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ticular image is often unknown. Furthermore, the large
variations shown in histograms of different images pose
significant difficulties to the design of a good thresholding

Abstract. The problem of histogram thresholding is tackled using a
modular expert network. The modular expert network is a network of
expert modules modulated by a gating network. The expert modules

incorporate individual experts’ opinions on the thresholding problem.
The difficult task of integration of conflicting experts’ opinions is
achieved through a training of the gating network using backpropa-
gation. The resulting network achieves accurate modeling of the
solution mapping through the efficient combination of existing ex-
perts. Experimental results show the superior performance of the
modular network over classical algorithms. In particular, a near-
optimal solution was shown to be achievable using a small training
set. Application to a real-world biomedical cell segmentation prob-
lem is also given. © 1997 SPIE and IS&T. [S1017-9909(97)00603-X]

algorithm. It is often observed that a particular algorithm
can work for some images while failing completely on
others®#

In this paper, the histogram thresholding problem is
tackled through the efficient use of existing algorithms and
the learning capability of feed-forward networks. In the
proposed modular expert network approach, each module is
a classical expert algorithm and its output is modulated by

a gating network. The network architecture is shown in Fig.
1. The employment of classical expert algorithms allows
) o ) ) the integration of expert knowledge on problems that can-
In various applications of image processing such as tem-nat pe handled easily by simple network models. Since
plate matching and morphological operations, the numberg, . expert's output may be close to some other expert's or
of gray levels of the image often'n'eeds to be reduced. Sucr’lnay be different from others depending on the particular
operations can be achieved efficiently through the use Ofhistogram, a modulation of the experts’ outputs is needed to

the histogram thresholding operation. Thresholding is the . ; .
segmentation of an image into different classes by compar-pbtam t_he network output,. The gating netyvork achleves_the
integration of the experts’ output by learning from teaching

ing the gray level of a pixel with that of a set of thresholds.
Bi-level thresholding is the simplest case where only one SamPples.
threshold is needed for segmenting an image into two |N€ modular expert network approach solves complex
classes. Due to its wide applications, many algorithms haveProblems using the principle of “divide and conquer,”
been proposed for So|ving this prob|em_ An in_depth ana|y_ which often leads to Simple and efficient algorithms. The
sis of the thresholding problem and a discussion of manyidea of using a kind of modular network for learning was
thresholding algorithms can be found in the work of Haral- discussed in Nowlaret al® Subsequently, an expectation
ick and Shapird, Sahooet al.? and Glasbey.Lee et al* maximization algorithm for training of a mixture of experts
gave a comparative performance study on several histowas investigated by Jordan and JacbBgplications of the
gram thresholding algorithms along with contextual algo- mixture of experts can also be found in Ref. 7. However,
rithms and give evaluations based on several criteria. Theythe expert modules in these approaches refer to generalized
have come to the conclusion that different algorithms per- jinear models that are more restrictive in many aspects,
form better under different criteria and more sophisticated \yhen compared with expert modules proposed in this pa-
algorithms need to be developed. In developing a betterpg,.
algorithm, it is observed that most of the thresholding al- = |, the subsequent sections, the modular network struc-
gorithms make different inherent assumptions on the crite-, o il pe described in detail. The classical algorithms
ria for selecting 'Fhe_threshold. However, the relationship that form the modules will be selected. The training of the
between these criteria and the segmentation result on a par-_.. ; . .
gating network that integrates the various modules will be
demonstrated. Experimental results using simulated Gauss-
ian mixtures will be given. Application to a real-world bio-
medical cell segmentation problem will also be investi-
gated.

1 Introduction

Paper NNT-06 received Jan. 11, 1997; revised manuscript received Feb. 25, 1997;
accepted for publication Feb. 28, 1997.
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Fig. 1 Modular network.
2 Modular Expert Network whereN is the number of expert modules. Since the expert

The modular expert network architecture proposed in this mO_dU|ES are f|x_ed, only the gating _network need to be
paper has a modified architecture when compared to thdrained. The gating network can function as a softmax net-
mixture-of-experts model of Jordan and JacdFhe ex- WOI?k corresponding to soft-split of _the input space, or the
pert network in Jordan’s approach is linear with a single 9ating network can be employed in a “winner-take-all”

output nonlinearity with output given by fashion, resulting in a hard partitioning of the input space.
Hard partitioning of the input space is similar to the ap-
t,=f(U;x), (1) proach taken in classification and regression trees

(CART).2 The main differences between the proposed ap-
where U; is a weight vector and is a fixed continuous Proaches and CART are the fixed network topology and the
nonlinearity. The use of generalized linear models does notUS€ of predefined experts. . _
allow easy integration of prior knowledge to the problems  Consider each expert module, having outputDefine
of thresholding, segmentation, etc. For example, the invari-an error criterionE,(t;) of the output of each expert mod-
ance in size and location properties are essential to variousile. The gating network is trained with binary target values
pattern recognition problems. Such an invariance can be
efficiently captured using specific measures such as the in- 1 if Ex(t)=min Ex(t))
variant moments. However, neither the generalized linear9i=|o it g (t.)=min E (t,)" ©)

B - x\ti)= 1 X\t
model nor the simple feed-forward network can efficiently
represent such information. Therefore, we propose to us
modules with invariance properties by simply using exist-
ing classical algorithms, thus allowing the learning of much
more complex mappings.

eThe use of a “winner-take-all” scheme as the network out-
put is based on the properties of the modular network. If the
problem is close to regression problems with continuous
output and low nonlinearity, a softmax gating network is

In Jordan’s approach, training has to be applied to each iate. If th blem is cl i lassificati
component expert as well as to the gating network. In our MOre appropriate. € probiem IS close 1o a classitcaton
problem with discrete output and high nonlinearity, it is in

proposed modular network approach, the expert network | itable t h s take-all”
modules consist of nonlinear mappings that are predefined.genera more suitable 10 Choose a “winner-lake-a

Training only applies to the gating network, which controls tscher?je. The tlrainipr% O]; theh.gating neltwork d(;pengts _ond
the output of the individual expert network modules. The eaching samples. he teaching sampies can be oblaine
output of the network is given by from histograms where optimal thresholds are known, ei-

ther from manual inputs of human experts or from analyti-
N cal derivations. However, in problems where the data pos-
tIE giti, ) sess _high dimensionality, the choice of a fir)ite set of_
i=1 teaching samples to adequately represent the input data is
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Fig. 2 Samples of synthetic histograms.

not a trivial task. In the next section, a histogram distribu- tion as the number of random variables increds@e
tion model is introduced to allow the development of a probability density functionp;(x), wherei = 1,2, are thus
systematic scheme for generating teaching samples, which

gives good generalization to untrained testing samples. Fur- 5
thermore, the distribution model enables quantitative evalu- ()= 1 ex _(X_'“i)
ation of the network’s performance through the use of sta- P! \/_ 252
tistical criteria of errors in thresholding. 2mo; !

: 5

. o whereu; ando; are the means and the standard deviations
3 Histogram Distribution Model of the Gaussian distributions, respectively.
In this section, the histogram distribution model will be The observed histogram is only a realization of the den-
introduced as the framework for solving the histogram sity function, and such random realizations can be obtained
thresholding problem. The gray-level histogram can be ap-by samplingN times the random variable with density
proximated as a set of random realizations of a prObabi”tyfunction h(x) for generating a histogram Withl pixe|s_
density functionh(x). The probability density function The methods for generating histograms by sampling vari-
h(x) can be modeled as a mixture of two probability dis- ous distributions can be found in Ref. 10. Alternatively, the

tributions observed histogram can be approximated by a signal depen-
dent noise modéf Figure 2 shows some of the histograms
h(X) = p1p1(X) + p2p2(X), (4) generated with the observation model.

In order to compare the performances of different
wherep, andp, are the proportions of the two classes of thresholding algorithms on the mixtures of Gaussians, the
objects, andp;(x) and p,(x) are the probability distribu-  misclassification error is employed. In the case for a mix-
tions of the two classes, respectively. The probability dis- ture of two Gaussians, the misclassification error when
tributions can be modeled by standard distributions such asselected as the threshold is given by:
the Gaussian distribution or the Poisson distribution.

In this paper, the Gaussian distribution is chosen to il- t x
lustrate the approaches. Similar derivations can also be 0bE(t)=p2f po(x)dx+ plf p1(x)dx. (6)
tained using other distributions. The validity of this choice - t
is also justified by the central limit theorem, which states
that the distribution of the sum of a large number of inde- In simulations, the discrete version of the above formula is
pendent random variables will approach a normal distribu- implemented,
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x<t x=L of the histograms. The zeroth, first, and second moments of
E(t)=p22 pz(x)+p12 p1(x). (7 the foreground and ba(_:kground portions of the thresholded
X=0 x=t histogram are, respectively,

With a total ofN sample histograms, the average misclas- =St1h mo.=SL-1h
sification error for any chosen algorithm is defined as, 1=071y b Si=t T

— 3E Mya=3125ih;, my=31tih;, (12)
E_T’ (8)

a=2123i%h;, my,=3Ft%h
where E; is the misclassification errog(t) for the j’th

sample histogram. The mean and the standard deviations are defined as
The use of a single criterion is prone to bias of various
kinds. An additional criterion, the accuracy, will be em- m;, My

ployed in order to make a fair comparison. The accurr:lcy,%F—m0 » MbT
a

m
A(t) is defined as the ratio between the minimum misclas- 0b (13
sification error and the misclassification error of the algo- m m
i i 2 2b
rithm on the histogram, o= —— Wi op=———pu.
Moa Moy
A(t) =E(to)/E(1), 9

In Otsu’s method? the threshold is selected so as to
whereE(t,) is the minimum misclassification error amgl maximize the class separability, which is based on the
is the optimal threshold, defined by the threshold that mini- within-class variance, between-class variance, and total
mizes the misclassification errors. This accuracy will take variance of gray levels. This method is nonparametric, un-
its maximum value of one when the thresholselected by  supervised, and can be applied withayriori knowledge.
the thresholding algorithm gives the minimal possible clas- This method has wide applicability and is often used as a
sification error. With a total oN sample histograms, the standard algorithm with which other thresholding algo-
average accuracy for any chosen algorithm is defined as fithms are compared.

A__ EjAj (10) Notsu(t) = MoaMop(sa— Mb)z- (14
= - |
In the 13m|n|mum error method of Kittler and
optimal thresholdt, is the threshold that minimizes the ©Piect and the background are both assumed to be Gaussian
error above criterion distributed. A criterion function is constructed such that the
' threshold selected will minimize the average error in pixel

t,=arg minE(t). (12) classification.

Op

In designing the gating network for the thresholding ap- Mminerd(t) = pa|09< 0 + pb|09( 0 ) (15
b

plication, the output layer of the network corresponds to the
four gating outputs that modulate the four expert algo-
rithms. The number of nodes in the input layer should be
assigned according to the length of the histogram. How-
ever, a more efficient representation of the histogram dat
can be achieved through the use of invariant shape descrip-
tors, i.e., variance, skewness, and kurtosis, which are the L 1
second-, third-, and fourth-order shape descriptors. One or,
two hldden Iayers can be employed in the application de- €a= Moa z hilog(hi) —log(ma),

a

The maximum entropy methdtiselects the threshold
that maximizes the entropy of the segmented portions of
the histogram. The entropy of segmented portion is defined

pending on the variations shown in the teaching and testing 1 Lot (16)
histograms. - hilog(h;) —log(m

In a supervised approach to thresholding, giveand & Mop Z o(hi) ~log(mop),
t,, we can design a network that is capable of regression
such that the network would generatéhat is close td,,. Nmaxent= €at €p - (17)
However, the size of the histogram would imply the com-
putationally infeasible training of a huge network. The minimum cross entropy methiGdelects the thresh-

old that minimizes the entropy of the image and its seg-

4 Thresholding Algorithms as Experts mented version. The criterion function is defined as

In the modular network approach to thresholding, classical m,
algorithms will be incorporated to form expert modules. ncroent__mlaIOg< a) myplog
Such modules can be described by the following statistics

Msp
m_) 19
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The target output of the modular expert network is given Table 1 Average misclassification errors of different algorithms: (a)
by cross entropy, (b) maximum entropy, (c) minimum error, (d) Otsu’s

method, (e) proposed approach, and (f) lower bound on errors.

t=arg mink(t), (19 @ ® © @ ©

wheret; are the thresholds selected by the four algorithms. E) 122 6.2 11.7 115 4.9 4.7

5 Results and Discussions

In order to test the performance of the modular expert net-

work, a small number of training histograms are generatedmances with the theoretical results, the lower bound of er-
to train the network and a large number of testing histo- rors is calculated with the additional information of the
grams are tested on the network. The small number ofindividual distributions that generate the histograms. The
training histograms simulates typical situations where lower bound on errors measures the amount of the overlap
teaching data are limited. The large number of testing between the component distributions and thus represents
samples approximates the overall behavior of the networkthe smallest misclassification error that can be achieved.

over as large a sample space as possible. The lower bound on errors can be calculated from the av-
The training sample histograms are generated under theerage of the minimum of misclassification errors in Eq.
following conditions: using an exhaustive search. The upper bound on accuracy
follows from its definition as a ratio as shown in E§).
* p1 is uniformly sampled from the intervéd.01, 0.99, Comparing the results on the average misclassification
p2=1-p1 errorsE, the error of the neural network approach is sig-
 u; is uniformly sampled from the interval71.5, nificantly smaller than the error of any other major thresh-
121.5 olding algorithms. In fact, the average misclassification er-

ror of the neural network approach is very close to the

* p is uniformly sampled from the intervall35.5,  |5wer bound on the misclassification error.

185.5 Comparing the results on the average accuracy, the pro-
* o4 are uniformly sampled from the intervgb, 30, posed method is very close to the optimal result, achieving
0=07. an average of 96% accuracy. This average accuracy is

much higher than the best performing classical algorithm,
The testing histograms are generated under the follow-the minimum error method, which achieves an average of
ing conditions: 69% accuracy. It is also of interest to note that the maxi-
) ) mum entropy algorithm does not perform as well under the
* py varies from 0.01 to 0.99 in steps of 0.04;=1 criterion of average accuracy than the average misclassifi-
—p1 cation error. The reason is that the average misclassification
« o4 varies from 5 to 30 in steps of 0.252, = o error is easily dominated by sample histograms with large
: . . errors. The average accuracy defined in this paper normal-
* w1 is uniformly sampled from the interval71.5, ;o5 the performances of thresholding algorithm so that
1219 each sample histogram has an even contribution to the av-
e u, is uniformly sampled from the intervall35.5, erage.
185.5. Another important property of the learning algorithm is
the ability of the algorithm to generalize from a limited
The testing samples consists of 99 different valugs@fid  population of training samples. The modular network is

99 different values otr. For each set of values pfanda, trained with different numbers of training samples and
five sets of values fop; and u, are generated. Thus, the tested with a large testing set. Figure 3 shows the average
total testing sample set is comprised of 49Q09%x 99X 5) misclassification error of the network. The average error
histograms. drops sharply with the first 50 training samples. There is

The intervals forw, andw, are chosen such that; and further gradual improvement as the training samples in-
W, are separated from each other and away from the maxi-creases to 1000 training samples. Figure 4 shows the aver-
mum and minimum gray values of 255 and 0. The intervals age accuracy of the network. Similar to the results shown in
for standard deviations; ando, are chosen to cover situ- the misclassification errors, only 50 to 100 training samples
ations of minimal overlapping to high overlapping of gray aré needed to achieve a 90% average accuracy. The small
levels between the foreground and the background. Thelraining sample size required for training the network can
proportions of the background against the foreground are inP€ attributed to the random uniform sampling in parameter
ratios ranging from 1:99 to 99:1, which should cover com-
monly occurring situations. The observed histogram noise ) )
is set as 0.01, which gives a moderate amount of noise torable 2 Average accuracy of different algorithms: (a) cross entropy,
the histogram. (b) maximum entropy, (c) minimum error, (d) Otsu, (e) proposed

. . approach, and (f) upper bound on accuracy.
The performances of the different thresholding algo-

rithms on these testing histograms are shown in Table 1 and @) (b) © ) © ®
Table 2. The results on the modular network approach were
obtained by training the network with 1000 sample histo- () 580 610 690 625 961 100

grams. In order to compare the various algorithms’ perfor-

290 / Journal of Electronic Imaging / July 1997 / Vol. 6(3)
Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 08/05/2013 Ter ms of Use: http://spiedl.or g/terms



Modular expert network approach

5 ' ' T T f T S ——
[s] 100 200 300 400 500 600 700 800 900 1000
N

Fig. 3 Average misclassification error versus training sample size.

450 |8

space of the Gaussian density. Such a sampling schedulesoo . ¥ \ &
generates a set of teaching samples with a wide spread of 100 200 300 400 500
shapes and properties enabling a good generalization to be

obtained.
50

5.1 Applications to Real-World Images 100

In this section, results are presented as an application of the
modular network applied to the biomedical problem of
guantitative measurement of cancer cells. Figure 5 shows
two samples of cell images. The cell images represent tu- 200
mor sections obtained from patients who have bieesitu
hybridized for tumor-related viruses. The gray values of the 2%0[
infected portion are approximately proportional to the
amount of tumor-related virus. The aim of the analysis is to
establish the amount of reaction in terms of the relative
strength and the percentage of reacted population. Figure €
shows the histograms of two images. Those gray values
coming from the infected portion and the uninfected por-
tion can be assumed to be approximated as Gaussian distri
butions. Each of the two portions is characterized by a dif-
ferent set of mean, proportion, and variance. In some cell
samples, there are also white space regions where no cells
reside. Such pixels can be easily removed from the histo-
gram since they have distinctly high gray values.

150

-

400

4501

100 200 300 400 500

Fig. 5 Cell samples.

o In theory, the gating network can be trained solely with

cell histograms with thresholds selected manually by hu-
man experts. However, a good training set requires the se-
lection of a large amount of data from a huge database to
include a sufficient variety of samples for representation.
Such a large database may not be available readily, and in
any case, the selection and training processes are very time-
consuming. Therefore, we propose to construct a hybrid
training set using a combination of synthetic samples and
actual samples. The synthetic samples are mixtures of
Gaussian distributions selected to approximate a wide vari-
ety of histograms. These are used to complement the actual
cell histograms for improving the generalization to un-

%

85

0 100 200 300 400 530 €00 700 8O0 900 1000 trained samples. To control the effect of the actual histo-
gram as compared to the synthetic ones, we can include
Fig. 4 Average accuracy versus training sample size. duplications of the actual samples in the training set. In the
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following investigations, 100 cell histograms are selected g9l
as the training samples and each of the cell histograms is
duplicated ten times making a total of 1000 cell sample 1sq
histograms. These 1000 cell histograms and 1000 synthetic
Gaussian mixtures are supplied with shuffling as the train- 100
ing samples to the gating network. Figure 7 shows the re-
sult of the segmentation of the modular network. The nuclei so
and the cytoplasm are separated by black lines. The results
agree with evaluation by human experts.
Further areas of applications include image thresholding
in vision-based automated a_lssembly lines E_md InSpeCtIOrl:ig. 7 Result of cell samples after thresholding by the modular net-
systems. The ensembles of image samples in an assemblygk.
line can be modeled by specific distributions whose param-
eters are time-varying as a result of various factors: noise in
sensors, mechanical tolerance, changes in ambient environReferences
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