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Abstract. The problem of histogram thresholding is tackled using a
modular expert network. The modular expert network is a network of
expert modules modulated by a gating network. The expert modules
incorporate individual experts’ opinions on the thresholding problem.
The difficult task of integration of conflicting experts’ opinions is
achieved through a training of the gating network using backpropa-
gation. The resulting network achieves accurate modeling of the
solution mapping through the efficient combination of existing ex-
perts. Experimental results show the superior performance of the
modular network over classical algorithms. In particular, a near-
optimal solution was shown to be achievable using a small training
set. Application to a real-world biomedical cell segmentation prob-
lem is also given. © 1997 SPIE and IS&T. [S1017-9909(97)00603-X]

1 Introduction

In various applications of image processing such as t
plate matching and morphological operations, the num
of gray levels of the image often needs to be reduced. S
operations can be achieved efficiently through the use
the histogram thresholding operation. Thresholding is
segmentation of an image into different classes by com
ing the gray level of a pixel with that of a set of threshold
Bi-level thresholding is the simplest case where only o
threshold is needed for segmenting an image into
classes. Due to its wide applications, many algorithms h
been proposed for solving this problem. An in-depth ana
sis of the thresholding problem and a discussion of m
thresholding algorithms can be found in the work of Har
ick and Shapiro,1 Sahooet al.,2 and Glasbey.3 Lee et al.4

gave a comparative performance study on several hi
gram thresholding algorithms along with contextual alg
rithms and give evaluations based on several criteria. T
have come to the conclusion that different algorithms p
form better under different criteria and more sophistica
algorithms need to be developed. In developing a be
algorithm, it is observed that most of the thresholding
gorithms make different inherent assumptions on the cr
ria for selecting the threshold. However, the relations
between these criteria and the segmentation result on a
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ticular image is often unknown. Furthermore, the lar
variations shown in histograms of different images po
significant difficulties to the design of a good thresholdi
algorithm. It is often observed that a particular algorith
can work for some images while failing completely o
others.3,4

In this paper, the histogram thresholding problem
tackled through the efficient use of existing algorithms a
the learning capability of feed-forward networks. In th
proposed modular expert network approach, each modu
a classical expert algorithm and its output is modulated
a gating network. The network architecture is shown in F
1. The employment of classical expert algorithms allo
the integration of expert knowledge on problems that c
not be handled easily by simple network models. Sin
each expert’s output may be close to some other expert’
may be different from others depending on the particu
histogram, a modulation of the experts’ outputs is neede
obtain the network output. The gating network achieves
integration of the experts’ output by learning from teachi
samples.

The modular expert network approach solves comp
problems using the principle of ‘‘divide and conquer,
which often leads to simple and efficient algorithms. T
idea of using a kind of modular network for learning w
discussed in Nowlanet al.5 Subsequently, an expectatio
maximization algorithm for training of a mixture of exper
was investigated by Jordan and Jacobs.6 Applications of the
mixture of experts can also be found in Ref. 7. Howev
the expert modules in these approaches refer to genera
linear models that are more restrictive in many aspe
when compared with expert modules proposed in this
per.

In the subsequent sections, the modular network str
ture will be described in detail. The classical algorithm
that form the modules will be selected. The training of t
gating network that integrates the various modules will
demonstrated. Experimental results using simulated Ga
ian mixtures will be given. Application to a real-world bio
medical cell segmentation problem will also be inves
gated.

;
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Fig. 1 Modular network.
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2 Modular Expert Network

The modular expert network architecture proposed in
paper has a modified architecture when compared to
mixture-of-experts model of Jordan and Jacobs.6 The ex-
pert network in Jordan’s approach is linear with a sin
output nonlinearity with output given by

t i5 f ~Uix!, ~1!

whereUi is a weight vector andf is a fixed continuous
nonlinearity. The use of generalized linear models does
allow easy integration of prior knowledge to the problem
of thresholding, segmentation, etc. For example, the inv
ance in size and location properties are essential to var
pattern recognition problems. Such an invariance can
efficiently captured using specific measures such as the
variant moments. However, neither the generalized lin
model nor the simple feed-forward network can efficien
represent such information. Therefore, we propose to
modules with invariance properties by simply using exi
ing classical algorithms, thus allowing the learning of mu
more complex mappings.

In Jordan’s approach, training has to be applied to e
component expert as well as to the gating network. In
proposed modular network approach, the expert netw
modules consist of nonlinear mappings that are predefin
Training only applies to the gating network, which contro
the output of the individual expert network modules. T
output of the network is given by

t5(
i51

N

gi t i , ~2!
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whereN is the number of expert modules. Since the exp
modules are fixed, only the gating network need to
trained. The gating network can function as a softmax n
work corresponding to soft-split of the input space, or t
gating network can be employed in a ‘‘winner-take-al
fashion, resulting in a hard partitioning of the input spa
Hard partitioning of the input space is similar to the a
proach taken in classification and regression tr
~CART!.8 The main differences between the proposed
proaches and CART are the fixed network topology and
use of predefined experts.

Consider each expert module, having outputt i . Define
an error criterionEx(t i) of the output of each expert mod
ule. The gating network is trained with binary target valu

gi5 H1 if Ex~ t i !5mini Ex~ t i !
0 if Ex~ t i !>mini Ex~ t i !

. ~3!

The use of a ‘‘winner-take-all’’ scheme as the network o
put is based on the properties of the modular network. If
problem is close to regression problems with continuo
output and low nonlinearity, a softmax gating network
more appropriate. If the problem is close to a classificat
problem with discrete output and high nonlinearity, it is
general more suitable to choose a ‘‘winner-take-a
scheme. The training of the gating network depends
teaching samples. The teaching samples can be obta
from histograms where optimal thresholds are known,
ther from manual inputs of human experts or from analy
cal derivations. However, in problems where the data p
sess high dimensionality, the choice of a finite set
teaching samples to adequately represent the input da
Journal of Electronic Imaging / July 1997 / Vol. 6(3) / 287
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Fig. 2 Samples of synthetic histograms.
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not a trivial task. In the next section, a histogram distrib
tion model is introduced to allow the development of
systematic scheme for generating teaching samples, w
gives good generalization to untrained testing samples.
thermore, the distribution model enables quantitative eva
ation of the network’s performance through the use of s
tistical criteria of errors in thresholding.

3 Histogram Distribution Model

In this section, the histogram distribution model will b
introduced as the framework for solving the histogra
thresholding problem. The gray-level histogram can be
proximated as a set of random realizations of a probab
density functionh(x). The probability density function
h(x) can be modeled as a mixture of two probability d
tributions

h~x!5r1p1~x!1r2p2~x!, ~4!

wherer1 andr2 are the proportions of the two classes
objects, andp1(x) and p2(x) are the probability distribu-
tions of the two classes, respectively. The probability d
tributions can be modeled by standard distributions suc
the Gaussian distribution or the Poisson distribution.

In this paper, the Gaussian distribution is chosen to
lustrate the approaches. Similar derivations can also be
tained using other distributions. The validity of this choi
is also justified by the central limit theorem, which stat
that the distribution of the sum of a large number of ind
pendent random variables will approach a normal distri
288 / Journal of Electronic Imaging / July 1997 / Vol. 6(3)
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tion as the number of random variables increases.9 The
probability density functionspi(x), wherei 5 1,2, are thus

pi~x!5
1

A2ps i

expS 2
~x2m i !

2

2s i
2 D , ~5!

wherem i ands i are the means and the standard deviatio
of the Gaussian distributions, respectively.

The observed histogram is only a realization of the d
sity function, and such random realizations can be obtai
by samplingN times the random variable with densit
function h(x) for generating a histogram withN pixels.
The methods for generating histograms by sampling v
ous distributions can be found in Ref. 10. Alternatively, t
observed histogram can be approximated by a signal de
dent noise model.11 Figure 2 shows some of the histogram
generated with the observation model.

In order to compare the performances of differe
thresholding algorithms on the mixtures of Gaussians,
misclassification error is employed. In the case for a m
ture of two Gaussians, the misclassification error whent is
selected as the threshold is given by:

E~ t !5r2E
2`

t

p2~x!dx1r1E
t

`

p1~x!dx. ~6!

In simulations, the discrete version of the above formula
implemented,
erms of Use: http://spiedl.org/terms



as-

us
-
cy
as-
o-

ini-
ke

as-
e
s

e

p-
the
o-
be
w
at
crip
th
e o
de
tin

io

m-

ica
s.
tics

s of
ded

to
the
otal
un-

s a
o-

he
ssian
he
el

of
ned

-
g-

Modular expert network approach

Downl
E~ t !5r2(
x50

x,t

p2~x!1r1(
x5t

x5L

p1~x!. ~7!

With a total ofN sample histograms, the average miscl
sification error for any chosen algorithm is defined as,

Ē5
( jEj

N
, ~8!

whereEj is the misclassification errorE(t) for the j ’th
sample histogram.

The use of a single criterion is prone to bias of vario
kinds. An additional criterion, the accuracy, will be em
ployed in order to make a fair comparison. The accura
A(t) is defined as the ratio between the minimum miscl
sification error and the misclassification error of the alg
rithm on the histogram,

A~ t !5E~ to!/E~ t !, ~9!

whereE(to) is the minimum misclassification error andto
is the optimal threshold, defined by the threshold that m
mizes the misclassification errors. This accuracy will ta
its maximum value of one when the thresholdt selected by
the thresholding algorithm gives the minimal possible cl
sification error. With a total ofN sample histograms, th
average accuracy for any chosen algorithm is defined a

Ā5
( jAj

N
, ~10!

whereAj is the accuracy for thej ’th sample histogram. The
optimal thresholdto is the threshold that minimizes th
error above criterion,

to5argmin
t
E~ t !. ~11!

In designing the gating network for the thresholding a
plication, the output layer of the network corresponds to
four gating outputs that modulate the four expert alg
rithms. The number of nodes in the input layer should
assigned according to the length of the histogram. Ho
ever, a more efficient representation of the histogram d
can be achieved through the use of invariant shape des
tors, i.e., variance, skewness, and kurtosis, which are
second-, third-, and fourth-order shape descriptors. On
two hidden layers can be employed in the application
pending on the variations shown in the teaching and tes
histograms.

In a supervised approach to thresholding, givenh and
to , we can design a network that is capable of regress
such that the network would generatet that is close toto .
However, the size of the histogram would imply the co
putationally infeasible training of a huge network.

4 Thresholding Algorithms as Experts

In the modular network approach to thresholding, class
algorithms will be incorporated to form expert module
Such modules can be described by the following statis
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of the histograms. The zeroth, first, and second moment
the foreground and background portions of the threshol
histogram are, respectively,

m0a5S i50
t21h1 , m0b5S i5t

L21hi ,

m1a5S i50
t21 ihi , m1b5S i5t

L21ihi , ~12!

m2a5S i50
t21 i 2hi , m2b5S i5t

L21i 2hi .

The mean and the standard deviations are defined as

ma5
m1a

m0a
, mb5

m1b

m0b
,

~13!

sa5
m2a

m0a
2ma

2, sb5
m2b

m0b
2mb

2.

In Otsu’s method,12 the threshold is selected so as
maximize the class separability, which is based on
within-class variance, between-class variance, and t
variance of gray levels. This method is nonparametric,
supervised, and can be applied withouta priori knowledge.
This method has wide applicability and is often used a
standard algorithm with which other thresholding alg
rithms are compared.

notsu~ t !5m0am0b~ma2mb!
2. ~14!

In the minimum error method of Kittler and
Illingworth,13 the sets of pixels that are comprised of t
object and the background are both assumed to be Gau
distributed. A criterion function is constructed such that t
threshold selected will minimize the average error in pix
classification.

nminerr~ t !5palogS sa

pa
D1pblogS sb

pb
D . ~15!

The maximum entropy method14 selects the threshold
that maximizes the entropy of the segmented portions
the histogram. The entropy of segmented portion is defi
as

ea5
1

m0a
(
i50

t21

hi log~hi !2 log~m0a!,

~16!

eb5
1

m0b
(
i5t

L21

hi log~hi !2 log~m0b!,

nmaxent5ea1eb . ~17!

The minimum cross entropy method15 selects the thresh
old that minimizes the entropy of the image and its se
mented version. The criterion function is defined as

ncroent52m1alogSm1a

m0a
D2m1blogSm1b

m0b
D . ~18!
Journal of Electronic Imaging / July 1997 / Vol. 6(3) / 289
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The target output of the modular expert network is giv
by

t5arg minE~ t i !, ~19!

wheret i are the thresholds selected by the four algorithm

5 Results and Discussions

In order to test the performance of the modular expert n
work, a small number of training histograms are genera
to train the network and a large number of testing his
grams are tested on the network. The small number
training histograms simulates typical situations whe
teaching data are limited. The large number of test
samples approximates the overall behavior of the netw
over as large a sample space as possible.

The training sample histograms are generated under
following conditions:

• r1 is uniformly sampled from the interval~0.01, 0.99!,
r2512r1

• m1 is uniformly sampled from the interval~71.5,
121.5!

• m2 is uniformly sampled from the interval~135.5,
185.5!

• s1 are uniformly sampled from the interval~5, 30!,
s25s1 .

The testing histograms are generated under the foll
ing conditions:

• r1 varies from 0.01 to 0.99 in steps of 0.01,r251
2r1

• s1 varies from 5 to 30 in steps of 0.252,s2 5 s1

• m1 is uniformly sampled from the interval~71.5,
121.5!

• m2 is uniformly sampled from the interval~135.5,
185.5!.

The testing samples consists of 99 different values ofr and
99 different values ofs. For each set of values ofr ands,
five sets of values form1 andm2 are generated. Thus, th
total testing sample set is comprised of 49005~9939935!
histograms.

The intervals form1 andm2 are chosen such thatm1 and
m2 are separated from each other and away from the m
mum and minimum gray values of 255 and 0. The interv
for standard deviationss1 ands2 are chosen to cover situ
ations of minimal overlapping to high overlapping of gra
levels between the foreground and the background.
proportions of the background against the foreground ar
ratios ranging from 1:99 to 99:1, which should cover co
monly occurring situations. The observed histogram no
is set as 0.01, which gives a moderate amount of nois
the histogram.

The performances of the different thresholding alg
rithms on these testing histograms are shown in Table 1
Table 2. The results on the modular network approach w
obtained by training the network with 1000 sample his
grams. In order to compare the various algorithms’ perf
290 / Journal of Electronic Imaging / July 1997 / Vol. 6(3)
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mances with the theoretical results, the lower bound of
rors is calculated with the additional information of th
individual distributions that generate the histograms. T
lower bound on errors measures the amount of the ove
between the component distributions and thus repres
the smallest misclassification error that can be achiev
The lower bound on errors can be calculated from the
erage of the minimum of misclassification errors in Eq.~7!
using an exhaustive search. The upper bound on accu
follows from its definition as a ratio as shown in Eq.~9!.

Comparing the results on the average misclassifica
errors Ē, the error of the neural network approach is s
nificantly smaller than the error of any other major thres
olding algorithms. In fact, the average misclassification
ror of the neural network approach is very close to t
lower bound on the misclassification error.

Comparing the results on the average accuracy, the
posed method is very close to the optimal result, achiev
an average of 96% accuracy. This average accurac
much higher than the best performing classical algorith
the minimum error method, which achieves an average
69% accuracy. It is also of interest to note that the ma
mum entropy algorithm does not perform as well under
criterion of average accuracy than the average misclas
cation error. The reason is that the average misclassifica
error is easily dominated by sample histograms with la
errors. The average accuracy defined in this paper norm
izes the performances of thresholding algorithm so t
each sample histogram has an even contribution to the
erage.

Another important property of the learning algorithm
the ability of the algorithm to generalize from a limite
population of training samples. The modular network
trained with different numbers of training samples a
tested with a large testing set. Figure 3 shows the aver
misclassification error of the network. The average er
drops sharply with the first 50 training samples. There
further gradual improvement as the training samples
creases to 1000 training samples. Figure 4 shows the a
age accuracy of the network. Similar to the results shown
the misclassification errors, only 50 to 100 training samp
are needed to achieve a 90% average accuracy. The s
training sample size required for training the network c
be attributed to the random uniform sampling in parame

Table 1 Average misclassification errors of different algorithms: (a)
cross entropy, (b) maximum entropy, (c) minimum error, (d) Otsu’s
method, (e) proposed approach, and (f) lower bound on errors.

(a) (b) (c) (d) (e) (f)

Ē(%) 12.2 6.2 11.7 11.5 4.9 4.7

Table 2 Average accuracy of different algorithms: (a) cross entropy,
(b) maximum entropy, (c) minimum error, (d) Otsu, (e) proposed
approach, and (f) upper bound on accuracy.

(a) (b) (c) (d) (e) (f)

Ā(%) 58.0 61.0 69.0 62.5 96.1 100
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space of the Gaussian density. Such a sampling sche
generates a set of teaching samples with a wide sprea
shapes and properties enabling a good generalization t
obtained.

5.1 Applications to Real-World Images

In this section, results are presented as an application o
modular network applied to the biomedical problem
quantitative measurement of cancer cells. Figure 5 sh
two samples of cell images. The cell images represent
mor sections obtained from patients who have beenin situ
hybridized for tumor-related viruses. The gray values of
infected portion are approximately proportional to t
amount of tumor-related virus. The aim of the analysis is
establish the amount of reaction in terms of the relat
strength and the percentage of reacted population. Figu
shows the histograms of two images. Those gray val
coming from the infected portion and the uninfected p
tion can be assumed to be approximated as Gaussian d
butions. Each of the two portions is characterized by a
ferent set of mean, proportion, and variance. In some
samples, there are also white space regions where no
reside. Such pixels can be easily removed from the hi
gram since they have distinctly high gray values.

Fig. 3 Average misclassification error versus training sample size.

Fig. 4 Average accuracy versus training sample size.
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In theory, the gating network can be trained solely w
cell histograms with thresholds selected manually by
man experts. However, a good training set requires the
lection of a large amount of data from a huge database
include a sufficient variety of samples for representati
Such a large database may not be available readily, an
any case, the selection and training processes are very t
consuming. Therefore, we propose to construct a hyb
training set using a combination of synthetic samples a
actual samples. The synthetic samples are mixtures
Gaussian distributions selected to approximate a wide v
ety of histograms. These are used to complement the ac
cell histograms for improving the generalization to u
trained samples. To control the effect of the actual his
gram as compared to the synthetic ones, we can incl
duplications of the actual samples in the training set. In

Fig. 5 Cell samples.
Journal of Electronic Imaging / July 1997 / Vol. 6(3) / 291
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following investigations, 100 cell histograms are selec
as the training samples and each of the cell histogram
duplicated ten times making a total of 1000 cell sam
histograms. These 1000 cell histograms and 1000 synth
Gaussian mixtures are supplied with shuffling as the tra
ing samples to the gating network. Figure 7 shows the
sult of the segmentation of the modular network. The nu
and the cytoplasm are separated by black lines. The re
agree with evaluation by human experts.

Further areas of applications include image threshold
in vision-based automated assembly lines and inspec
systems. The ensembles of image samples in an asse
line can be modeled by specific distributions whose para
eters are time-varying as a result of various factors: nois
sensors, mechanical tolerance, changes in ambient env
ment, imperfect workmanship. As the distribution is oft
unknown and time-varying, the use of the modular exp
network can simplify the task of selection of algorithm
and incremental adaptation to changes in the system ca
easily incorporated using new teaching samples.

To conclude, the problem of histogram thresholding
tackled using a modular expert network in which classi
thresholding algorithms are regarded as experts. The
puts from these experts are modulated by a trained ga
network through teaching samples. For problems witha
priori known distribution, teaching samples are obtained
sampling in the parameter space of the distribution mo
For problems with real-world data sets, a hybrid training
consisting of samples from both the approximating dis
butions and the observed data sets are employed.

Fig. 6 Histograms of cell samples.
292 / Journal of Electronic Imaging / July 1997 / Vol. 6(3)
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