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For a given observed time series, it is still a rather difficult problem to provide a useful and compelling

description of the underlying dynamics. The approach we take here, and the general philosophy

adopted elsewhere, is to reconstruct the (assumed) attractor from the observed time series. From this

attractor, we then use a black-box modelling algorithm to estimate the underlying evolution operator.

We assume that what cannot be modeled by this algorithm is best treated as a combination of dynamic

and observational noise. As a final step, we apply an ensemble of techniques to quantify the dynamics

described in each model and show that certain types of dynamics provide a better match to the original

data. Using this approach, we not only build a model but also verify the performance of that model.

The methodology is applied to simulations of a granular assembly under compression. In particular,

we choose a single time series recording of bulk measurements of the stress ratio in a biaxial

compression test of a densely packed granular assembly—observed during the large strain or so-called

critical state regime in the presence of a fully developed shear band. We show that the observed

behavior may best be modeled by structures capable of exhibiting (hyper-) chaotic dynamics. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4790833]

Inferring dynamical structure of a deterministic nonlinear

system from noisy time series data is a long standing prob-

lem. Here, we demonstrate the application of a range of

methods to a problem of particular interest in the study of

granular materials. An initially dense assembly of grains

under biaxial compression with constant confining pres-

sure reaches a near steady-state behavior (modulo fluctua-

tions) in the large strain regime. The dynamics of this

system at this limit are the focus of this paper—and of sig-

nificant interest within the soil mechanics literature.

Understanding the dynamical response of the granular

structure in this regime is crucial for prediction and con-

trol in many industrial and geophysical systems. Our anal-

ysis indicates that the dynamics of this system in the

presence of a fully developed shear band are consistent

with a form of transient chaos—characterized by a bista-

ble system which switches between two chaotic regimes,

one with large slow oscillations and one with smaller and

faster dynamics.

I. INTRODUCTION

When an initially dense two-dimensional sample of granu-

lar material is biaxially compressed under a constant confining

pressure, the load-carrying capacity of the sample, as measured

by the macroscopic stress ratio r11�r22

r11þr22
, and its macroscopic vol-

ume evol, reaches a near steady-state condition in the large

strain regime. It is the dynamics observed in this post-failure

regime, sometimes referred to in the soil mechanics literature

as the “critical state,” that is of key interest in this study.1 This

limit state is posited, in critical state soil mechanics, to occur

when dense, and also loose, granular media, subject to com-

pression, reach the same void ratio at large strains independent

of the initial density state.2–6 A “true” steady-state (i.e.,

observed constant trace of time series measurements of the

macroscopic stress) is difficult to achieve experimentally as

stress and volume fluctuations, albeit small in amplitude, are

still present.7,8 This failure to reach an asymptotic steady-state

behavior is often attributed to the process of particle breakage,

or comminution. However, discrete element simulations

(DEM) without modeling a breakage mechanism also exhibit

fluctuations in bulk time series in the high strain limit.6 Due to

system size (i.e., number of virtual grains in a DEM) the fluc-

tuations are typically more pronounced than observed in the

laboratory.7 We take the view in concert with others3,9 that

these fluctuations in the stress are a result of dynamical insta-

bilities at critical state; and indeed, the rise and fall of the

macroscopic stress, reminiscent of stick-slip motion, is a rea-

sonable analogue to earthquake dynamics in fully developed

fault gouges.10 With this potential and profound application in

mind we examine the critical state, or large strain behavior, of

macroscopic stress fluctuations in a representative DEM simu-

lation from a nonlinear dynamics and complex systems per-

spective. This study is undertaken as a prelude to a broader

program, aimed towards the development of dynamical sys-

tems tools for characterization of the dynamics of geological

failure and seismic phenomena, from the length scales of

grains to tectonic plates.

Our primarily interest is dense media and this large

strain regime. Initially dense samples often evolve in the

presence of fully developed shear bands: narrow zones ofa)Electronic mail: michael.small@uwa.edu.au.
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intense shear, measuring around ten particle diameters in thick-

ness. Processes inside shear bands are highly dissipative and

marked by the birth-death dynamics of force chains. This is in

distinct contrast to the essentially elastic loading/unloading

cycles observed from the undeforming regions outside,

wherein grains move together in almost rigid body motion.

The extreme prevalence of shear bands, as a mode of failure in

many forms of granular materials, mean that a proper under-

standing of processes inside shear bands, and associated phe-

nomena such as the aforementioned stick-slip behavior,10–12 is

crucial for the prediction and control of many industrial, civil

engineering and geophysical processes. Indeed, so important

are shear band dynamics to experimental observations and

explanations of critical state behavior that Mooney et al.7 have

stated: “Critical state concepts as applied to ultimate state
behavior are applicable only within the shear band, the area
that undergoes continued deformation.”

In this study, we examine time series data for the stress

ratio, obtained from a simulation of an assembly of polydis-

perse spherical particles, subject to a biaxial loading condi-

tion while particles are constrained to move along a plane.

This sample behavior is representative of the behavior in

so-called critical state as reported by others (e.g., Refs. 3, 6,

9, 13). In numerical simulations where system size, in terms

of number of particles, is generally smaller than in the equiv-

alent soil mechanics laboratory tests, the stress fluctuations

or stick-slip become more pronounced and revealing of the

underpinning dynamics.

Realistic DEM simulations have the advantage that infor-

mation at the particle scale is available (e.g., data on particle

positions, displacements, rotations, contact forces etc.), facili-

tating particular details of the microstructural processes re-

sponsible for the observed time series, including those

governing the rises versus the falls in stress, to be unravelled.

Knowledge of these microstructural processes have led to

understanding of critical state behavior through characteriza-

tion of the fabric, contact anisotropy and also predictive mod-

els based on micromechanical considerations.2–5,9,14 More

recently, formalisms within the framework of Cosserat or

micropolar continuum have combined the strengths of phe-

nomenology and micromechanics to generate a set of constitu-

tive relations valid for this large-strain regime.15 For samples

undergoing localized failure, see also the related local consti-

tutive models developed by Luding and co-workers16,17 based

on observations from two dimensional discrete element simu-

lated compression tests. In particular, a set of differential

equations has been formulated by Tordesillas et al.15 from

phenomenological relations among the stresses; though phe-

nomenological, the particular form of these relations was

inspired from a micromechanical analysis of mechanisms

governing fully developed shear bands in the large-strain criti-

cal state regime. System dynamics from this model, and

anticipated future versions from a purely micromechanical

approach, can be characterized using dynamical systems

theory, following past models (e.g., Ref. 15). To the best of

our knowledge, however, there has been no attempt to extract

information on the system dynamics, from a direct analysis of

the time series data using either simulation or experimental

data. Of interest is whether or not the dynamics as observed

from the time series are consistent with the dynamics pre-

dicted by the various constitutive models proposed for the

large strain critical state regime.

Here, we attempt to bridge this gap through a statistical

study, using recent advances in nonlinear time series and

complex network analysis, to provide useful information to

the continuum modeler, based on the observed rheological

behavior from time series of a representative biaxial com-

pression test of a granular assembly. To characterize the

physical behavior of this process, we treat the observed

data (actually a bulk measurement of Stress Ratio vs. Axial

Strain where strain is being increased linearly over time) as

a time series. As the level of strain increases beyond the

point where the stress ratio reaches a peak and the sample

fails through the formation of a persistent shear band, the

system approaches a critical state where for further

increases in strain, the system dynamical state is approxi-

mately stationary. It is the behavior of the system in this

post-failure large strain near steady-state regime that is of

interest in this paper.

We treat that behavior as a single time series output of

a stationary dynamical system and attempt to characterize

the dynamics of that system. We note that, in this instance,

we consider autonomous system models, and thus axial

strain, our proxy for time, is not explicitly used within the

models—only the sequential ordering of the stress ratio at

observed strains is important. Thus our methods could

equally well apply to other loading programs including

cyclic shear.18,19 To achieve this, we use an ensemble of

tools which have been available separately, but we combine

them to better address a basic problem with black-box mod-

eling. While it is possible to build a model from a time se-

ries and then study the behavior of the model, this may not

necessarily translate back to the underlying system which

generated the data: different models may have different

behavior. To better calibrate the models to the data, we

apply a range of nonlinear statistical measures to the output

of the model and compare this to the data. Once we find a

model which has behavior consistent with the data, we are

then able to make a much stronger statement about what

behavior is being observed in this data. In this case, we find

that models consistent with the data—the dynamical insta-

bilities at critical state manifest as fluctuations of the mac-

roscopic stress ratio—exhibit a transient form of chaos.

A. Modeling data and inferring dynamics

Oftentimes, for experimental nonlinear systems, it is not

possible to write down a closed-form analytic description of

the dynamics. In such situations, it is therefore appealing to

apply the methods of delay reconstruction21 and nonlinear

modeling22 to estimate the underlying evolution operator.

One can then use this estimate to study properties of the dy-

namical system which it represents, and then extrapolate this

to the experimental system of interest. Unfortunately, this

second step can be problematic. For example, Maquet and

co-workers23 construct global nonlinear models fitted to the

Canadian Lynx time series to demonstrate that the data are

potentially consistent with chaos: the chaotic dynamics of

013113-2 Small et al. Chaos 23, 013113 (2013)
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the models is claimed as direct evidence of chaos in a real

ecosystem. Small and Carmeli24 reexamined the same data

set with their own global models. While these models also—

on occasion—exhibit chaotic dynamics, such behavior is far

from ubiquitous. In Fig. 1, we plot the original data used by

both Refs. 23 and 24 together with an ensemble of model

simulations.

For the Canadian lynx data depicted in Fig. 1, model

simulations—with the addition of a dynamic noise term—all

appear qualitatively to behave very similarly to the observed

time series. However, when the models are iterated without

noise over a time span far greater than the original data, both

chaotic and periodic dynamics are observed with apparently

similar frequency. Later in this paper, we will show how this

can be more rigorously quantified. However, a second ques-

tion now arises: given an ensemble of models built from the

same data set, which model is correct? This paper will pro-

vide a methodological approach to address this problem—

although, of course, the question is too ill-posed to allow for

a generic answer. For the Canadian lynx data, the answer

unfortunately turns out to be that the situation is particularly

unclear. The original data simply is not long enough to dis-

tinguish between models which exhibit chaotic dynamics

from those which are periodic, or, indeed models with an

extremely long chaotic transient leading to a fixed point.

B. Dynamical behavior in granular assembles

Nonetheless, the main focus of this paper is to examine

a separate, and perhaps more apposite, system. A granular

assembly which is compressed in the axial direction at a

constant rate (displacement-controlled) and confined later-

ally under constant pressure, ultimately reaches a near-

steady so-called “critical state” regime, in which the bulk

stress, measured through the stress ratio, fluctuates about a

near constant value.3,5,6,13,25

In discrete element simulations and experiments on ini-

tially homogeneous and dense granular materials (e.g.,

sand), these episodic fluctuations in the global stress (also

known as stick-slip) often coincide with the presence of

fully-developed, persistent shear bands of around 8–10 mean

particle diameters in thickness.25 It is possible for critical

state to be approached without localization but here we focus

on the dynamics exhibited by a sample which does fail by

localization. When failure occurs through strain localization,

the spatio-temporal averaged behavior of the material inside

the fully developed shear band becomes almost invariant.

As Mooney et al.7 pointed out, and Desrues and Viggiani8

reiterated, critical state can only be reached inside shear

bands if at all.

Recent studies show that the nature of these fluctuations

is intimately tied to the “birth-death” dynamics associated

with the growth and failure by buckling of major load-

bearing force chains and attendant particle rearrangements

inside shear bands.25–27 An alternative proposal which, under

certain circumstance, may provide a not entirely inconsistent

explanation of the origins of critical state and localized fail-

ure has been proposed by Mesarovic et al.4 through the

mechanism of so-called flips. These involve a plastic defor-

mation followed by an elastic relaxation at the particle scale

and the authors tie the origin of shear bands to a slight

increase in the frequency of these events. However, force

FIG. 1. The Canadian Lynx time series: chaotic

or periodic? The upper panel shows the original

data (open circles) from which various global non-

linear models have been built. The lower panel

depicts the dynamical behavior of three such mod-

els. The horizontal axis in the upper panel is the ob-

servation year: one data point per year. In the lower

three panels the horizontal axis are in units of model

time steps: 10 time steps per year. Hence, the upper

panel covers a period of 115 years, the lower panels

cover a period of 300 years. The vertical scales are

arbitrary (derived from the total quantity of lynx

pelts harvested in a given year). The dynamics

observed in the lower three panels are: chaotic,

almost periodic and exactly periodic.
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chain bucking (emerging at the onset of failure and localized

within shear banding) is clearly the dominant micromechani-

cal process to characterize and model—both in order to study

the dynamics and physics of critical state behavior in detail

as well as the macroscale behavior of geomaterials. Our aim

is to use tools from complex systems applied to bulk meas-

urements to help characterize the global behavior of the

emergent dynamics resulting from this underpinning meso-

scale process.

The outline of the remainder of this paper is as follows:

In Sec. II, we describe the representative DEM sample and

observed data in more detail. In Secs. III and IV, we summa-

rize our calculations and results. Section V provides a short

conclusion.

II. DEM BIAXIAL COMPRESSION TEST

The observed time series, we study is taken from a

representative discrete element (DEM) simulation, under-

taken to study the rheological response of assemblies of

spherical particles, constrained to move in a plane, subject to

biaxial compression.25,28,29 For the sake of clarity and con-

ciseness, we restrict our attention to a single time series.

Nonetheless, the methods are completely generic and should

be applicable elsewhere. The particular time series we have

chosen is a robust representation of dense granular behavior

and has already been studied extensively.25,28–31

Contact laws, modeling interaction between particles

and between particles and walls, describe resistance to

relative motion through a combination of linear springs,

dashpots, and frictional sliders. Normal and tangential resis-

tive forces, as well as a moment (rolling resistance), act at

each contact, in accordance with.30 The contact moment is

introduced to account for the effect of particle shape (e.g., re-

sistance to relative rotations due to particle interlocking31).

This modification to the classical DEM model of Cundall

and Strack32 has been adopted in numerous simulations of

granular processes in order to control the relative rotations of

particles at contacts and achieve more realistic rotations and

stress predictions (e.g., Ref. 10). Table I provides a summary

of the simulation and material parameters used. The vertical

side-walls are frictionless, so that particles can slide and roll

along them without any resistance; otherwise, all other mate-

rial properties are identical to those of the particles. The top

and bottom walls are assumed to have the same material

properties as the particles.

The sample exhibits three distinct regimes of deforma-

tion from an initially isotropic state. With respect to Fig. 2,

we first observe a period of strain-hardening which can be

further identified with two distinct response behaviors. At

first, there is a relatively rapid rise in the stress ratio while

the sample undergoes a volumetric contraction, up to around

�yy ¼ 0:02 at which point volumetric strain reaches a mini-

mum. Second, the sample undergoes dilatation, lowering the

rate of increase in the stress ratio compared to the preceding

phase before a peak value is reached at around �yy ¼ 0:034.

After peak, the second regime can be observed, characterized

by a brief period of strain-softening under dilatation. After

�yy ¼ 0:04, a pseudo steady-state regime can be observed,

whereby stress ratio and volumetric strain essentially taper

off to some residual value, modulo fluctuations. This is the

region we study here. The deformation in this higher post-

peak stress regime occurs in the presence of a single persis-

tent shear band.25 Stress fluctuations in this steady-state

regime reflect the dissipative dynamics in the band; and tem-

poral distributions of micropolar measures of nonaffine de-

formation have been shown to capture such dissipation.25

More detailed examination of the spatial and temporal

aspects of this dissipation has been tied to the continual for-

mation and collapse by buckling of force chains.20,25 These

discoveries have been used to develop a continuum model of

TABLE I. DEM 2D biaxial compression test parameters and material

properties.

Parameter Value

Applied strain rate _�yy �8� 10�3=s

Confining pressure rxx 7:035� 102N=m

Timestep increment 6:81� 10�7 s

Initial height:width ratio 1:1

Number of particles 5098

Particle density 2:65� 103kg=m3

Smallest radius 0:76� 10�3 m

Largest radius 1:52� 10�3 m

Average radius (uniform distribution) 1:14� 10�3 m

Initial packing density 0.858

Interparticle friction l 0.7

Particle-wall friction l (top, bottom) 0.7

Particle-wall friction l (sides) 0.0

Rolling friction lr 0.02

Normal spring stiffness kn 1:05� 105N=m

Tangential spring stiffness kt 5:25� 104N=m

Rotational spring stiffness kr 6:835� 10�2 Nm=rad

FIG. 2. Biaxial compression test. (Top) The observed time series of the

bulk measurement of the stress ratio r11�r22

r11þr22
with respect to axial strain jeyyj.

The strain interval of interest is indicated by the bolder blue trace and covers

the high strain post-peak regime (so-called critical state), where the material

has failed and the response is in an approximately steady-state, exhibiting

characteristic stick-slip (jamming-unjamming) dynamics. (Bottom)

Although not used in the modeling it is informative to soil mechanicians to

observe the volumetric strain response evol evolution with respect to axial

strain. The sample initially contracts and then dilates before reaching a more

steady state response in the high strain region from where models in a recon-

structed phase space of time-delay stress ratio variables are built.
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the stress propagation within a granular material using a

Cosserat formalism.15 A question we seek to answer here is:

can a comprehensive black-box modeling approach, encom-

passing nonlinear time series and complex network methods

of analysis applied to bulk measurements, give useful infor-

mation to help further refine and develop such approaches to

continuum modeling?

III. COMPUTATIONS

There are three necessary and distinct steps to character-

ize the dynamics of an observed time series from noisy

experimental observations: (A) reconstructing the phase

space, (B) estimating the evolution operator, and (C) verify-

ing that the model behavior matches the observed data. Each

of these steps can be achieved with a host of methods, and

which methods one chooses depends on the proclivities of

the practitioner. While the choices we make are personal and

based on our own bias, rather than necessarily optimal, they

are nonetheless well established. Much of this background

can be found in several texts and monographs; we recom-

mend Small22 for obvious reasons.

Our approach, described in detail below, combines tasks

(A) and (B) above. Before proceeding, however, we find it

useful to follow the more standard application of the nonlinear

time series toolbox for reconstructing a phase space to analyze

the time series to gain insights into the character of the under-

lying dynamics.33 The methods of nonlinear reconstruction

are built on the assumption that the underlying dynamical sys-

tem explaining the process can be represented by a set of ordi-

nary differential equations whose state space has dimension d.

Since, we typically only have access to a scalar time series—

in our case the observed macroscopic stress ratio—which is

some projection of the d-dimensional state variables, we must

reconstruct an equivalent phase space to help characterize and

model the dynamics. This can be achieved subject to some

general conditions by the method of time-delay embedding21

whereby a coordinate system of dimension de—the embed-

ding dimension—is constructed by using values of the time

series and its delays at a given lag. We want trajectories in

this reconstructed phase space to smoothly unfold the dynam-

ics so that points close within de-dimensional space will

evolve together over short time intervals. Thus de must be

selected large enough so that the geometry of points close to

each other are close to each other due to the dynamics and not

because of a poor projection to too low a dimension.

Typically, de > d and one approach for determining a

useful value for de is the method of false nearest neigh-

bors.33 For a given lag, the time series is embedded in suc-

cessively higher dimensions and the percentage of false

neighbors (i.e., the proportion of points close together due

to projection rather than dynamics) is calculated. The value

of de when this percentage falls to zero or a noise floor is

regarded as a good choice of global embedding dimension.

Computation of the proportion of false nearest neighbors

observed for increasing embedding dimension (here,

embedding lag set to 1) is shown in Fig. 3 along with com-

putation of local false nearest neighbors.34

Local false nearest neighbors is a modification of the

method of false nearest neighbors which takes a prediction

horizon of the dynamics into account as well as the geometry

of phase space. Local false nearest neighbors is capable of

detecting the true dimension of the underlying dynamics (dL)

or the number of active degrees of freedom in the system.

We have dL � de. False nearest neighbors indicates a global

embedding dimension of de ¼ 6 while local false nearest

neighbors indicates that the local dynamics can be embedded

in dL ¼ 4 dimensions—hence at least a four dimensional

FIG. 3. False nearest neighbors. The

upper two panels depict the proportion of

false nearest neighbors (embedding lag 1)

for the data depicted in Fig. 2. For de > 6

there are no false nearest neighbors, the

proportion drops to almost 0 for de > 4.

The lower panel is the proportion of local

false nearest neighbors, a measure of the

locally sufficient embedding dimension,

for local dimension dL � de ¼ 6 (again,

embedding lag is 1 and the prediction

horizon is 3). The calculation is repeated

for various n¼ local neighborhood sizes

Nb ¼ 10; 20; 30;…; 100 and plateau

onset at a local dimension of dL ¼ 4 is

evident. The local Lyapunov exponent

spectrum indicated four genuine expo-

nents with one or two positive.
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system of ordinary differential equations is required to

describe this system, i.e., four state variables. This is consist-

ent with isostatic Cosserat continuum formalisms to model

stress and strain relationships.15

Having established a suitable global embedding dimen-

sion and obtained knowledge of the number of active degrees

of freedom in the system, we can go a step further and recon-

struct local models of the dynamics. These models can take the

form of linear or quadratic maps which approximate the evolu-

tion law of reconstructed phase space points based on the

observed dynamics of nearby reconstructed phase space points.

We can extract the Jacobian matrices of these local models

and combine them to calculate the local Lyapunov exponent

spectrum over strands of length 2L; L ¼ 1; 2;…; Lmax.33,35 The

Lyapunov exponents are dynamical invariants and their signs

help to characterize a dynamical system. If the underlying

dynamics is represented by an ordinary differential equation,

one of the exponents will be zero. A chaotic system has one

positive Lyapunov exponent and if a system has two or more

positive Lyapunov exponents, it is termed hyper-chaotic.

Moreover, for dissipative systems the total sum of Lyapunov

exponents is negative. Computation of the Lyapunov exponent

spectrum using local linear maps with de ¼ 6 and lag 1 is

shown in Fig. 3. We find four genuine exponents consistent

with dL ¼ 4 and the sign distribution of the exponents is seen

to be þþ0– or þ0– – depending on which of the close to zero

exponents is chosen as the zero exponent.

The above first steps of application of the nonlinear time se-

ries toolbox has shown that the number of active degrees of free-

dom of the underlying system as determined by analyzing the

observed time series is four. The local Lyapunov spectrum is

consistent with this identification; however, whether or not the

process is best described by a nonlinear chaotic or hyper-chaotic

system is unclear given the accuracy of the approximation to the

exponents. Given these insights and uncertainties, we now

depart from the conventional approach and describe our method

of embedding (A), modeling (B), and testing (C) in order to fur-

ther characterize the dynamics based on the observed data.

A. Embedding

We start with an observed scalar time series fxtgt—here,

the observed macroscopic stress ratio. Generically, we assume

that the underlying system has dimension d and to reconstruct

it one must choose an embedding dimension de > d. Follow-

ing Refs. 36 and 37, we do not concern ourselves with the

appropriate choice of embedding lag, but leave that to the

modeling algorithm. Rather, we choose de � d such that

the vector variable vt can now be treated as an over representa-

tion of underlying deterministic phase space

vt ¼ ðxt; xt�1; xt�2; xt�3;…xt�ðde�1ÞÞ: (1)

Thus vt consists of observed values of the stress ratio and its

time delays (i.e., past values).

B. Modeling

The second step is to estimate the evolution operator.

That is, the law which maps the reconstructed phase space of

stress ratio at time t (i.e., vt) to the next reconstructed data

point at time tþ 1 (i.e., vtþ1). In general this is the closed-

form expression diffeomorphic to the dynamic evolution of

the underlying system and is a map from Rde to Rde . For us,

Eq. (1) makes the task a little easier, and we instead seek a

function F : Rde ! R such that

FðvtÞ ¼ xtþ1; (2)

and hence vtþ1 ¼ ðFðvtÞ; xt; xt�1;…xt�ðde�2ÞÞ. Of course,

there are many choices for algorithms to estimate F. The

one we choose was first described by Judd and Mees38

and more recently extended by Small and co-workers.39,40

In summary, this approach constructs a function F of the

form

FðvtÞ ¼ k0 þ
Xb1

i¼1

kivt�‘i
þ
Xb2

i¼1

kiþb1
/
jvt � cij

ri

� �
; (3)

where the weights ki are chosen as the best linear fit; the non-

linear terms ‘i, ci, and ri are chosen with a nonlinear algorithm

combining stochastic search and local steepest decent optimi-

zation; and, the model size terms b1 and b2 are constrained

using the minimum description length criteria of Rissanen,41

as outlined in Judd and Mees.38 The functions /ð�Þ are chosen

to be functions of a single variable defined on ½0;1Þ: Gaussian

(e�
x2
2 ), cubics (x3), Morlet wavelets (cosð2p x

sÞexpð�2ðp
5
Þ2 x

s

� �2Þ
�expð� 52

2
� 2ðp

5
Þ2 x

s

� �2ÞÞ or sigmoids (tanh x
s). Note that we

have relaxed the usual requirement of compact support fre-

quently associated with radial basis functions (in our experi-

ence doing so actually increases the flexibility and stability of

our models—at the expense of analytic tractability) and allow

for a variety of different basis functions within a single model:

in effect, the term /ð�Þ in Eq. (3) should more properly be writ-

ten as /ið�Þ and it is understood that each such function is one

of the forms listed above. Finally, some of these functions /i

(the wavelets and sigmoids) include a second nonlinear param-

eter s—when such is needed this second parameter is fitted fol-

lowing the same procedure as described above for the basis

radius terms ri.

Now that we have described the model, it is clear that

there is no possibility of a computationally tractable algo-

rithm to provide the global optimum. Nor, indeed, would it

necessarily be very good: it is quite likely that such an opti-

mum may exhibit rather sensitive dependence of the various

model parameters. Instead, we utilized a variety of stochastic

and heuristic search algorithms to generate good models of

the observed data. From these models it is easy to generate

simulations of the underlying dynamics via a modified ver-

sion of Eq. (2)

xtþ1 ¼ FðvtÞ þ et; (4)

where et � Nð0; r2Þ is some Gaussian distributed noise term

of fixed variance r2. The assumption of additive Gaussian

noise is reasonable here because the linear fit of the parame-

ters ki as well as the computation of minimum description

length both employ it. The noise variance r2 will be some

fraction of the total mean-square error of the model fit to the
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data: one assumes that the model prediction error is com-

posed both of dynamic and observation noise.

It should be clear that this model class is rather generic.

In particular, by fitting a model of the form (3) we are not

imposing any a priori dynamics on the system—the model

just seeks the simplest description of the one-step prediction

problem (2). Our task for the remainder of this paper is two-

fold: (i) to validate the model performance (i.e., which mod-

els do a good job of matching the system dynamics) and (ii)

classifying the model dynamics (exactly what dynamical

properties do these models have). To do this, we generate an

ensemble of model simulations and study these data. What

we will find is, despite the extremely broad scope offered by

(3), models fitted to the DEM data exhibits a fairly narrow

range of behaviors.

With these simulations in-hand, the next step is to deter-

mine which simulations, and therefore which model(s), most

closely matches the observed data. That is, we have obtained

a suite of black-box models which predict the future values of

stress ratio given information of past and current values of

stress ratio. Each model will have captured the dynamics to a

greater or lesser extent and we now identify through extensive

testing and comparison with the observed stress ratio data

which models have captured the salient character of the under-

lying system dynamics best.

C. Model testing

It is an element of faith, particularly within the machine

learning and artificial intelligence communities, that the

model with the smallest prediction error when tested on

previously unseen data is necessarily the best model. How-

ever, we are interested in the dynamic behavior of the system

and this is simply not necessarily the case.42,43 Instead, we

follow the approach implied by the surrogate data methods

for statistical hypothesis testing.44 Surrogate data methods

provide a computational method to determine whether an

observed time series is consistent with a particular null hy-

pothesis (linearly filtered noise, for example). To achieve

this, one generates an ensemble of time series that are similar

to the observed data but also consistent with the null hypoth-

esis (in this case of linearly filtered noise, this is done by ran-

domizing the phases of the Fourier transform of the data45).

There is no reason not to apply the same philosophy here to

FIG. 4. Linearly filtered noise. Comparison of nonlinear statistics computed with the Gaussian Kernel algorithm (correlation dimension, entropy and noise

level), and higher order linear distribution statistics (skewness and kurtosis), for the original data in Fig. 2 and linear surrogates (monotonic nonlinear transfor-

mations of linearly filtered noise). As expected the linear statistics (lower right plots) show no difference. However, the nonlinear measures indicate that the

linear model does not adequately described the dynamics (upper panels and lower left). For the nonlinear measures, the solid blue lines (no error bars) indicate

the statistic values computed for the data (as a function of the embedding dimension—a parameter of the statistic). The tight error bars (red) are the mean

and standard deviation from 100 simulations, the larger error bars (green) are the full range (minimum to maximum). For the higher order linear statistics, a

distribution of values is plotted, the value for the data are indicated as an asterisk.
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test whether a given model is consistent with the observed

time series data. Since we are interested in the dynamics of

the simulation, we wish to compute measures relevant to the

dynamical system. Small and Judd44 demonstrated that cor-

relation dimension is a suitable statistic for such a task—at

least for specific types of models. In this paper, we employ a

larger battery of statistics with the aim of addressing a more

general range of problems: we wish to find the models that

match the data well.

In the following, we employ a number of statistics to

compare the model behavior to the original data. Lack of

space prohibits all but a cursory description of each measure.

FIG. 5. Stable node. The data displayed

here are in the same format as Fig. 4,

except here the 100 simulations come

from a model of the data driven by noise.

In the absence of noise the model exhib-

its a stable node.

FIG. 6. Stable focus. The data displayed

here are in the same format as Fig. 4,

except here the 100 simulations come

from a model of the data driven by noise.

In the absence of noise the model exhib-

its a stable focus.
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Skewness: A linear measure of asymmetry in the proba-

bility distribution of the observed data. Skewness is defined

as the standardized third moment of a random variable X of

mean l and variance r2 : E X�l
r

� �3
h i

.

Kurtosis: Likewise, kurtosis is the standardized fourth

moment E X�l
r

� �4
h i

and is a measure of peakiness of the

probability distribution.

Correlation dimension: The Gaussian kernel algo-

rithm46,47 (GKA) is used as a robust estimate of correlation

dimension for a range of embedding dimensions. The corre-

lation dimension measures the structural complexity of the

underlying deterministic attractor.

Entropy: Also estimated by the GKA, the entropy is a

measure of the rate of novel information generation in the

system.

Noise: Intrinsic to the estimation of the deterministic dy-

namics in the system, provided by the GKA, is an estimate

of stochastic (observational) noise.

Motif distribution: In addition to the standard nonlin-

ear time series measures described above, we transform the

data into a complex network and compute several properties

of the complex network. Following Ref. 48, we compute the

motif superfamily distribution of the network representation.

We focus on motifs of size four (connected subgraphs of

FIG. 7. Transient chaos. The data dis-

played here are in the same format as

Fig. 4, except here the 100 simulations

come from a model of the data driven by

noise. In the absence of noise the model

exhibits a chaotic transient (typically over

a time scale longer than the observed

data) and a stable fixed point.

TABLE II. Complex network statistics. For the original data and each of

the three model classes, we computed observed values of the various com-

plex network statistics: mean path-length (aka diameter), clustering, and

assortativity. In each case, the mean value and standard deviation are

reported. Also reported is the number of simulations (out of 100 attempts)

which remained bounded. According to these measures both transient chaos

and stable node dynamics are in agreement for two out of the three measures

and differ marginally for the third.

Model N Diameter Clustering Assortativity

Data 13.1 0.353 �0.122

Stable node 58 16.0 6 2.7 0.360 6 0.0251 �0.079 6 0.060

Stable focus 100 12.1 6 0.88 0.388 6 0.0146 �0.0084 6 0.053

Transient chaos 77 13.1 6 0.84 0.358 6 0.0172 �0.053 6 0.058

FIG. 8. Motif frequency figure. For each of the three model dynamics we

computed the motif super-family which occurred most frequently—shown

here as a percentage. Motif family ADBCEF is the corresponding family for

the data (the right-most batch of columns). In models exhibiting a stable

focus, for example Motif ABDCEF occurred for all but one of the model

simulations, that exception was ADBCEF. According to this measure, stable

node and transient chaos models exhibited behavior most similar to the data.

Inset: the structure of the six four node motifs. The motif-superfamily is a

ranking by frequency of sub-graphs of order 4. The inset enumerates the six

different motifs of order 4 which are possible. The horizontal axes of the

upper panel is a ranking of these six classes (from most frequent to least).
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four nodes) and compute the relative frequency of the dis-

tinct graphs, up to node permutation.

Mean path-length: We also compute the mean path-

length, defined as the expected minimum distance between

two random nodes within the network giant component49—

confusingly, also referred to as diameter.50

Clustering: Also computed from the network representa-

tion, the clustering coefficient is a measure of the frequency of

occurrence of fully connected motifs of size 3 (triangles)

within the network.50

Assortativity: The final network based measure we

compute is assortativity. Assortativity is a measure of the

propensity for connected nodes to have similar properties. In

this case, the property we are interested in is degree. The

measure of similarity is the linear correlation coefficient of

linked nodes—that is, how well the degree of one node (line-

arly) predicts the degree of its neighbors.50

The linear statistics, skewness and kurtosis, are nothing

more than a measure of the distribution of the observed

data values: there is no temporal information encoded in

these numbers. Nonetheless, they provide a good test of the

fool-proof-ness of our algorithm: the model of dynamics

should at the very least also replicate the distribution of

observed values. Moreover, this is not something which

one explicitly requires from the modeling procedure itself

and it therefore provides a significant non-trivial and indi-

rect test of dynamical behavior. The nonlinear time series

measures (correlation dimension, entropy, and noise level)

estimated from the Gaussian Kernel algorithm46,47 provide

a good test of the model’s ability to reproduce the dynami-

cal attractor of the system. Finally, the complex network

based measures provide direct tests of the form of the

underlying dynamics.

IV. RESULTS

Here, we summarize the results for representative mod-

els of four different types. In Fig. 4, we employ linear surro-

gates45 to generate an ensemble of realizations of a linear

noise process which closely resemble the original data.

FIG. 9. Sample trajectories. The top panel depicts

the original data. The following four panels are iter-

ated free run simulations, with dynamical noise for

four different simulations from the model exhibiting

transient chaos and the same motif super-family as

the data.
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Nonetheless, Fig. 4 clearly demonstrates that the data and

surrogates are distinct. In the next three figures, we test the

three distinct classes of nonlinear models which we observe

arising from this data.

Figures 5–7 plot a comparison between model simula-

tions and the original data for models exhibiting a stable

node, stable focus, or transient chaos. Based on this compari-

son, we see that transient chaos offers the best match

between the model simulations and the data.

In Table II and Fig. 8, we summarize the results from

our statistics based on complex networks. These results are

consistent with the linear and nonlinear time series measures

described above. In Table II, we see that network diameter

and clustering show a very close agreement between the

model exhibiting transient chaos and the data—that is, the

value for the data is typical of the observed distribution for

these models. The models exhibiting either a stable node or

focus consistently deviate more from the data—while the

data are still within two to three standard deviations of the

mean observed over the models, it is less typical. Interest-

ingly, measured assortativity does not show such a good

agreement for any of these models: in part this is because the

models exhibit values of assortatvitiy that are closer to zero

than for the data. While, for example, the mean assortativity

of the stable node models is within one standard deviation of

the value estimated for the data, this distribution is somewhat

skewed toward 0. This indicates that assortativity is not only

a very sensitive measure of nonlinear dynamical structure in

the data, but that we do not yet have the full picture. None-

theless, the deviation between assortativity for the models

and the data are certainly not statistically significant—for

both the stable node models and transient chaos the observed

value of assortativity for the original data are within 1.5

standard deviations of the mean.

In Fig. 8, we summarize the results from the motif super-

family characterization. For each time series (either from the

data or a model simulation), we construct a network—it is this

network which is used to estimate the properties summarized

in Table II. From this network, we compute how frequently

each possible subgraph of size four occurs—each subgraph

(see, inset of Fig. 8) is depicted by a letter and the ranking of

their frequency leads to a string such as ADBCEF. Figure 8

provides an indication of which motif super-family (ranking)

occurs most frequently. In all cases (either stable node, stable

focus or transient chaotic dynamics) the most frequent motif

for the models is not the same as the data. However, the sec-

ond most commonly occurring motif for models with either

transient chaos or a stable node is identical to the motif super-

family ranking observed for the data. Finally, when we con-

sider only those models with the same super-family as the

data, we note that there is a very good agreement in the meas-

ured value of assortativity: for transient chaos models with the

super-family ADBCEF (the same as the data), the mean

value of assortativity is�0.091 6 0.05. Moreover, simulations

from such models are clearly qualitatively similar to the

data (Fig. 9). All three motif super-families we report here

(ADBCEF, ABDCEF, and ADBECF) are consistent with

what was reported previously for deterministic time series

contaminated with observational noise.48 The motif ranking

ADBCEF was reported in Ref. 51 as indicative of noise con-

tamination; motif ranking ADBECF occurs from this by very

slightly changing the frequency of motif E and C.

Note that the motif super-family ranking is a local mea-

sure of dynamical structure in the data: it is a measure of

connectivity patterns between similar states in the system

state space. The various configurations that are possible

(the motifs) are constrained by the local dimension of the

underlying dynamics and this, in turn, dictates which motif

super-family will arise. Hence, for example, the distinction

between chaotic dynamics (or transient chaos or hyper-

chaos) and periodic flow or a noisy stable state is a question

of what the local embedding dimension of the flow is.

Although we arrive at a method capable of distinguishing

chaos from noise this method is independent of estimation

of the Lyapunov spectrum.

In Fig. 10, we depict the dynamical behavior of this

same system in the absence of noise. Note that the dynam-

ics appear to exhibit chaotic dynamics for a very long time

(several times longer that the length of the data) before

eventually reaching a stable fixed point. The embedded

data in Fig. 10 and also Fig. 11 illustrates the high dimen-

sional deterministic dynamics during this phase. In Fig. 11,

we also plot a complex network constructed from this data.

The network structure evident here is similar to the chaotic

and hyper-chaotic systems exhibited in Ref. 49. Moreover,

the motif super-family ranking computed for this noise free

deterministic system is ABDCEF—the same motif super-

family distribution as that reported in Xu et al.48 for hyper-

chaotic flow systems.

(a)

(b)

FIG. 10. Sample trajectory. The top panel depicts a single noise free simula-

tion exhibiting transient chaos dynamics. The lower panel is an embedding of

the same data (color coded to depict different dynamical regimes). Note that the

system appears to switch between two different dynamical behaviors before

eventually collapsing to a fixed point. The time scale is the same as Fig. 9.
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V. CONCLUSIONS

While none of the constituent methodologies, we have

presented in this paper is entirely new, what we have done is

to systematically bring these methods together as a way to

describe the dynamics underlying an observed time series.

This is something that has been done in an ad hoc manner

for some time. Unfortunately, this “ad hockery” often led to

results which depended excessively on the particular model-

ing scheme employed by the investigators. While we too

have our favorite modeling methods (and have employed

them to infer system dynamics in the past39,52), what we

have presented here is an approach which is robust against

variation in modeling methodologies. The model can only be

said to really reflect the underlying dynamics if a battery of

independent and demanding statistics demonstrated no sig-

nificant deviation. For our test case from population dynam-

ics, we were unable to do this and the only conclusion that

we could reasonably make was that there was insufficient

data.

For the biaxial compression test, with strain in the sys-

tem acting as a proxy for time our results are more conclu-

sive. Each of our chosen statistics (spanning linear statistics,

nonlinear time series analysis and methods from complex

network theory) indicated strong agreement between the

data and noisy simulations of a system exhibiting a form of

transient chaos. While the transient nature of this chaotic

dynamics is interesting from a computational perspective, it

is probably only a numerical artifact. The transition time

often exceeds the length of recorded data, and the system

never reaches a stable equilibrium in our simulations because

of the addition of dynamical noise. Numerically the results

are indistinguishable from true chaotic dynamics with a

dynamical noise component. Motif super-family calculations

suggest that the dynamics are in fact consistent with hyper-

chaos with the addition of a dynamical noise forcing. This

is also consistent with our calculated approximation to the

Lyapunov spectrum from the observed data containing two

positive sign components as well as a determination of the

number of active degrees of freedom in the system being

four.

In contrast to the population dynamics test case, a fur-

ther benefit of focusing on the granular system comes when

we try to seek a physical explanation of our characterization

of the observed dynamics given what has been learned about

granular rheology in earlier work. Specifically, we can seek

explanations in terms of force chain dynamics. Force chains

are columns of particles which align themselves in the direc-

tion of maximum (most compressive) principal stress. In

recent work, we discussed the underlying mechanisms in the

observed fluctuations in global stress.25 These are corrobo-

rated by findings from high resolution experiments on

sand,53,54 which suggest that regions of high (hyperstatic)

and low (isostatic/hypostatic) coordination numbers alternate

spatially along the band, with the former being jamming

zones where force chains grow, and the latter being unjam-

ming zones where force chains collapse by buckling. The

relative dominance of these two competing events of jam-

ming and unjamming determines which of the elastic rises

and unstable drops in the strain evolution of the macroscopic

stress occur. Thus, in the so-called critical state regime

wherein the equations of Ref. 15 hold, and for which the

sample deforms in the presence of fully developed shear

bands, the macroscopic stresses result from both spatial and

temporal averaging of the stresses borne by the constituent

force chains in the system at varying stages of their respec-

tive loading histories. The analysis in Ref. 15 shows that the

governing equations for the critical state must embody at

least three autonomous state variables in order to capture the

dynamics of collective force chain evolution. Recall, the

numerical local false nearest neighbors calculation of Fig. 3

which suggests that four degrees of freedom (i.e., four state

variables) may be necessary to describe the observed dynam-

ics. Indeed, a minimum of four ordinary differential equa-

tions is necessary for hyper-chaotic behavior. Thus, our

modeling approach given the observed data suggests that

researchers formulating physical laws for dynamics at, or on

the edge of, critical state should perhaps only make simplify-

ing assumptions and continuum averaging, to the extent that

the number of active degrees of freedom are at least what we

expect—to simplify further risks restricting the range of

observable behaviour.

Critical state soil mechanics and numerical and experi-

mental evidence2,3,7,8 suggest that within the shear band the

ultimate dynamics of the system for a given material col-

lapse onto a subspace whereby the variables associated with

(a)

(b)

FIG. 11. Sample trajectory. The left panel depicts a short section of the

embedded data from Fig. 10—the section is representative of the transient

chaotic state and is the purely deterministic model output (no noise). On the

right is the complex network constructed from this embedding.
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mean effective stress, deviatoric stress, and specific volume

follow a so-called critical state line. That is, from a dynami-

cal systems point of view, there are integrability constraints

and constants of the motion relating a system description

using these variables. Our black-box modeling and testing

methods described here do not explicitly take into account

this knowledge but it is a straightforward extension to con-

sider more “grey-box” models that formulate the critical

state line as constraints within the model estimation step (B).

This is the subject of ongoing research given that the recon-

structed state space considered here only uses observed val-

ues of stress ratio and does not take advantage of other

multivariate measurements. However, the richness of the dy-

namical instabilities, we have uncovered within our repre-

sentative sample gives cautionary counsel that an imposition

of such a constraint is making the model fit the theory

rather than having the model and data inform theoretical

development. We are also in the process of extending the

analysis to other systems on the edge of critical state as well

as to experimental tests of granular shear layers,12 which

have been shown to exhibit stick-slip dynamics similar to

those observed in earthquake signatures.

In dense granular materials subject to compression,

force chain “dynamics” or evolution inside shear bands dom-

inate the behaviour in the so-called critical state for samples

undergoing localised failure. Furthermore shear band widths

are almost universal across all types of sand and loading.

Thus considering larger and larger number of particles in the

system tests should not be an important factor. It is certainly

not a factor that seems to affect the macroscopic behavior of

the system. More specifically, the birth-death evolution of

force chains (i.e., formation and failure) are responsible for

the fluctuations observed in this data (the data we present in

this manuscript). The death or collapse of force chains for

dense media, tends to localize along zones with a character-

istic thickness (this width is widely known to lie within a

very narrow range of 8–20 particle diameters). This means

that even if the material manages to form a force chain that

extends by some hundreds of particles in length (a very big

sample), the buckling of force chains will still be localized to

a region that is roughly 8–20 particles wide.

This feature is observed experimentally for a wide range

of dense granular materials, both naturally occurring and

synthetic. We already have some answers as to why this may

occur in a recent paper using structural mechanics analysis

of a column of N particles.55

Tordesillas and co-workers55 studied the confined elastic

buckling of a single N-particle force chain. For a given set of

material parameters, a characteristic load-carrying capacity

is attained for a clearly defined range of force chain lengths

N � L	. The rotation and translation of particles along peri-

odically located segments of the critical buckling mode, each

of length L	 are on average consistent with those for particles

inside the shear band. Preliminary results from postbuckling

analysis show that the critical buckling mode is unstable and

that buckling culminates in a localized response over one of

these segments where observed shear band kinematics pre-

vail. Thus, the localized buckling response is characterized

by the rotation of a finite number of particles with a clearly

defined length L	. For a wide range of material properties, L	

is around eight particle diameters—the observed shear band

thickness for many granular materials, most notably sand.

Hence, although the bulk of this paper focusses on the

analysis of a single DEM simulation, the result is actually

what we would expect more generally. While that data set is

accepted as a robust representation of dense granular behav-

ior, there would be obvious extensions of this work to both

other simulations and experimental data. While this is

beyond the scope of the current work (and would nonethe-

less, cloud our methodological presentation), we note that

the specific system we discussed in this paper has been com-

pared against other models from the same class of simula-

tions (varying various physical properties) and also against

both simulations and experiments in both two and three

dimensional dense granular systems. In all cases, the mecha-

nism responsible for the observed dynamics has proved to be

the same, and the same as what we studied here.

ACKNOWLEDGMENTS

This work was funded by a Hong Kong University Grants

Council grant under the General Research Fund: grant number

PolyU 5262/11E. This work was partially supported by US

Army Research Office (W911NF-11-1-0175), the Australian

Research Council (DP0986876 and DP120104759) and the

Melbourne Energy Institute (AT, DMW). MS is supported

by an Australian Research Council Future Fellowship

(FT110100896) and would like to thank the Melbourne Energy

Institute for travel support. We thank Dr John Peters for useful

discussions and Mr Tuan Tran for the software implementation

to calculate local Lyapunov exponents.

1K. H. Roscoe, A. N. Schofield, and C. P. Wroth, “On the yielding of soils,”

G�eotechnique 8, 22–53 (1958).
2L. Rothenburg, and N. P. Kruyt, “Critical state and evolution of coordina-

tion number in simulated granular materials,” Int. J. Solids Struct. 41,

5763–5774 (2004).
3A. A. Pe~na, A. Lizcano, F. Alonso-Marroquin, and H. J. Herrmann,

“Biaxial test simulations using a packing of polygonal particles,” Int. J.

Numer. Analyt. Meth. Geomech. 32, 143–160 (2008).
4S. DJ. Mesarovic, J. M. Padbidri, and B. Muhunthan, “Micromechanics of

dilatancy and critical state in granular matter,” G�eotechnique Lett. 2,

61–66 (2012).
5Z.-Y. Yin and C. S. Chang, “Non-uniqueness of critical state line in

compression and extension conditions,” Int. J. Numer. Analyt. Meth.

Geomech. 33, 1315–1338 (2009).
6X. Zhao, and T. M. Evans, “Numerical analysis of critical state behaviors

of granular soils under different loading conditions,” Granular Matter 13,

751–764 (2011).
7M. A. Mooney, R. J. Finno, and M. G. Viggiani, “A unique critical state

for sand,?” J. Geophys. Geoenviron. Eng. 124, 1100–1108 (1998).
8J. Desrues and G. Viggiani, “Strain localization in sand: An overview of the

experimental results obtained in Grenoble using stereophotogrammetry,”

Int. J. Numer. Analyt. Meth. Geomech. 28, 279–321 (2004).
9F. Alonso-Marroquin and I. Vardoulakis, “Micromechanics of shear bands

in granular media,” Powders Grains 1, 701–704 (2005).
10F. Alonso-Marroquin, I. Vardoulakis, H. J. Herrmann, D. Weatherley, and

P. Mora, “Effect of rolling on dissipation in fault gouges,” Phys. Rev. E

74, 031306 (2006).
11C. Marone, “Laboratory-derived friction laws and their application to seis-

mic faulting,” Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).
12J. Krim, P. Yu, and R. P. Behringer, “Stick-slip and the transition to steady

sliding in a 2D granular medium and a fixed particle lattice,” Pure Appl.

Geophys. 168, 2259–2275 (2011).

013113-13 Small et al. Chaos 23, 013113 (2013)

Downloaded 02 Aug 2013 to 158.132.161.240. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1680/geot.1958.8.1.22
http://dx.doi.org/10.1680/geot.1958.8.1.22
http://dx.doi.org/10.1016/j.ijsolstr.2004.06.001
http://dx.doi.org/10.1002/nag.618
http://dx.doi.org/10.1002/nag.618
http://dx.doi.org/10.1680/geolett.12.00015
http://dx.doi.org/10.1680/geolett.12.00015
http://dx.doi.org/10.1002/nag.770
http://dx.doi.org/10.1002/nag.770
http://dx.doi.org/10.1007/s10035-011-0284-1
http://dx.doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1100)
http://dx.doi.org/10.1002/nag.338
http://dx.doi.org/10.1103/PhysRevE.74.031306
http://dx.doi.org/10.1146/annurev.earth.26.1.643
http://dx.doi.org/10.1007/s00024-011-0364-5
http://dx.doi.org/10.1007/s00024-011-0364-5


13T. G. Sitharam and J. S. Vinod, “Critical state behaviour of granular mate-

rials from isotropic and rebounded paths: DEM simulations,” Granular

Matter 11, 33–42 (2009).
14T.-T. Ng, “Discrete element method simulations of the critical state of a

granular material,” Int. J. Geomech. 9, 209–216 (2009).
15A. Tordesillas, J. Shi, and J. F. Peters, “Isostaticity in Cosserat continu-

um,” Granular Matter 14, 295–301 (2012).
16S. Luding and E. Perdahcioglu, “A local constitutive model with

anisotropy for various homogeneous 2D biaxial deformation modes,”

Chem.- Ing.- Tech. 83, 672–688 (2011).
17V. Magnanimo and S. Luding, “A local constitutive model with anisotropy

for ratcheting under 2D axial-symmetric isobaric deformation,” Granular

Matter 13, 225–232 (2011).
18D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, “Jamming by shear,”

Nature 480, 355–358 (2011).
19A. Tordesillas, D. M. Walker, G. Froyland, J. Zhang, and R. P. Behringer,

“Transition dynamics and magic-number-like behavior of frictional granu-

lar clusters,” Phys. Rev. E 86, 011306 (2012).
20A. Tordesillas, J. Zhang, and R. P. Behringer, “Buckling force chains

in dense granular assemblies: physical and numerical experiments,”

Geomech. Geoeng. 4, 3–16 (2009).
21F. Takens, “Detecting strange attractors in turbulence,” Lect. Notes Math.

898, 366–381 (1981).
22M. Small, Applied Nonlinear Time Series Analysis: Applications in

Physics, Physiology and Finance, Nonlinear Science Series A (World

Scientific, Singapore, 2005), Vol. 52.
23J. Maquet, C. Letellier, and L. A. Aguirre, “Global models from the Cana-

dian lynx cycles as a direct evidence for chaos in real ecosystems,”

J. Math. Biol. 55, 21–39 (2007).
24M. Small and C. Carmeli, “Re-examination of evidence for low-

dimensional chaos in the Canadian lynx data,” in: International Symposium

on Nonlinear Theory and its Applications, Research Society of Nonlinear

Theory and its Applications, IEICE, 2009.
25A. Tordesillas, “Force chain buckling, unjamming transitions and shear

banding in dense granular assemblies,” Philos. Mag. 87, 4987–5016

(2007).
26A. Tordesillas, D. M. Walker, and Q. Lin, “Force cycles and force chains,”

Phys. Rev. E 81, 011302 (2010).
27A. Tordesillas, Q. Lin, J. Zhang, R. P. Behringer, and J. Shi, “Structural

stability and jamming of self-organized cluster conformations in dense

granular materials,” J. Mech. Phys. Solids 59, 265–296 (2011).
28M. Muthuswamy and A. Tordesillas, “How do interparticle contact fric-

tion, packing density and degree of polydispersity affect force propagation

in particulate assemblies?,” J. Stat. Mech.: Theory Exp., P09003 (2006).
29A. Tordesillas and M. Muthuswamy, “On the modelling of confined buck-

ling of force chains,” J. Mech. Phys. Solids 57, 706–727 (2009).
30M. Oda and K. Iwashita, “Study on couple stress and shear band develop-

ment in granular media based on numerical simulation analyses,” Int.

J. Eng. Sci. 38, 1713–1740 (2000).
31Y. Guo and J. K. Morgan, “Influence of normal stress and grain shape on

granular friction: Results of discrete element simulations,” J. Geophys.

Res. B, [Solid Earth Planets] 109, 1–16, doi:10.1029/2004JB003044

(2004).
32P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granu-

lar assemblies,” G�eotechnique 29, 47–65 (1979).

33H. D. I. Abarbanel, Analysis of Observed Chaotic Data (Springer-Verlag,

New York, 1996).
34H. D. I. Abarbanel and M. B. Kennel, “Local false nearest neighbours and

dynamical dimensions from observed chaotic data,” Phys. Rev. E 47,

3057–3068 (1993).
35R. Brown, P. Bryant, and H. D. I. Abarbanel, “Computing the Lyapunov

spectrum of a dynamical system from an observed time series,” Phys. Rev.

A 43, 2787–2806 (1991).
36K. Judd and A. Mees, “Embedding as a modelling problem,” Physica D

120, 273–286 (1998).
37M. Small and C. Tse, “Optimal embedding parameters: A modelling para-

digm,” Physica D 194, 283–296 (2004).
38K. Judd and A. Mees, “On selecting models for nonlinear time series,”

Physica D 82, 426–444 (1995).
39M. Small and K. Judd, “Comparison of new nonlinear modelling techniques

with applications to infant respiration,” Physica D 117, 283–298 (1998).
40M. Small and C. Tse, “Minimum description length neural networks for

time series prediction,” Phys. Rev. E 66, 066701 (2002).
41J. Rissanen, Stochastic Complexity in Statistical Inquiry (World Scientific,

Singapore, 1989).
42K. Judd and M. Small, “Towards long-term prediction,” Physica D 136,

31–44 (2000).
43M. Small, K. Judd, and A. Mees, “Modeling continuous processes from

data,” Phys. Rev. E 65, 046704 (2002).
44M. Small and K. Judd, “Correlation dimension: A pivotal statistic for non-

constrained realizations of composite hypotheses in surrogate data analy-

sis,” Physica D 120, 386–400 (1998).
45J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer,

“Testing for nonlinearity in time series: The method of surrogate data,”

Physica D 58, 77–94 (1992).
46C. Diks, “Estimating invariants of noisy attractors,” Phys. Rev. E 53,

R4263–R4266 (1996).
47D. Yu, M. Small, R. G. Harrison, and C. Diks, “Efficient implementation

of the Gaussian kernel algorithm in estimating invariants and noise level

from noisy time series data,” Phys. Rev. E 61, 3750–3756 (2000).
48X.-K. Xu, J. Zhang, and M. Small, “Superfamily phenomena and motifs of

networks induced from time series,” Proc. Natl. Acad. Sci. U.S.A. 105,

19601–19605 (2008).
49R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, and J. Kurths,

“Recurrence-based time series analysis by means of complex network

methods,” Int. J. Bifurcation Chaos Appl. Sci. Eng. 21, 1019–1046 (2011).
50M. Newman, Networks: An Introduction (Oxford University Press, 2010).
51R. Xiang, J. Zhang, X.-K. Xu, and M. Small, “Multiscale characterization

of recurrence-based phase space networks constructed from time series,”

Chaos 22, 013107 (2012).
52M. Small, D. Yu, and R. G. Harrison, “Observation of a period doubling

bifurcation during onset of human ventricular fibrillation,” Int. J. Bifurca-

tion Chaos Appl. Sci. Eng. 13, 743–754 (2003).
53M. Oda, T. Takemura, and M. Takahashi, “Microstructure in shear band

observed by microfocus x-ray computed tomography,” Geotechnique

54(8), 539–542 (2004).
54A. L. Rechenmacher, “Grain-scale processes governing shear band initia-

tion and evolution in sands,” J. Mech. Phys. Solids 54, 22–45 (2006).
55A. Tordesillas, G. Hunt, and J. Shi, “A characteristic length scale in confined

elastic buckling of a force chain,” Granular Matter 13, 215–218 (2011).

013113-14 Small et al. Chaos 23, 013113 (2013)

Downloaded 02 Aug 2013 to 158.132.161.240. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1007/s10035-008-0113-3
http://dx.doi.org/10.1007/s10035-008-0113-3
http://dx.doi.org/10.1061/(ASCE)1532-3641(2009)9:5(209)
http://dx.doi.org/10.1007/s10035-012-0341-4
http://dx.doi.org/10.1002/cite.201000180
http://dx.doi.org/10.1007/s10035-011-0266-3
http://dx.doi.org/10.1007/s10035-011-0266-3
http://dx.doi.org/10.1038/nature10667
http://dx.doi.org/10.1103/PhysRevE.86.011306
http://dx.doi.org/10.1080/17486020902767347
http://dx.doi.org/10.1007/BFb0091924
http://dx.doi.org/10.1007/s00285-007-0075-9
http://dx.doi.org/10.1080/14786430701594848
http://dx.doi.org/10.1103/PhysRevE.81.011302
http://dx.doi.org/10.1016/j.jmps.2010.10.007
http://dx.doi.org/10.1016/j.jmps.2009.01.005
http://dx.doi.org/10.1016/S0020-7225(99)00132-9
http://dx.doi.org/10.1016/S0020-7225(99)00132-9
http://dx.doi.org/10.1029/2004JB003044
http://dx.doi.org/10.1029/2004JB003044
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1103/PhysRevE.47.3057
http://dx.doi.org/10.1103/PhysRevA.43.2787
http://dx.doi.org/10.1103/PhysRevA.43.2787
http://dx.doi.org/10.1016/S0167-2789(98)00089-X
http://dx.doi.org/10.1016/j.physd.2004.03.006
http://dx.doi.org/10.1016/0167-2789(95)00050-E
http://dx.doi.org/10.1016/S0167-2789(97)00311-4
http://dx.doi.org/10.1103/PhysRevE.66.066701
http://dx.doi.org/10.1016/S0167-2789(99)00152-9
http://dx.doi.org/10.1103/PhysRevE.65.046704
http://dx.doi.org/10.1016/S0167-2789(98)00088-8
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.1103/PhysRevE.53.R4263
http://dx.doi.org/10.1103/PhysRevE.61.3750
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1142/S0218127411029021
http://dx.doi.org/10.1063/1.3673789
http://dx.doi.org/10.1142/S0218127403006911
http://dx.doi.org/10.1142/S0218127403006911
http://dx.doi.org/10.1680/geot.2004.54.8.539
http://dx.doi.org/10.1016/j.jmps.2005.08.009
http://dx.doi.org/10.1007/s10035-011-0252-9

