step.

Table 5 Distributions of the final selected reference frame for various vector composition algorithms at QP20 for Container.

Reference frames FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

ref(1) 88.35% 93.61% 95.02% 92.68%

ref(2) 5.69% 3.53% 3.13% 3.72%

ref(3) 3.10% 1.59% 0.91% 1.90%

ref(4) 1.42% 0.94% 0.75% 1.08%

ref(5) 1.45% 0.34% 0.20% 0.63%
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Table 6 Distributions of the final elected reference frame for various vector composition algorithms at QP20 for Carphone.

Reference frames FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

ref(1) 66.37% 79.89% 91.11% 76.21%

ref(2) 13.19% 8.90% 5.00% 9.81%

ref(3) 9.84% 5.61% 2.11% 6.76%

ref(4) 5.47% 3.07% 0.99% 3.85%

ref(5) 5.13% 2.52% 0.78% 3.38%

Fig. 5 Only the relevant area to the target MB is adopted in motion vector selection.

Fig. 6 (a) Scenario in homogeneous partitions where the neighboring MBs contain the same motion vector and (b) merging process with
neighboring MBs of same motion vectors.
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Fig. 7 Multiple-candidate MB selection: path starting from (a) C1
n−1 and (b) C2

n−1.

3. MV composition: Compose MVs according to the
candidates obtained from the previous step.

Example: In Fig. 8(b), C1
n−1 is chosen as a possible

candidate and its corresponding MV sum up with
mv1

n→n−1 to compose a new MV between frame n and
frame n − 2, mv1

n→n−2(C1
n−1). MV composition also

applies to the second largest shaded segment, C2
n−1,

to compose a new MV between frames n and n − 2,
mv1

n→n−2(C2
n−1). In the example shown in Fig. 8(b),

the possible candidate vectors from C1
n−1 and C2

n−1

are mv3
n−1→n−2 and mv4

n−1→n−2, respectively. Then,
mv1

n→n−2(C1
n−1) and mv1

n→n−2(C2
n−1) are written as

mv1
n→n−2

(
C1

n−1

) = mv1
n→n−1 + mv3

n−1→n−2 (4)

and

mv1
n→n−2

(
C2

n−1

) = mv1
n→n−1 + mv4

n−1→n−2. (5)

To compose the MV in the next reference frame
(frame n − 3) as shown in Fig. 8(c), according to
mv1

n→n−2(C1
n−1) and mv1

n→n−2(C2
n−1), a number of

Ci
n−2’s are obtained in frame n − 2 after the previous

MV composition step. Among these Ci
n−2’s, again, the

candidates belong to the largest and second largest seg-
ments are selected and their corresponding MVs are
employed for composing the final MVs by using frame
n − 3 as the reference. In Fig. 8(c), assume that all MVs

in MB1
n−2, MB2

n−2, MB3
n−2, and MB4

n−2 are different
where no merging is required in frame n − 2, the pos-
sible final MVs, mv1

n→n−3(C1
n−2) and mv1

n→n−3(C2
n−2),

in this example can be given by

mv1
n→n−3

(
C1

n−2

)=mv1
n→n−2

(
C1

n−1

) + mv2
n−2→n−3

=mv1
n→n−1+mv3

n−1→n−2+mv2
n−2→n−3

(6)

and

mv1
n→n−3(C2

n−2)=mv1
n→n−2(C2

n−1) + mv3
n−2→n−3

=mv1
n→n−1+mv4

n−1→n−2+mv3
n−2→n−3.

(7)

After the MV composition, Jmotion in Eq. (1) between MB1
n

and the MBs pointed by the two final MV [mv1
n→n−3(C1

n−2)
and mv1

n→n−3(C2
n−2)] inframe n − 3 are computed. The one

with smaller Jmotion is considered to be the new composed
MV of MB1

n with frame n − 3 as the reference.

4 Simulation Results
We evaluated the coding performance and the coding com-
plexity of the proposed algorithm using six test sequences
when MRF-ME is activated. These sequences include Mobile
(CIF), Tempete (CIF), “Foreman” (CIF), “Salesman” (CIF),
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Fig. 8 Flowchart and working example of the proposed algorithm: (a) merging process, (b) selected two-candidate MBs in ref(1), and (c)
selected two-candidate MBs in ref(2).
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Table 7 Rate-distortion performances of various algorithms in different sequences.

FS_ref5 FDVS_ref5 (Refs. 23–25) MED_ref5 (Ref. 27) PROPOSED_ref5

PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate

Sequences (dB) (kbits/s) (dB) (kbits/s) (dB) (kbits/s) (dB) (kbits/s)

QP20 Carphone 42.26 424.95 42.2 448.87 42.16 464.69 42.21 444.22

Foreman 41.56 1693.80 41.51 1816.24 41.48 1858.78 41.52 1795.70

Salesman 41.16 738.98 40.85 908.26 40.84 1136.48 40.99 841.89

Tempete 41.09 3326.94 40.96 3726.78 40.95 3822.89 40.99 3663.78

Mobile 40.53 3827.20 40.47 4110.65 40.46 4185.21 40.49 4023.82

Container 41.50 977.60 41.46 1000.31 41.46 1003.93 41.47 992.97

Average 41.35 1831.58 41.24 2001.85 41.23 2078.66 41.28 1960.40

QP24 Carphone 39.27 264.52 39.18 279.14 39.12 289.58 39.20 275.94

Foreman 38.69 925.00 38.61 997.08 38.58 1023.43 38.63 985.60

Salesman 38.24 390.12 38.13 406.02 38.09 437.13 38.14 401.99

Tempete 37.72 2074.54 37.57 2443.49 37.56 2437.61 37.62 2320.85

Mobile 36.99 2454.10 36.92 2656.30 36.89 2727.34 36.94 2589.07

Container 38.41 492.10 38.34 512.75 38.35 514.99 38.35 509.04

Average 38.22 1100.06 38.13 1215.80 38.10 1238.35 38.15 1180.42

QP28 Carphone 36.41 159.65 36.33 167.43 36.20 172.85 36.33 165.90

Foreman 36.11 515.75 36.03 547.13 35.97 565.68 36.05 544.55

Salesman 35.80 233.51 35.76 235.07 35.72 242.56 35.75 235.11

Tempete 34.60 1195.93 34.44 1425.65 34.41 1454.55 34.48 1402.37

Mobile 33.70 1453.06 33.63 1581.14 33.58 1640.19 33.65 1536.20

Container 35.75 254.61 35.68 266.90 35.64 271.56 35.67 264.43

Average 35.40 635.42 35.31 703.89 35.25 724.57 35.32 691.43

QP32 Carphone 33.49 93.09 33.39 97.11 33.22 99.30 33.42 96.03

Foreman 33.55 295.90 33.40 311.84 33.34 316.84 33.47 313.67

Salesman 33.19 152.28 33.15 152.80 33.14 153.36 33.16 152.75

Tempete 31.41 595.97 31.20 744.64 31.17 740.77 31.23 742.38

Mobile 30.30 732.25 30.22 795.49 30.11 830.39 30.26 776.37

Container 33.15 151.56 33.06 159.84 33.01 162.80 33.10 155.76

Average 35.52 336.84 32.40 376.95 32.33 383.91 32.44 372.83

“Container” (CIF), and “Carphone” (QCIF) with the frame
rates of 30 frames/s. For the implementation, the proposed
vector selection algorithm was built based on the H.264/AVC
JM9.2 codec28 for performance evaluation in MRF-ME. The
results of the proposed algorithm were compared with the
FS motion estimation, FDVS,23–25 and median algorithms.27

The following five test cases were then included for
comparison:

1. FS_ref1: FS with one reference frame

2. FS_ref5: FS with five reference frames

3. FDVS_ref5: FDVS with five reference frames
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4. MED_ref5: the median algorithm with five reference
frames

5. PROPOSED_ref5: the proposed algorithm with five
reference frames.

Basically, the bitstreams were encoded with
IPPP. . . structure for 300 frames by different algorithms. It is
noted that only 260 frames were encoded for Tempete due to
its maximum length. Four different quantization parameters
(QP = 20, 24, 28, and 32) were used. In all MV composition
algorithms, MVs between consecutive frames by full-search
motion estimation with a search range of − 16 to + 16
pixels were computed. These MVs were reused by various
MV composition algorithms to compose the new MVs to
different reference frames. For the proposed algorithm, the
number of candidate MBs selected for each stage was 4. For
all ME algorithms, Jmotion was adopted as the cost function.

4.1 Distribution of Final Selected Reference Frames
Full-search motion estimation is always used as the bench-
mark for MRF-ME and it gives an optimal solution of
choosing the best reference frame. Tables 1–6 show the dis-
tributions of the final selected reference frames of the tested
algorithms for various video sequences. It is found that more
MBs in FDVS_ref5 and MED_ref5 are predicted from ref(1)
and ref(2) than that obtained from FS_ref5, which causes a
quite different trend of the distribution on the final selected
reference to FS_ref5. It is due to the fact that the compo-
sition of MVs in FDVS_ref5 and MED_ref5 to temporally
remote reference frames may not represent the current MB
anymore. It results in low reliability of the composed MVs
and diminishes the benefit of MRF-ME. Tables 1–6 also list
the distributions of the final selected reference frames of
PROPOSED_ref5. It is clear that more MBs end up with
being predicted using temporally remote reference frames
such as ref(4) and ref(5), which is closer to the results of
FS_ref5. From these statistics, we conclude that the pro-
posed vector composition process is likely to utilize more
benefit of MRF-ME by obtaining more accurate composed
MVs.

4.2 Results of Coding Efficiency
To evaluate the coding efficiency, the rate-distortion
(R-D) curves by using different algorithms for Mobile (CIF),
Tempete (CIF), Foreman (CIF), Salesman (CIF), Container
(CIF), and Carphone (QCIF) are shown in Figs. 9–14, re-
spectively. From Figs. 9–14, PROPOSED_ref5 clearly out-
performs FDVS_ref5 and MED_ref5, especially in the high
bitrate cases. The gaps in both peak signal-to-noise ra-
tio (PSNR) and generated bits between FS_ref5 and PRO-
POSED_ref5 become remarkably narrower compared to
other algorithms. It is clear that the R-D performance of
the proposed algorithm remarkably improves in Mobile,
Tempete, Foreman, Salesman, and Carphone. It is expected,
since FDVS does not work well for these sequences. Even
though a slight improvement could also be seen for the
sequence with a still background such as Container in
Fig. 13, it is not so significant as compared with other
sequences. It is due to the probability that temporally re-
mote reference frames being used in Container is unlikely,

Fig. 9 R-D curves for the five test cases in Mobile.

Fig. 10 R-D curves for the five test cases in Tempete.

Fig. 11 R-D curves for the five test cases in Foreman.

Fig. 12 R-D curves for the five test cases in Salesman.

as shown in Table 5. The room for improvement of the
proposed algorithm is then limited. To further evaluate the
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Table 8 Computational comparison in terms of ME encoding time (unit: second).

Sequences FS_ref5 Time, in seconds FDVS_ref5 (Refs. 23–25) (�Time) MED_ref5 (Ref. 27) (�Time) PROPOSED_ref5 (�Time)

Carphone 233.79 49.22 47.55 51.12

( − 78.95%) ( − 79.66%) ( − 78.13%)

Foreman 951.29 186.44 199.10 215.64

( − 80.40%) ( − 79.07%) ( − 77.33%)

Salesman 963.33 180.45 198.55 205.81

( − 81.27%) ( − 79.39%) ( − 78.64%)

Tempete 846.82 159.40 159.27 173.55

( − 81.18%) ( − 81.19%) ( − 79.51%)

Mobile 935.97 187.02 186.48 195.33

( − 80.02%) ( − 80.08%) ( − 79.13%)

Container 913.31 182.79 192.20 182.27

( − 79.99%) ( − 78.96%) ( − 80.04%)

Average 807.42 − 80.30% − 79.72% − 78.80%

results, Table 7 shows the PSNR and required bitrate of var-
ious sequences at four different QPs. Table 7 also shows that
PROPOSED_ref5 has a consistent gain in coding efficiency
for all video sequences. It is because PROPOSED_ref5 con-
siders only the area related to the target MB and tries to keep
the relevant partition as large as possible in every MV com-
position step. It ensures that the resultant MV is highly cor-
related to the contents of the target MB in the current frame,
which cannot be achieved by FDVS_ref5 and MED_ref5.
The proposed algorithm can then provide outstanding per-
formance in the view point of rate-distortion in comparison
with the other MV composition algorithms.

4.3 Results of Computational Complexity
To compare the computational complexity of the proposed
algorithm, FS_ref5 is used as a reference method, and all
simulations were carried out on an Intel(R) Xeon(R) CPU
X5550 at 2.66 GHz PC with 12 GB memory. It is noted that
the only major overhead of PROPOSED_ref5 compared to

Fig. 13 R-D curves for the five test cases in Container.

FDVS_ref5 and MED_ref5 is the calculation of Jmotion re-
quired for the final selection of MVs from different candi-
dates in the last step of the MV composition process. The
average ME time per video sequence were then measured
and tabulated in Table 8. The �Time in Table 8 is calculated
as follows:

�Time(%) = TimeTest − TimeFS ref5

TimeFS ref5
×100, (8)

where TimeFS_ref and TimeTest denote the ME coding time used
by FS_ref5 and the tested algorithms. It can be easily seen
that all algorithms can substantially reduce the computational
complexity of FS_ref5 by nearly 80%. Although the ME
time of the proposed algorithm is slightly increased with the
number of multiple candidates, the increase is only around
1.5% in average, and the ME time of the proposed algorithm
is still quite similar with that of FDVS_ref5 and MED_ref5.

Fig. 14 R-D curves for the five test cases in Carphone.
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5 Conclusion
In this paper, we have proposed a novel MV composition
algorithm for MRF-ME. The proposed algorithm is beneficial
to perform ME to a reference frame with a large temporal
distance. It can entirely make use of the relevant area to
the target MB by two vector selection criteria. First, only
the actually relevant area of the target MB is contributed to
dominant MB selections. Second, the relevant area to the
target MB is kept as large as possible in MV composition by
adopting the concept of MV merging and multiple candidates
in the vector selection process. These techniques can increase
the reliability of the final composed MVs.

The performance of the proposed algorithm, experimen-
tally verified in terms of both quality and bitrate, is remark-
ably better than that of the conventional approach, such as
FDVS and the median algorithms. The distribution of the
final selected reference frame obtained from the proposed
algorithm is very similar to full-search. It indicates that the
proposed algorithm is highly probable to get the benefit of
using MRF-ME. Besides, the proposed algorithm is adaptive
in nature, and the number of candidate MBs can be adjusted
according to the number of reference frames.

In addition, the proposed algorithm is not restricted to
MRF-ME, it can also be beneficial to MV composition in
frame-skipping transcoding, which is a process of skipping
some frames in order to change the frame rate of a video
sequence. Our proposed algorithm is specially suited for the
scenario of skipping a large number of frames in transcod-
ing. As a concluding remark, it is believed that the results
of the present work will certainly be useful for the future
development of digital video coding and transcoding.
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