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Abstract: As a practical and effective seismic resisting technology, the base isolation system has seen 

extensive applications in buildings and bridges. However, a few problems associated with conventional 

lead-rubber bearing have been identified after historical strong earthquakes, e.g. excessive permanent 

deformations of bearings and potential unseating of bridge decks. Recently the applications of shape memory 

alloys (SMA) have received growing interest in the area of seismic response mitigation. As a result, a variety 

of SMA-based base isolators have been developed. These novel isolators often lead to minimal permanent 

deformations due to the self-centering feature of SMA materials.  

However, a rational design approach is still missing because of the fact that conventional design method 

cannot be directly applied to these novel devices. In light of this limitation, a displacement-based design 

approach for highway bridges with SMA isolators is proposed in this paper. Nonlinear response spectra, 

derived from typical hysteretic models for SMA, are employed in the design procedure. SMA isolators and 

bridge piers are designed according to the prescribed performance objectives. A prototype reinforced concrete 

(RC) highway bridge is designed using the proposed design approach. Nonlinear dynamic analyses for 

different seismic intensity levels are carried out using a computer program called “OpenSees”. The efficacy of 

the displacement-based design approach is validated by numerical simulations. Results indicate that a properly 

designed RC highway bridge with novel SMA isolators may achieve minor damage and minimal residual 

deformations under frequent and rare earthquakes. Nonlinear static analysis is also carried out to investigate 

the failure mechanism and the self-centering ability of the designed highway bridge.  

Keywords: Displacement-based design, shape memory alloy, base isolation, self-centering seismic resisting 

system, highway bridges, nonlinear response spectra 
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1. Introduction 

A large number of highway bridges have been damaged during the recent severe earthquakes, e.g. the Loma 

Prieta earthquake, the Kobe earthquake, the Chi-Chi earthquake and the Wenchan earthquake (Jankowski, et 

al. 1998, Chang, et al. 2000, Han, et al. 2009). The damaged and collapsed bridges not only lead to 

considerable economic and life losses, but also significantly delay the post-hazard rescue operation. Bridge’s 

base isolators, generally installed between bridge decks and piers, have seen growing application in the last 

two decades. They are seen as an effective strategy for seismic hazard mitigation, and examples of these 

isolation devices include elastomeric bearings, lead rubber bearings (LRB) and frictional/sliding bearings 

(Dolce, et al. 2007, Hameed et al. 2008).  

Although these isolators can protect structures from severe damages induced by strong ground motions, a 

large residual deformation is often inevitable. As pointed out by Piestley (1997) and Kwan and Billington 

(2003), the residual displacements are likely more important than the maximum displacements when the 

difficulty of repair after earthquakes is considered. In light of the emphasis on the residual displacements, a 

series of self-centering seismic resistant structures have been developed (Kwan and Billington 2003, 

Christopoulos et al. 2002). They are often associated with minimal residual deformation after an earthquake, 

even if considerably inelastic transient deformations arise during seismic response. Among various 

self-centering schemes, the utilization of the superelasticity feature SMA devices on bridges has attracted 

growing research interest (Wilson and Wesolowsky 2005; Song et al. 2006). For example, Andrawes and 

DesRoches (2005) and Zhang et al. (2008, 2009) studied the effectiveness of superelastic SMA devices for the 

reduction of seismic response of bridges. Graesser and Cozzarelli (1991) suggested the use of Nitinol (Nickel 

Titanium Naval Ordnance Laboratory) as seismic isolations, and proposed a one-dimensional constitutive 

model for the superelastic behavior of SMA. Wilde et al (2000) carried out a numerical study of a smart 

isolation system which combines a laminated rubber bearing with a SMA-made device to control the seismic 

response of highway bridges, and they reported that under small and medium ground excitations, the relative 

displacement between deck and pier was decreased obviously at the expense of a larger shear force on piers. 

Choi et al. (2005) added the superelastic Nitinol wires into a bridge’s base isolation system, and the residual 

deformation was effectively controlled. Dolce et al. (2007) have incorporated the superelastic Nitinol wires in 
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elastomeric bearings to provide re-centering and/or additional energy dissipating capability for a bridge’s base 

isolation system, and the benefits to control structural and non-structural damage were validated by shaking 

table tests of isolated RC frames. Casciati and Faravelli (2009) and Casciati et al. (2007) proposed a novel 

base isolation device composed of SMA bars with a larger amount of energy dissipation, and the analytical 

study by Casciati et al. (2009) indicated that the novel SMA isolators can effectively reduce the displacement 

response of a highway bridge during strong earthquakes.  

  Although the promise of SMA base isolators for highway bridges has been analytically and experimentally 

demonstrated through the aforementioned studies, a rational design approach is still missing for highway 

bridges with these novel devices. The conventional design method for common base isolators cannot be 

directly applied to these novel devices, as the strength, stiffness and hysteretic behavior is greatly different. In 

light of this limitation, an extension of the displacement-based design (DBD) procedure for highway bridges 

supported on SMA isolators is presented in this paper. It should be noted that DBD has been recognized as a 

more rational design approach in the framework of performance based earthquake engineering, in comparison 

with conventional force-based design method (Kowalsky, et al. 1995. Priestley 1997, Priestley and Kowalsky 

2000, Medhekar and Kennedy 2000, Chopra and Goel 2000, Chopra and Goel 2001, Kowalsky 2002 and Lin, 

et al. 2003). The standard DBD is extended in this study to design self-centering highway bridges with novel 

SMA isolators. Nonlinear response spectra, derived from typical hysteretic models for SMA materials, are 

employed in this procedure. The design performance objectives are prescribed first for the SMA isolators and 

bridge piers. A prototype of a RC highway bridge is designed based on the proposed design approach. Seismic 

performances of the designed highway bridge, including the failure mechanism and re-centering ability, are 

investigated through nonlinear dynamic analyses at two seismic intensity levels – frequent and rare 

earthquakes. The efficacy of the DBD approach is validated by numerical simulations. Furthermore, the high 

performance RC bridge with novel SMA isolators designed according to the proposed approach experiences 

only minor damage and minimal residual displacement under frequent and rare earthquakes.  

2. SIMPLIFIED MODELING  

2.1 Constitutive model of superelastic SMA 
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SMA refers to one type of unique alloys which is able to return to its undeformed state by shape memory 

effect or superelastic effect. The former one refers to the phenomenon that at ambient temperature T<Mf, the 

residual deformation after unloading can be fully recovered through a temperature increase; while the latter 

one arises at ambient temperature T>Af, in which SMA immediately recovers to original shape with almost 

zero residual strain upon unloading. Here Mf and Af denote the martensite and austenite finish temperatures 

respectively. Nitinol alloy, as most practical SMA, has been studied for use as seismic damping devices due to 

its inherent self-centering capability, high ductility, good corrosion resistance and long fatigue life. Fox 

example, the maximum recoverable strain of superelastic Nitinol wires can reach up to 8%, and they can 

sustain over 2,000 load cycles under 8% strain cycles (Zhu and Zhang, 2008). In this study, the superelasticity 

of Nitinol will be utilized to realize the self-centering behavior. 

A one-dimensional flag-shaped constitutive model is used to describe the superelastic behavior of Nitinol. 

The model is defined by six parameters – austenite elastic modulus EA, martensite elastic modulus EM, 

phase-transformation modulus ratio α (i.e. ‘post-yield’ stiffness ratio), phase transformation start stress σy (i.e. 

‘yield’ stress), phase transformation finish strain εM and energy dissipation coefficient β (as shown in Fig. 1). 

The parameters are tuned according to the stress-strain relationship of Nitinol wires produced by Johnson 

Matthey Inc. (2010) when cyclically tested at the frequency of 2Hz:  

EA = 39 GPa, EM = 19 GPa, σy = 390 MPa, α = 0.036, εM =0.062, β = 0.4 

An apparent strain hardening can be observed at large strain, to which attention should be paid because of the 

potential overloading to adjacent members. The fracture strain of Nitinol wires is over 14%. According to 

(Zhang and Zhu, 2008), although the flag-shaped constitutive model could not accurately simulate the 

unloading path, and does not reflect the loading rate effect, it can predict the seismic response with 

satisfactory accuracy with regard to peak displacements, accelerations and ductility ratios in both SDOF 
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systems and MDOF systems, as far as its parameters are tuned to dynamic test data.  

To enable the dynamic analysis of highway bridges with SMA devices, this constitutive model has been 

implemented in the computer program OpenSees (Mazzoni et al. 2006) as a new material model.  

2.2 SMA base isolator 

A few SMA-based isolation systems have been developed and investigated by different researchers (Wilde, 

et al. 2000, Choi, et al. 2005, Dolce et al. 2007, Casciati et al. 2007). A common feature of these isolators is 

self-centering (also called re-centering) capability due to the superelastic behavior of Nitinol alloys or other 

SMAs. Fig. 2(a) shows a scheme of a highway bridge isolation system, in which SMA elements are used 

together with elastomeric bearings (or sliding bearings). The lateral stiffness and capacity of elastomeric 

bearings are often much smaller than those of SMA elements (Wilde, et al. 2000). Therefore the elastomeric 

bearings are treated as gravity load transfer elements in this study, while the lateral seismic load resistance is 

mainly offered by SMA cables. The SMA cables are assumed to undertake tensile force only. It should be 

noted that the schematic drawing shows a general model of some common SMA base isolators, and it may not 

necessarily be a real configuration to be implemented in real bridges. The DBD approach presented in this 

study can be easily adapted to aforementioned SMA isolators with similar hysteresis. Although only the 

longitudinal SMA cables are shown in Fig. 2(a), similar elements should also be arranged in transversal 

direction in real bridges.  

2.3 Equivalent SDOF system of a highway bridge with SMA isolators 

In DBD approach, it is assumed that seismic response of structures is often dominated by the fundamental 

vibration mode so that it can be modelled by an equivalent SDOF system. Fig. 2(b) shows a simplified model 

of the highway bridge with isolators, where kp, kb and ks represent the stiffness of the bridge pier, elastomeric 



7 
 

bearing and SMA isolator respectively. As mentioned before, the spring kb only provides vertical stiffness, 

and their contribution to the overall lateral stiffness of the bridge is neglected. Therefore, the bridge can be 

further simplified as an equivalent nonlinear SDOF system shown in Fig. 2(c) when subject to horizontal 

ground motions in longitudinal direction, where u1 and u2 stand for the longitudinal displacement at the deck 

level and the pier top level respectively, f12(t) represent the seismic force applied on the deck, and m is seismic 

tributary mass to each bridge pier. The total mass of the superstructure is concentrated at deck level, and the 

mass of the pier is not considered in the design process according to the study by Turkington et al (1989a, 

1989b). The isolators between bridge piers and decks are often used to protect the concrete piers from 

significant damage. Therefore it is always desirable to design the capacity of the bridge piers higher than the 

‘yield load’ of the SMA isolators. Consequently, the system shown in Fig. 2(c) can be approximated by a 

nearly linear spring in series with a nonlinear spring with flag-shaped hysteresis. As shown in Fig. 3(c), the 

consequent hysteresis is still in a flag shape, however, the stiffness and ductility of the equivalent system is 

different from those of the SMA materials. Easy to know that the yield displacement and the maximum 

displacement of the equivalent system is 
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Therefore the ductility, elastic stiffness and post-yield stiffness ratio of the equivalent system can be computed 

as follows 
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μeq, keq and αeq are not equal to μ, ks and α unless kp is infinite.  

2.4 Nonlinear SDOF response spectra 

It is well known that the seismic response of the structures is substantially dependent on the nonlinear 

hysteretic behavior. Nonlinear response spectra of SDOF system with various hysteretic models have been 

extensively studied (Newmark and Hall 1982, Nassar and Krawinkler 1991, Vidic, et al. 1994, Seo and Sause 

1995). This section studies the nonlinear response spectra of SDOF system, in which a flag-shaped hysteresis 

showing strain hardening at large strain is used. The hysteretic model is described in Fig. 3. The derived 

nonlinear response spectra will be employed in DBD approach presented in the next section. Three major 

parameters are considered in the nonlinear response spectra, namely the initial period T0 (from 0.2 to 3 

seconds), the post-yield stiffness α ( 0.4 0.3, 0.2, 0.1, 0,= ) and the strength reduction factor R 

(=1,2,3,4,5,6,7,8). T0 and R could be calculated by   

 eqkmT /20 π=  (7) 

 ye FFR /=   (8) 

where keq is the initial stiffness of the SDOF system, Fe is the elastic design strength and Fy is the ‘yield’ 

strength of the equivalent nonlinear system.  
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A ground motion suite containing a total of 20 earthquake records, designated as EQ01-EQ20, is employed 

in the computation. These 20 ground motions were derived from ten earthquakes, each comprising two 

perpendicular components. They are scaled to match the seismic design spectrum of rare earthquake level for 

seismic intensity level of 7.5 and site class II specified in Chinese seismic design code (2001) using the 

scaling method proposed by Zhu and Gao (2009). Fig. 4 shows the design spectrum, and the response spectra 

of the 20 scaled records. It is seen that the median spectrum can well match the design spectrum within the 

period range of interest. 

Fig. 5 shows the median spectra of ductility response, for varying parameters T0, α   and R. Seo (2005) 

emphasized the median response as the likely response for a set of ground motions based on the assumption 

that nonlinear response follows a lognormal distribution. Furthermore, Seo (2005) proposed a regression 

function to fit the nonlinear μ-R-T0 relationship of SDOF system for different types of hysteresis:   

 )/1exp(
0

2
0),,(
cTc

eq RRT =αμ   (9) 

where eqμ  is the regression value of ductility, T0 is the initial period, R is the strength reduction factor, c1 and 

c2 are functions of post-yield stiffness ratio α, with 

 2
1 )()( αα bac −=  ,  2

2 )()( αα dcc −=  (10) 

It can be seen that the relationship is characterized by four parameters a, b, c, d. This regression function is 

also adopted in this study to simulate the nonlinear response spectra corresponding to hysteretic behavior of 

SMA. Through regression analysis, the four parameters in this paper are taken as a = 0.408, b= 0.904, c = 0.98, 

d = -0.37. The simulation results of the nonlinear response spectra are also shown in Fig. 5. It can be seen that 

the regression function can well match the median spectra of the ductility over the period range of interest. 

Consequently the force reduction factor can be expressed as 
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3. DBD approach 

DBD approach has been developed and applied by some researchers to the seismic design of different 

structures (Kowalsky, et al. 1995, Kowalsky 2002, Priestley 1997, Priestley and Kowalsky 2000, Lin et al. 

2003, Medhekar and Kennedy 2000). In conventional DBD approach, nonlinear structure systems are usually 

modeled by an equivalent linear system with equivalent elastic stiffness and equivalent viscous damping. 

Chopra and Goel (2000, 2001) revised this approach by incorporating nonlinear design spectra in order to 

improve the accuracy of the performance prediction. In this study, the DBD approach using nonlinear design 

spectra is further extended to the design of highway bridges with SMA base isolators. The objective is to 

design a highway bridge with SMA isolators in order to achieve the target performance level under given 

intensity of ground motions, e.g. the maximum displacement, ductility and damage extent. The following 

assumptions are made within the DBD procedure: the vibration of the isolated highway bridge is dominated 

by the first mode and the mode shape is maintained during the earthquake; the lateral strength of the piers are 

higher than the yield load of the SMA isolators so that the seismic behavior of the piers is almost linear; the 

mass of the pier is relative small and can be ignored in comparison with that of the deck; all piers of the 

highway bridge have the same height. As the elastomeric bearing provides only gravity carrying capacity, its 

design is not discussed hereinafter. The design procedure is elaborated as follows: 

Step one: Target Seismic Performance  

Once basic structural parameters (e.g. mass and height) are known, the target performance levels under 

design earthquake level should be determined, including the peak displacement at the top of the pier m
pu , the 

relative displacement between the deck and the pier m
su , and the maximum ductility of SMA elements μ . 

The first one 
m
pu  determines the damage level of the bridge pier. In order to prevent the bridge pier from 

significant damage and noticeable residual deformation after an earthquake, it is desirable to limit its drift 
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ratio to the elastic limit state.  

The peak relative displacement m
su should be determined by taking into account various factors such as the 

impact between the deck and the abutment, the potential unseating of bridge decks, the damage of joint 

connections and the deformation capacity of elastomeric bearings. According to Zhang and Zhu (2008), SMA 

cannot be fully recovered to its original shape after being loaded beyond 8% of strain, and thus partially loses 

its self-centering capability. Therefore the ductility level of SMA has to be limited if minimal residual 

displacement after an earthquake is desired. 

Step two: Equivalent SDOF System 

The peak displacement of the bridge deck can be easily estimated from Eq. (2). The restoring forces of SMA 

base isolators can be calculated by 

 y
ss

y
s ukF =  (12) 

 y
ss

y
ss

m
s ukukF )1( −+= μα   (13) 

where y
sF and m

sF are respectively the yield force and peak forces of the isolators respectively. Meanwhile, 

the piers are in elastic state under considered seismic level. As the piers are in series with the SMA isolators, 

the resisting forces are always equal in these two elements.  
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Therefore, the ratio of the lateral stiffness ps kk /=η  can be calculated from Eqs (12)–(15). The ductility μeq 

and the post yield stiffness ratio αeq of the simplified equivalent SDOF system can be subsequently computed 

by 
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Step three: Nonlinear Design Spectrum  

The elastic design spectra (including pseudo acceleration spectrum Sae and displacement spectrum Sde) can 

be obtained from the design code. The nonlinear acceleration spectra Sa and the displacement spectra Sd can be 

constructed by  

 RSTS aeeqeqa /),,( 0 =αμ  (18) 

 RSTS deeqeqeqd /),,( 0 μαμ =  (19) 

where μeq and αeq are calculated from Eq. (16) and (17). Based on the target displacement of the bridge deck 

m
equ , the initial period T0 and the corresponding acceleration level Sa can be easily determined according to Fig. 

6.  

Step four: Design of Isolators and Bridge Piers 

The yield load of the bridge isolator is equal to 

 a
y

s SmF ⋅=  (20) 

The lateral stiffness of the equivalent SDOF system, the SMA isolator and the bridge pier can be computed by 

 2
0

2 /4 Tmkeq π=   (21) 

 ηη /)1( += eqp kk  (22)     

 ps kk η=   (23) 

Once the yield load, initial stiffness, peak deformation and ductility level of the isolators are determined, the 

length and cross sectional area of the SMA elements can be computed. Subsequently, with the desired stiffness 

and strength of the bridge piers, the cross section of RC piers can be designed. In order to protect the pier from 

significant damage, the bridge pier is typically designed to have a greater lateral strength than the yield load of 

the SMA isolators.  

Step five: Check Seismic Performance 
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The seismic performance levels of the designed highway bridge needs to be checked through nonlinear 

static analyses and time-history analyses, particularly under other seismic intensity levels that are not 

considered in the design procedure. 

4. Case study 

4.1 Design example 

The example consists of a four-span RC highway bridge with three six-meter high piers and two rigid 

abutments, as shown in Fig. 7. The bridge has four 20 m continuous spans, and the width of deck is 12 m. The 

total mass of the superstructure is about 2000 ton. All the piers and the deck are reinforced concrete members. 

The material properties of SMA are shown in section 2.1. According to the Chinese seismic design code 

(2001), the bridge is designed for site class II and intensity level 7.5 with the peak ground acceleration of 

0.31g (rare earthquake). The site classification in Chinese seismic design code is presented in Table 1. The 

corresponding elastic design spectrum is shown in Fig. 4. The objective is to design the highway bridge with 

target peak displacements and minimal residual deformation under the considered seismic intensity level. The 

peak drift ratio of the piers is taken as 1/600 (i.e. m
pu =1cm), and the ductility of SMA elements are taken as 

μ=6. The peak displacement of the bridge deck is selected to be 12 cm based on the study by other researchers 

on highway bridges (Choi, et al. 2005, Dolce, et al. 2007). Using the above-described design procedure, the 

following structural parameters are determined: the length of SMA element 1830 =l cm; the cross-sectional 

area of the SMA element in each isolator A=11.3 cm2; the effective width and height of the cross-section of 

the pier b=1.8 m and h=1.1 m; a total of 18 steel bars with 25 mm diameter arranged along the width (one side) 

of each pier.  

In order to assess the efficacy of the proposed DBD approach, a finite element model of the designed bridge 

is built using the computer program OpenSees (Mazzoni et al. 2006). The new material’s model is developed 
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in OpenSees to simulate the superelastic behavior of SMA. The pier and the deck are all simulated by 

nonlinear beam-column elements with fiber sections. Nonlinear static analysis (i.e. pushover analysis) and 

nonlinear time-history analyses are carried out in order to evaluate the seismic performance of the designed 

highway bridge under different seismic intensity levels. Only the seismic ground motions in longitudinal 

direction are considered. 

4.2 Pushover analysis of the pier 

A pushover analysis as defined by NEHRP recommendation provisions for seismic regulations for new 

buildings and other structures (FEMA 450) (2003) is carried out to evaluate the failure mechanism and 

self-centering capability of the isolated highway bridge. The pushover curves are shown in Fig. 8. Fig. 8(a) 

illustrates the relationship between the total base shear of three piers and the deck displacement, in particular, 

two unloading paths corresponding to medium deformation and large deformation of the SMA isolators are 

indicated. The corresponding force-displacement relationship of the piers and SMA isolators are shown in Fig. 

8(b). It is seen that the concrete piers crack at relative small displacement (point 1), and it results in a slight 

reduction in the lateral stiffness of the bridge piers. Point 2 stands for the ‘yield’ load of the isolators, which is 

actually due to stress-induced phase transformation of SMA instead of conventional yield mechanism. It 

should be noted that the yield strength of the piers (point 4) is designed to have higher yield strength than the 

yield load of the SMA isolators in order to effectively protect the piers from significant damage. Therefore the 

pier behavior is nearly linear elastic when the isolator yields. As a result, the residual deformation of the 

highway bridge will be ignorable when unloaded from the yield plateau (as shown by the unloading path a). 

Point 3 represents the end of phase transformation, and obvious strain hardening can be observed after point 3. 

The slope of the curve is governed by the modulus of elasticity of martensite SMA. The stain hardening 

behavior of the SMA isolators results in a larger force exerted on the bridge piers. Consequently, the steel 
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reinforcement in the bridge pier begins to yield at point 4, and the system reaches its maximum capacity. 

Further loading beyond point 4 leads to noticeable plastic deformation in the bridge piers. As shown by the 

unloading path b, an apparent residual displacement can be observed in the bridge piers, even though the SMA 

isolators can still recover their deformation, and the self-centering capability is partially lost. Therefore, if the 

peak response is below point 1, there is no crack in concrete piers, both the bridge’s piers and isolators 

behaves linearly, and the whole highway bridge is almost damage free; from point 1 to 4, the highway bridge 

is only subjected to minor damage in the bridge piers without yielding of steel reinforcement and noticeable 

residual displacement. This feature will considerably reduce the post-earthquake repair cost. However, 

relatively large damage of the bridge pier may result from the strain hardening behavior of SMA at large 

strain. It implies that neglecting the strain hardening behavior in the constitutive model of SMA may lead to 

an underestimation of pier’s damage in seismic analyses.  

4.3 Nonlinear dynamic analyses 

  The aforementioned twenty earthquake records are employed to investigate the actual seismic response of 

the designed highway bridge. Following Chinese seismic design code (2001), the twenty ground motions are 

scaled to match the design spectra of rare earthquakes (2-3% exceedance probability in 50 years) and frequent 

earthquakes (63% exceedance probability in 50 years) respectively. 

Figures 9-13 show the seismic response under the 20 rare earthquake records. The median values of the 

peak displacements for the bridge pier, SMA isolators, and the bridge deck are 0.9 cm, 10.3 cm and 11.6 cm 

respectively, which are close to the target displacements specified in the design procedure, namely 1.0 cm, 

11.0 cm and 12.0 cm. The median ductility of SMA elements, i.e. 5.6, is close to the target value μ=6 as well. 

In general, the proposed DBD approach is able to fairly well achieve the target displacement and ductility 

specified in the design procedure.  
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Fig. 10 shows the peak and residual displacements of the bridge pier for all 20 rare earthquake records. 

Although the concrete piers tend to crack in all rare earthquakes, the bridge piers do not reach their yield 

strength under 18 earthquake records. Furthermore, the residual displacement of the highway bridge is 

ignorable under all the rare earthquakes except for EQ15. This clearly manifests the merit of the self-centering 

feature of the SMA isolators. The limited damage in the bridge piers, together with nearly zero residual drift 

ratios will considerably reduce the post-earthquake repair cost and effort. The results imply that highway 

bridges with SMA isolators, if properly designed, are able to achieve a high seismic performance in 

comparison with conventional bridge systems. The peak displacement is maximum under EQ15 among all 20 

ground motions. The SMA isolators under EQ15 enter into the martensite range, and the strain hardening of 

SMA at large deformation leads to an increased base shear. As a result, the bridge piers yield during EQ15, 

and the plastic deformation of the bridge piers causes noticeable residual displacement after the earthquake. 

These dynamic analysis results further justify the necessity of properly modeling the strain hardening at large 

strain in the constitutive model of SMA. Figures 11-13 show the displacement time history of the pier, and the 

force-displacement relationship of the piers and SMA isolators under EQ01 and EQ15. They provide further 

supports to the above statements. 

Fig. 14 shows the peak and residual displacements of the bridge pier under 20 frequent earthquake records. 

The median value of the peak displacement is about 0.46 cm. No yielding of steel reinforcement occurs under 

all the 20 records, and the bridge piers behave almost linearly. Consequently no apparent residual 

displacement is observed after all the earthquakes. In around 15 earthquakes, the peak response of the bridge 

is below point 1 shown in Figure 8, and the highway bridge is almost damage free without any cracks in the 

bridge piers. The highway bridge is therefore associated with minor damages or even no damage after 

frequent earthquakes.  
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5. Conclusion 

In this paper, a displacement-based seismic design procedure for highway bridges supported on SMA 

isolators is presented. Nonlinear response spectra derived from the constitutive model for SMA materials is 

employed in the design procedure. A simplified SDOF model consisting of two springs in series is used to 

represent the highway bridge. A four-span RC highway bridge is designed using the proposed design approach, 

in which the major parameters of the bridge piers and SMA isolators are determined based on the desired 

seismic performance objectives, including the target drift ratio of the bridge piers, target displacement of the 

bridge deck and the target ductility of the SMA isolators.  

A finite element model of the design example is built in OpenSees computer program. Nonlinear static and 

time-history analyses are carried out to investigate its actual seismic behavior. The results indicate that the 

simplified model can well predict the seismic response of the highway bridges of interest, and the proposed 

DBD procedure can well achieve the target performance specified in the design procedure. Furthermore, the 

highway bridges supported on SMA isolators, if properly designed, are associated with minor damage under 

rare earthquakes, and are likely damage free under frequent earthquakes. The residual deformations after 

earthquakes are minimal due to the superior self-centering feature of the SMA isolators. The high seismic 

performance will considerably reduce the post-earthquake repair cost and the corresponding downtime. In 

addition, both nonlinear static and dynamic analyses indicate that neglecting the strain hardening in the 

constitutive model of SMA may result in an underestimation of seismic damage in the bridge’s piers. 

It should be noted that the bridge piers are assumed to be of the same height, and the effect of vertical 

ground motions are not considered in this study. Further development of this design procedure is needed in 

future to appropriately address these two issues.  
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Table 1. Site class definition for seismic design (China’s code for seismic design of buildings 2001) 

Equivalent shear 

wave velocity 

(m/s) 

Total thickness of overlaying 

layers for each class* (m) 

I II III IV 

vse > 500 0    

500 ≥ vse > 250 <5 ≥5   

250 ≥ vse > 140 <3 3~50 >50  

vse ≤ 140 <3 3~15 15~80 >80 

* the thickness of overlaying layer is the distance measured from ground to underlying rock layer (i.e. 

the layer with vse > 500 m/s)   
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        Fig. 4 Acceleration response spectra of 20 earthquake records considered 
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Fig. 8 Pushover analysis results of highway bridges with SMA isolators 
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Fig. 9 Peak seismic response under rare earthquakes 
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Fig. 10 Peak and residual displacement of the pier top under rare earthquakes  
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Fig. 12 Lateral force-displacement relationship of bridge pier under EQ01 and EQ15 

 



28 
 

 

-0.2 -0.1 0.0 0.1 0.2
-8.0x105

-4.0x105

0.0

4.0x105

8.0x105
Fo

rc
e 

(N
)

Displacement (m)  
-0.2 -0.1 0.0 0.1 0.2

-1.0x106

-5.0x105

0.0

5.0x105

1.0x106

Fo
rc

e 
(N

)

Displacement (m)

(a) EQ01 (b) EQ15 
Fig. 13 Lateral force-displacement relationship of SMA isolator under EQ01 and EQ15 
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Fig. 14 Peak and residual displacement of the bridge pier under frequent earthquakes  
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