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Abstract. Tropospheric ozone is of great importance with
regard to air quality, atmospheric chemistry, and climate
change. In this paper we report the first continuous record of
surface ozone in the background atmosphere of South China.
The data were obtained from 1994 to 2007 at a coastal site
in Hong Kong, which is strongly influenced by the outflow
of Asian continental air during the winter and the inflow of
maritime air from the subtropics in the summer. Three meth-
ods are used to derive the rate of change in ozone. A linear fit
to the 14-year record shows that the ozone concentration in-
creased by 0.58 ppbv/yr, whereas comparing means in years
1994–2000 and 2001–2007 gives an increase of 0.87 ppbv/yr
for a 7-year period. The ozone changes in air masses from
various source regions are also examined. Using local wind
and carbon monoxide (CO) data to filter out local influence,
we find that ozone increased by 0.94 ppbv/yr from 1994–
2000 to 2001–2007 in air masses from Eastern China, with
similar changes in the other two continent-influenced air-
mass groups, but no statistically significant change in the
marine air. An examination of the nitrogen dioxide (NO2)
column obtained from GOME and SCIAMACHY reveals an
increase in atmospheric NO2 in China’s three fastest devel-
oping coastal regions, whereas NO2 in other parts of Asia
decreased during the same period, and no obvious trend over
the main shipping routes in the South China Sea was indi-
cated. Thus the observed increase in background ozone in
Hong Kong is most likely due to the increased emissions of
NO2 (and possibly volatile organic compounds (VOCs) as
well) in the upwind coastal regions of mainland China. The
CO data at Hok Tsui showed less definitive changes com-
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pared to the satellite NO2 column. The increase in back-
ground ozone likely made a strong contribution (81%) to the
rate of increase in “total ozone” at an urban site in Hong
Kong, suggesting the need to consider distant sources when
developing long-term strategies to mitigate local ozone pol-
lution.

1 Introduction

Ozone is a key constituent in the troposphere and plays a
role in air quality, atmospheric oxidizing capacity, and cli-
mate change. At high concentrations, ozone has detrimental
effects on human health, crops, and vegetation (NRC, 1991;
Chameides et al., 1999). Ozone regulates the oxidizing ca-
pacity of the atmosphere via production of the hydroxyl rad-
ical which is the principal cleansing reagent in the atmo-
sphere. Ozone is also a greenhouse gas that directly con-
tributes to global warming (IPCC, 2007). Therefore, long-
term ozone trends and the underlying cause(s) comprise an
area of extensive research worldwide (Vingarzan, 2004; Olt-
mans et al., 2006; IPCC, 2007, and references cited therein).

The tropospheric ozone burden is determined by down-
ward transport from the stratosphere (Danielsen, 1968), dry
deposition to the Earth’s surface, and photochemistry in the
troposphere involving hydrocarbons, carbon monoxide (CO),
and nitrogen oxides (NOx) (Crutzen, 1973). Because of the
complex interactions of chemical and meteorological factors,
the trends in tropospheric ozone vary both in terms of sign
and magnitude and possible causes in different regions of
the world (Oltmans et al., 2006; IPCC, 2007). Oltmans et
al. (2006) analyzed surface and ozonesonde data collected
in 33 rural/remote areas around the globe and showed that
tropospheric ozone increased significantly during the 1970s
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and 1980s in the mid-latitudes of Europe and North Amer-
ica and in Japan, but appeared to have leveled off and in
some places declined in the more recent decades. Several
recent papers showed increasing surface ozone concentra-
tions at rural sites in the western United States (Jaffe and
Ray, 2007; Oltmans, et al., 2008; Parrish et al., 2009), at an
Atlantic coastal site in Europe (Parrish et al., 2009), and at
surface sites and a mountain-top site in Japan during spring-
time (Kurokawa et al., 2009; Tanimoto, 2009). Increasing
ozone in the free troposphere has also been recently reported
for several regions of the Northern Hemisphere based on air-
craft and ozonesonde data (Schnadt Proberaj et al., 2009).

The trends in ground-level ozone in the urban and ru-
ral areas of industrialized regions are strongly linked to
the changes in anthropogenic emissions of ozone precur-
sors (Fiore et al., 1998; USEPA, 2008). In remote areas,
changes of ozone precursor emissions in distant source re-
gions, biomass burning, and atmospheric circulation all play
an important role in ozone trends, and it can be a consider-
able challenge to establish the spatial representativeness of
the observed trend and to pin down the underlying cause(s),
as highlighted by analyses of the ozone trends in rural/remote
western United States (Jaffe et al., 2003; Parrish et al., 2004,
2009; Jaffe and Ray, 2007; Oltmans et al., 2008).

China has undergone rapid urbanization and industrial de-
velopment in the past three decades. A key question is how
the anticipated sharp rise in pollutant emissions affects the at-
mospheric composition of chemically and radiatively impor-
tant trace gases and aerosols. Although intensive field studies
reveal the frequent occurrence of ground level ozone pollu-
tion in photochemically active seasons in suburban and rural
areas of East China (e.g., Cheung and Wang, 2001; Gao et al.,
2005; Shao et al., 2006; Wang et al., 2006a, b), knowledge of
the long-term ozone trends in China is very limited because
of the lack of long-term continuous data from regionally rep-
resentative sites. Ding et al. (2008) analyzed aircraft ozone
data obtained from the MOZAIC (Measurement of Ozone
and Water Vapor by Airbus In-Service Aircraft) program for
the 1995–2005 period (with data concentrating in 1997 to
1998 and 2005) and found that summertime ozone in the
boundary layer near Beijing had increased by about 2% per
year. Xu et al. (2008) found a positive trend in daytime ozone
at a polluted rural site in the Yangtze River Delta, based on
data collected during seven measurement campaigns lasting
3–15 months in 1991–2006. In the maritime regions im-
pacted by Asian continental outflow, Chou et al. (2006) re-
ported a positive trend in surface ozone in northern Taiwan
for the 1994–2003 period, whereas the data obtained from
ozonesondes in 1970–2002 at four Japanese sites indicated
no obvious trends during the 1990s in regionally polluted air
masses from China (Naja and Akimoto, 2004). Increasing
ozone concentrations in Japan were recently reported during
springtime at a remote mountainous site in 1998–2006 (Tani-
moto, 2009) and at 136 air-quality monitoring stations during
1981–2005 (Kurokawa et al., 2009).

In this report, we present the first long-term and continu-
ous record of surface ozone obtained at a non-urban site from
1994 to 2007 in Southern China. The ozone data were col-
lected at a regional background air monitoring station of The
Hong Kong Polytechnic University at Hok Tsui, Hong Kong.
Influenced by Asian monsoons, the site receives pollutant-
laden continental flow in the winter and relatively clean mar-
itime air from the South China Sea in the summer, making it
a suitable location to monitor the background ozone of sub-
tropical eastern Asia. First shown are the overall change,
seasonal cycles, and changes in four seasons. Then a clus-
ter analysis of back trajectories over the 14 years is con-
ducted to identify the major types of air-mass groups, and
the ozone change in each group is examined. Also analyzed
are the trends in the satellite-derived nitrogen dioxide (NO2)
columns in different source regions in Asia and the changes
in surface CO observed at Hok Tsui. Finally, the impact
of the background air on the ozone changes in urban Hong
Kong is assessed.

2 Data and methodologies

2.1 Study site and instrumentation

The Hong Kong Polytechnic University’s background air
monitoring station was established at Hok Tsui to moni-
tor the changes in the composition of background air and
to investigate the chemistry and transport of air pollution
in subtropical Asia (http://www.cse.polyu.edu.hk/∼cetwang/
Researches/Guangdong/HokTsui/index.htm). The station

was an integral part of the PEM-West, TRACE-P, and ACE-
Asia campaigns (Wang et al., 1997; Lam et al., 2001; Wang
et al., 2003; Cohen et al., 2004), and has been involved
in other intensive studies (see the website for a full list of
publications). Figure 1 shows the location of the station
in Hong Kong and the Pearl River Delta (PRD) of Guang-
dong Province. (Also shown in Fig. 1 is a weather station
at Waglan (WGL) Island and an urban air quality monitoring
station at Central/Western (CW) whose data are used to aid
the analysis of the data at Hok Tsui.) The reader is referred to
our previous publications for a more detailed description of
the Hok Tsui station. Briefly, the site is located at the south-
eastern tip of Hong Kong Island (22.217◦ N, 114.25◦ E, 60 m
above sea level), on a cliff with a 270◦ view of the South
China Sea. Most of the time, the station is upwind of the
urban areas of Hong Kong and the PRD.

Measurement instruments are housed in a temperature-
controlled container. Ambient air samples are drawn through
a perfluoroalkoxy (PFA) Teflon tube (outside diameter,
12.7 mm; inside diameter, 9.6 mm), which is connected to
a PFA manifold. The length of the sampling tube was 17 m
(14 m after July 2007). The inlet of the sample line was lo-
cated 12 m above the rooftop of the laboratory (9 m after July
2007). A bypass pump draws air at a rate of 15 L/min. The
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Fig.1. Map (and photo) showing the location of the Hok Tsui station in Hong Kong and the Pearl River Delta of 
Guangdong Province. (The purple regions indicate urban areas. Also shown is a weather station at Waglan Island (WGL) 
and an urban air quality monitoring station at Central/Western (CW) whose data are used to aid the analysis of the data 
at Hok Tsui.) 
 
 

 

Fig. 2. Monthly mean ozone mixing ratios and the linear fit line at Hok Tsui, Hong Kong, during 1994-2007. 

Fig. 1. Map (and photo) showing the location of the Hok Tsui station in Hong Kong and the Pearl River Delta of Guangdong Province. (The
purple regions indicate urban areas. Also shown is a weather station at Waglan Island (WGL) and an urban air quality monitoring station at
Central/Western (CW) whose data are used to aid the analysis of the data at Hok Tsui.)

residence time of air in the sample line and manifold was
4.2 s (3.4 s after July 2007). An inline Teflon filter (Fluo-
roware Inc., Chaska, Minnesota) is placed upstream of each
analyzer to prevent particles from entering the analyzer.

Ozone is measured with a commercial UV photometric an-
alyzer (Thermo Environment Instrument Inc. (TEI), Models
49, 49C, and 49i). Zero checks are performed every day by
automatically injecting charcoal-scrubbed air (Wang et al.,
1997; Lam et al., 2001). The ozone analyzer is calibrated
by a UV photometric calibrator (TEI Model 49PS) approx-
imately every six months. The ozone standard has been
cross-checked against two National Institute of Standards
and Technology (NIST) primary ozone standards maintained
by the Hong Kong Environmental Protection Department and
National Institute for Environmental Studies of Japan (Tan-
imoto et al., 2007). Excellent agreement (difference<1%)
was obtained.

To facilitate the analysis of ozone trends, the CO data
concurrently measured at the site are also utilized. CO is
measured with a gas filter correlation, non-dispersive in-
frared absorption instrument (TEI Model 48 before March
2006 and Teledyne API Model 300 thereafter). The reader
is referred to Wang et al. (1997), Lam et al. (2001), and
Wang et al. (2001) for detailed descriptions of the two in-
struments. Both analyzers have an internal heated catalyst
to convert CO to CO2 while allowing other gases and wa-
ter vapor to pass through. Zero checks are conducted every
two hours for a period of 15 min. The analyzer is calibrated
against a NIST-traceable standard. Both analyzers have been
compared with the canister-based sampling method and gas
chromatographic analysis technique, with good agreement
(within 10%) achieved.

2.2 Ozone and NOx data at an urban site

To compare the ozone change at Hok Tsui with that in ur-
ban Hong Kong, the ozone and NOx data obtained at an
urban monitoring station (Central/Western (CW)) are used
in this analysis. This station is in a residential area on the
densely populated northern side of Hong Kong Island and is
14.5 km west of Hok Tsui (see Fig. 1). The station is op-
erated by the Hong Kong Environmental Protection Depart-
ment. The ozone concentrations at this site have increased
since the early 1980s (Chan et al., 2004;http://www.epd-asg.
gov.hk/english/report/files/aqr07e.pdf). Ozone is measured
with a UV photometric analyzer, and NOx with a chemilu-
minescence analyzer with a heated MoO catalyst to convert
NO2 to NO (http://www.epd-asg.gov.hk/english/report/files/
aqr07e.pdf). It should be noted that the NO2 determined by
this method includes not only NO2 but also some other forms
of oxidized reactive nitrogen such as PAN and nitric acid.

2.3 Satellite data

Satellite data were used for an examination of the spatial
distribution of and changes in NO2, a precursor of photo-
chemically produced ozone. The monthly mean global tropo-
spheric NO2 columns were used, with 0.5 degree resolution,
obtained from GOME (Global Ozone Monitoring Experi-
ment) for the 1995–2002 period and SCIAMACHY (Scan-
ning Imaging Absorption Spectrometer for Atmospheric
Chartography) from 2003 onwards. These Level 2 products
were obtained via TEMIS (Tropospheric Emission Monitor-
ing Internet Service;http://www.temis.nl/index.html), with
no additional processing by these authors.
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2.4 Back trajectories and cluster analysis

To examine the origin and transport pathways of the large-
scale air masses arriving at the study site, ten-day back
trajectories were calculated for each hour using the Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model Version 4.8 (Draxler and Hess, 1998). The
meteorological data used to drive the model were the 6-
hourly Air Resources Laboratory (ARL) FNL archive data
with a resolution of 190 km for the 1997–2006 period
(ftp://www.ready.noaa.gov/pub/archives/fnl). The 2.5◦×2.5◦

NCEP/NCAR Reanalysis data (ftp://www.ready.noaa.gov/
pub/archives/reanalysis) were used in lieu of the missing data
in the former source in 1994–1997 and in 2007. The end-
point of the trajectories was 300 m above ground level at the
Hok Tsui site, which is in the middle of the marine boundary
layer. Cluster analysis (Dorling et al., 1992) was then used
to group trajectories into clusters and determine the optimum
number of clusters. The results are shown in Sect. 3.2.1.

2.5 Methods for trend analysis

For the overall changes in ozone and CO concentrations over
the 14-year period, a linear fit was applied to the monthly av-
eraged data as well as to de-seasonalized monthly data (Jaffe
and Ray, 2007). The monthly averages include all time of
day. The slope of the least square fit was used to show the
rate of change. In addition, the mean values in years 1994–
2000 and 2001–2007 were computed, and average rates of
change were obtained by dividing the difference between the
means by 7 (i.e., 7 years). To see if a trend exists in each
season and in air-mass groups from different source regions,
both linear fitting to the seasonally or air-mass averaged data
and the method of dividing the data into two periods were
used.

To determine if a rate of change is statistically significant,
the p value was obtained in the case of the linear fitting
method, withp less than or equal to 0.05 being considered
statistically significant; a variance test (t-test) was conducted
to check if the means in the two periods are significantly dif-
ferent, and a confidence level of at least 95% is adopted. For
the seasonally and air mass averaged data set with a small
sample size (14 in our case), thep value in the linear fit may
not be the sole criteria for testing the level of statistical signif-
icance, because the linear regression assumes that data scat-
ter follows a Gaussian distribution, and this assumption can
be violated in cases of small sample size (Motulsky, 1995).
Thus if the variance test shows a difference in the mean val-
ues is significant at the 95% confidence level or better, the
change is considered to be robust.
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Fig.3. Whisker plot of the seasonal variation of ozone at Hok Tsui during the 1994-2007 period. 

 

Fig. 4. Four major types of 10-day backward trajectories at Hok Tsui. The percentage of each type during the 
1994–2007 period is shown in parentheses. The NO2 column data from GOME and SCIAMACHY (averaged over 
1996–2007) are shown in the shaded areas. The boxes in dashed lines are potential sources for ozone at Hok Tsui: (1) 
NCP: North China Plain, (2) YRD: Yangtze River Delta, (3) PRD: Pearl River Delta, (4) Kr-Jp: Korea and Japan, (5) 
TW: Taiwan, (6) SA: Southeast Asia.  

Fig. 3. Whisker plot of the seasonal variation of ozone at Hok Tsui
during the 1994–2007 period.

3 Results and discussion

3.1 Overall trend and seasonal pattern of ozone

Figure 2 shows the monthly averaged ozone over the 1994–
2007 period and a linear fit of the monthly data. Overall,
there is a statistically significant (p<0.01) increase in ozone
during the 14-year period, with a mean rate of change of
0.58 ppbv/yr. A linear fit to the de-seasonalized monthly
data (with the use of SPSS software) gives a similar slope
(0.57 ppbv/yr) andp value (p<0.01). The mean ozone in
years 2001–2007 is also significantly (at the 99% confidence
level) greater than that in the proceeding period, which gives
an average rate of change of 0.87 ppbv/yr. The results from
the three methods confirm rising ozone levels at Hok Tsui.
Figure 3 shows the composite seasonal pattern of ozone in
the 14-year period. A similar seasonal cycle has previously
been reported based on the data from shorter periods (1–
3 years) (Lam et al., 2001; Wang et al., 2005), and can
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Table 1. Rate of change in seasonally averaged ozone by two meth-
ods.

Linear regression Comparing the difference between
1994–2000 and 2001–2007

Season rate (ppbv/yr) p value rate (ppbv/yr) confidence level

Spring 0.41 0.18 0.84 99%
Summer 0.52 0.15 0.99 99%
Autumn 0.68 0.07 1.02 99%
Winter 0.50 0.12 0.73 95%

generally be explained by the Asian Monsoon. The domi-
nance of marine air masses, coupled with rainy and unstable
weather, leads to low levels of ozone (and other trace gases)
in summer. Pollution-laden continental flow from the north,
in conjunction with the stable and warm weather in autumn,
contributes to the ozone maximum in autumn (winter for pri-
mary pollutants such as CO). These 14-years of data give
a climatologically average maximum of 47 ppbv in October
and minimum of 18 ppbv in July.

Table 1 gives the rate of change in the seasonal ozone
averages determined by the linear fit and by comparing the
two periods. Winter includes December, January, and Febru-
ary; spring, March, April, and May; summer, June, July
and August; and autumn, September, October, and Novem-
ber. (The winter months are in the same year.) The lin-
ear fit gives a mean rate of 0.68 ppbv/yr in autumn, with
lower values (0.50, 0.41 and 0.52) in winter, spring and sum-
mer, respectively; thep values are relatively large (0.07–
0.18). In comparison, the variance tests indicate significantly
greater (at the 95% confidence level) values in the more re-
cent years. The rate of change was 1.02 ppbv/yr in autumn,
followed by 0.99,ppbv/yr in summer, 0.84 ppbv/yr in spring,
and 0.73 ppbv/yr in winter.

The ozone changes in the four seasons at Hok Tsui are
somewhat different from those at another coastal site, WanLi,
in northern Taiwan during 1994–2003 (Chou et al., 2006).
At the latter site, which is about 800 km northeast of Hong
Kong, the largest rate of increase of ozone occurred in
spring (0.71 ppbv/yr, p = 0.0044), which is determined by
the linear fitting method, followed by summer (0.55 ppbv/yr,
p=0.1467), autumn (0.15 ppbv/yr, p = 0.7073), and winter
(0.10 ppbv/yr, p=0.7738) (see Table 1 of the reference). In
contrast, coastal Hong Kong saw the largest rate of increase
in autumn. In comparison with the ozone changes derived
from the limited data in source regions in Eastern China, the
overall change in Hong Kong was similar to that in the plan-
etary boundary layer over Beijing (Ding et al., 2008). At a
polluted rural site, Lin’an, in the Yangtze River Delta, sur-
face ozone showed a larger rate of increase in daytime and
a decrease at night, with no obvious overall trend (Xu et al.,
2008). The opposite trend in the daytime and nighttime data
at Lin’an is attributed to the increase in NOx emissions in
the region leading to enhanced photochemical production of

ozone in the daytime and the titration of ozone at night (Xu et
al., 2008). At Hok Tsui, ozone increased both in the daytime
and the nighttime (figure not shown), which indicates that
the site is not significantly impacted by titration from local
sources.

3.2 Climatology of large-scale transport

3.2.1 Transport pattern using cluster analysis

To discover the origins and transport pathways of air masses
in the background atmosphere of Southern China, the re-
sults of cluster analysis of the hourly trajectories for 1994–
2007 were examined. Cluster analysis yielded a total of
seven air-mass groups. The two marine sub-groups arriv-
ing from the southwest and southeast were grouped into one
“Marine” group, and three continental air-mass groups into
one “East China” group, in part because the concentrations
of ozone and CO were similar in the subgroups. Figure 4
shows the four main groups and the percentage occurrence
of each, with shaded areas as the mean NO2 column concen-
tration obtained from GOME and SCIAMACHY for 1996–
2007. The four air-mass groups are: “Marine”, “Central
China + PRD”, “East China”, and “Aged continental”.

The Marine air mass originated in Southeastern Asia and
the surrounding ocean and passed over the South China Sea
before arriving at the site. This group, which can be consid-
ered background air from the South China Sea, mainly (68%)
occurred in summer (June, July, and August) and accounted
for 30% of all trajectories. The Aged continental air mass
originated in continental Asia, spent many days over the East
China Sea, and approached Hong Kong from the east. This
air mass accounted for 13% of total trajectories. The East
China group originated in Central Asia, and passed over the
highly industrialized coastal regions of Eastern China. This
group accounted for 45% of total trajectories, making it the
predominant air-mass group. The Central China + PRD air
mass passed over central China, the PRD, and Hong Kong.
The two latter groups mainly occurred in autumn and win-
ter (79% and 68% of the time, respectively). The altitudes
of these groups are also shown. The three continental air
groups originated at altitudes higher than those of the marine
group. The 14-year trajectory results confirm that large-scale
air masses arriving at Hok Tsui are mainly from the northeast
and south, and infrequently come from urban Hong Kong it-
self or the adjacent PRD.

3.2.2 The ozone changes in different air-mass groups

Next examined were the ozone changes in the four air-mass
groups. As the study site is close to the urban center of
Hong Kong and trajectories based on coarse meteorologi-
cal data may not capture the local to meso-scale dynamic
processes that could transport Hong Kong’s emissions to the
site, we imposed additional constraints when examining the
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Fig.3. Whisker plot of the seasonal variation of ozone at Hok Tsui during the 1994-2007 period. 

 

Fig. 4. Four major types of 10-day backward trajectories at Hok Tsui. The percentage of each type during the 
1994–2007 period is shown in parentheses. The NO2 column data from GOME and SCIAMACHY (averaged over 
1996–2007) are shown in the shaded areas. The boxes in dashed lines are potential sources for ozone at Hok Tsui: (1) 
NCP: North China Plain, (2) YRD: Yangtze River Delta, (3) PRD: Pearl River Delta, (4) Kr-Jp: Korea and Japan, (5) 
TW: Taiwan, (6) SA: Southeast Asia.  

Fig. 4. Four major types of 10-day backward trajectories at Hok Tsui. The percentage of each type during the 1994–2007 period is shown in
parentheses. The NO2 column data from GOME and SCIAMACHY (averaged over 1996–2007) are shown in the shaded areas. The boxes
in dashed lines are potential sources for ozone at Hok Tsui: (1) NCP: North China Plain, (2) YRD: Yangtze River Delta, (3) PRD: Pearl
River Delta, (4) Kr-Jp: Korea and Japan, (5) TW: Taiwan, (6) SA: Southeast Asia.

chemical characteristics of air masses in the Marine, East
China, and Aged continental groups. The surface winds ob-
served at Waglan Island (WGL), by the Hong Kong Obser-
vatory were used. WGL is situated 8 km southeast of Hok
Tsui (see Fig. 1). The following criteria were adopted: the
wind speed at WGL must be greater than 2 m/s, and the wind
direction in the preceding six hours at WGL must be within
20–250◦ (i.e., not from urban Hong Kong or the PRD). In ad-
dition, for the Marine and Aged continental groups, the con-
currently measured CO must be lower than 400 and 500 ppbv,
respectively.

Segregating/filtering the ozone data using cluster analy-
sis and the abovementioned criteria led to limited data points

distributed unevenly in different seasons and times of the day.
As ozone in the lower troposphere has a strong seasonal and
diurnal variation, a pooled statistical method (Taylor and Ci-
hon, 2004) was adopted to calculate the mean ozone level in
each group. The data in air-mass groups were further divided
into 16 sub-groups (four seasons and four time-periods of a
day), and the means and standard deviations in the 16 sub-
groups were pooled to obtain the overall mean and standard
deviations for that air-mass cluster. It has been shown that the
pooled method gives results with higher levels of statistical
significance (Ding et al., 2008).
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Fig. 5. Monthly mean tropospheric NO2 column concentration retrieved from GOME (March 1996–June 2002) and 
SCIAMACHY (July 2002–November 2007) for NCP, YRD, PRD, Kr-Jp, TW, and SA. 
 

 
Fig. 6. Monthly mean CO mixing ratios and the linear fit line at Hok Tsui, Hong Kong, during 1994-2007. 

 
Fig. 7. Monthly mean O3 mixing ratios at Hok Tsui, O3 and O3+NO2 at an urban site (Central/Western) in Hong Kong, 
and the linear fit lines (upper panel); NOx at Central/Western in Hong Central/Western in Hong Kong (lower panel). 

Fig. 5. Monthly mean tropospheric NO2 column concentration retrieved from GOME (March 1996–June 2002) and SCIAMACHY (July
2002–November 2007) for NCP, YRD, PRD, Kr-Jp, TW, and SA.

The means and standard deviations obtained using the
pooled method for the ozone and CO data are shown
in Table 2 for the various air-mass groups and with the
wind/CO constraints. Due to the very small sample
size, winter data are not used for computing the pooled
mean for the Marine group, and summer data are not in-
cluded for the East China and Central China + PRD groups.
As expected, the mean CO concentration was the low-
est in the Marine group, with a mean value of 128 ppbv
(±48 ppbv). The Central China + PRD air mass had the
highest CO concentration (488 ppbv±204 ppbv), followed
by the East China (357 ppbv±141 ppbv) and Aged continen-
tal (235 ppbv±88 ppbv) groups. The average ozone was the
lowest in the Marine group (22 ppbv±10 ppbv), also as ex-
pected. The highest ozone concentration was found in the
East China group (48 ppbv±14 ppbv), with lower concentra-
tions in the Central China + PRD (42±20 ppbv) and Aged
continental groups (38±16 ppbv). The chemical data are
consistent with the results of air-mass classification using the
back trajectories, in terms of the expected concentrations of
the two gases. In the marine air group, the average values
of ozone and CO in summer months (accounting for 68%
of total samples) are 18(±9) ppbv and 98 (±38) ppbv, re-
spectively, which can be considered as their respective back-
ground concentrations in the South China Sea region during
summer.

Table 3 shows the ozone changes in each air-mass group
with the wind and CO filter applied (except for the Cen-
tral China + PRD group). The linear fits shows a rate of
increase of 0.64 ppbv/yr in the East China group (p = 0.08)
with the other air-mass groups having a largerp value (0.21–

Table 2. Pooled means and standard deviations of ozone and CO in
the four air-mass groups.

Air mass type O3(ppbv) CO(ppbv)

East China∗ 48(14) 357(141)
Central China + PRD 42(20) 488(204)
Aged continental∗ 38(16) 235(88)
Marine∗ 22(10) 128(48)

∗ With the wind/CO filter (see text for detail).

Table 3. Rate of change for yearly pooled average of ozone in the
four air-mass groups.

Linear regression Comparing the difference
between 1994–2000 and

Air mass type rate (ppbv/yr) p value 2001–2007 (ppbv/yr)

East China∗ 0.64 0.08 0.94∗∗

Central China + PRD 0.67 0.21 1.20∗∗

Aged Continental∗ 0.45 0.21 0.85∗∗

Marine∗ 0.29 0.27 0.57

∗ With the wind/CO filter
∗∗ Significant at 95% confidence level

0.27). Comparing the means in the two periods yields an in-
crease (significant at 95% confidence level) of 0.94 ppbv/yr,
1.20 ppbv/yr, and 0.85 ppbv for the East China, Central
China + PRD, and Aged continental air groups, respectively.
The Marine air group did not show a significant increase. The
results indicate that the increasing ozone observed at Hok
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Tsui is mainly in air masses which have been affected by
continental sources.

3.3 Relationship between the ozone change and anthro-
pogenic emissions in source regions

An important issue is to determine the main cause of the
increasing background ozone in coastal South China. Fig-
ure 5 shows the change in tropospheric NO2 columns de-
rived from satellite data for various parts of Asia which
may have affected the ozone concentrations at Hok Tsui.
These regions (see also Fig. 4) include: the North China
Plain (NCP, 114◦ E–120◦ E, 34◦ N–41◦ N), the Yangtze River
Delta (YRD, 118◦ E–123◦ E, 28◦ N–33◦ N), the Pearl River
Delta (PRD, 112◦ E–115◦ E, 21◦ N–24◦ N), Korea and Japan
(Kr–Jp, 126◦ E–140◦ E, 32◦ N–39◦ N), Taiwan (TW, 119◦ E–
122◦ E, 22◦ N–26◦ N), and Southeast Asia (SA, 98◦ E–
108◦ E, 10◦ N–22◦ N).

Similar to the finding of Richter et al. (2005), the satellite
data indicate significant NO2 column increases in China’s
three most economically developed regions. The North
China Plain (which is home to two megacities, Beijing and
Tianjin) had the highest mean NO2 column concentration
and the largest rate of increase, followed by the Yangtze
River Delta (which is home to China’s largest city, Shang-
hai), and the Pearl River Delta (which is the world’s major
consumer goods manufacturing base). A pronounced sea-
sonal variation in NO2 columns can be seen, with higher NO2
in winter due to the longer lifetime of NO2 and greater NOx
emissions in northern regions (Richter et al., 2005). In con-
trast to the increasing trend in NO2 in the three regions of
China, an overall flat or decreasing trend in NO2 was ob-
served in Taiwan, Korea and Japan, and Southeast Asia.

Increasing emissions from international shipping (e.g.,
Eyring et al., 2005) may be an important factor in determin-
ing the changes of trace gases and aerosols in coastal zones
and over the oceans. Model analysis (Dalsøren et al., 2009)
suggests a large contribution (>10%) of shipping emissions
to surface ozone in some coastal areas. To examine whether
the increased ozone concentrations at Hok Tsui could be
due to increased emissions from international shipping activ-
ities, we examined the rate of change in satellite NO2 during
1996–2007 over a large part of Asia (figure note shown). No
obvious trend in NO2 over the main shipping routes in the
South China Sea and the East China Sea is indicated, despite
large increases of NO2 in the major urban/industrial regions
of mainland China. It is possible that a small increase in
NO2 exists from increased shipping activities but cannot be
detected by satellite. It is worth noting that the contribution
of ship emissions to total NO2 in China is much smaller com-
pared to other parts of the world (see Fig. 4 in Dalsøren et al.,
2009).

The above results suggest that the increasing background
ozone in the South China coastal region is associated with
the increasing NO2 column concentration in upwind East-
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Fig. 6. Monthly mean CO mixing ratios and the linear fit line at
Hok Tsui, Hong Kong, during 1994–2007.

ern China. Although other factors such as climate change
may be playing a role in the long-term change in ozone, the
pronounced increase in NOx (and possibly, volatile organic
compound (VOC)) emissions in Eastern China is believed to
be the main cause of the increasing ozone levels at Hok Tsui.

Figure 6 shows the monthly mean mixing ratio of CO at
Hok Tsui. CO is produced mainly from burning of fos-
sil fuels and biomass and is a precursor of ozone. The
linear fit to the original and de-seasonalized monthly data
gives a similar slope of 3.5 versus 3.4 ppbv/yr, but the lat-
ter method improved the statistical significance of the re-
sult (p<0.01 versusp = 0.15). The mean CO during 2001–
2007 is not significantly different from that in the preced-
ing years as a whole and in each air-mass group. The less
definitive change in surface CO indicates stabilizing emis-
sions of CO in East Asia, which is in contrast to the rapid
rise of NO2 emission. This may be explained by improved
efficiencies in China’s industries and/or reduced burning of
biomass/biofuel. A recent emission inventory (Zhang et al.,
2009) suggests a more moderate increase in CO compared
to NOx during 2001–2006 (18% versus 55%). In the North-
ern Hemisphere, an overall decrease of tropospheric CO has
been observed in the past two decades (Novelli et al., 2003,
2007), and in Hong Kong CO emissions have decreased by
55% during 1994–2007 (http://www.epd.gov.hk/epd/english/
environmentinhk/air/data/emissioninve.html).

3.4 The impact of background air on ozone in urban
Hong Kong

As for other urban areas, Hong Kong and the adjacent PRD
experience serious ozone pollution. Hourly ozone mixing
ratios of 150–200 ppbv have been observed in photochemical
episodes (e.g., Wang et al., 1998; Zhang et al., 2007, 2008).
It is of great interest to see to what extent the change in
background ozone has affected the long-term change of
ozone in urban Hong Kong. Figure 7 compares the monthly
ozone (calculated from all times of day) during 1994–2007
at Hok Tsui, which, as discussed previously, is upwind of
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Fig. 7. Monthly mean O3 mixing ratios at Hok Tsui, O3 and O3 + NO2 at an urban site (Central/Western) in Hong Kong, and the linear fit
lines (upper panel); NOx at Central/Western in Hong Kong (lower panel).

the Hong Kong’s urban areas most of the time, with that
observed at the urban CW station. As ozone at CW is titrated
by freshly emitted NO via O3 + NO→NO2 + O2, we also
show O3 + NO2 for the overall oxidant abundance. This
quantity includes the amount of ozone that is temporally
lost due to the NO titration and also the NO2 that is directly
emitted by vehicles and other local sources. Thus the
atmospheric concentration of “total ozone”, (Total O3),
which is defined as the observed O3 in the urban areas plus
the O3 that is titrated by NO, can be expressed as:

[Total O3] = [O3 + NO2]observed−[NO2]directly emitted

Figure 7 shows that the ozone level at CW increased
at an average rate of 0.65 ppbv/yr during the 1994–2007
period, with O3+NO2 increasing at a slightly higher rate
of 0.69 ppbv/yr. Ambient concentrations of NOx at CW
decreased during the same period at a rate of−0.68 ppbv/yr
(p = 0.02) (see the lower panel in Fig. 7) because of the im-
plementation of several control measures during the period.
Measurements in two tunnels in Hong Kong showed a mean
vehicular NO2/NOx emission ratio of 0.041 (ppbv/ppbv)
(http://www.epd.gov.hk/epd/english/environmentinhk/air/
studyrpts/files/1-ptfinal report20050225d.pdf). Assuming
that this value (obtained in year 2004) can be applied to CW
for the entire 14-year period, we can estimate the change
in “total ozone” at CW as 0.69−(−0.03) = 0.72 ppbv/yr. If
we assume CW is affected by the same air masses as those
at Hok Tsui and that the ozone chemistry is linear, then
81% (0.58/0.72) of the ozone increase at CW is due to the
ozone increase in the background air. However, regional
scale chemical transport modeling is required to validate this

result. The increasing ozone concentrations at Hok Tsui,
which is upwind of Hong Kong and the PRD for a majority
of time, suggests the importance of taking long-range
(super-regional) transport into account in the management
strategy of ground-level ozone pollution in Hong Kong and
the PRD. Short-term control strategies, however, should aim
to reduce sources within the region, which have led to peak
concentrations of 150–200 ppbv during episode days.

4 Conclusions

Motivated by the need to understand the atmospheric impact
of East Asia’s rapid industrialization, a regional air monitor-
ing station was established in the early 1990s in a coastal
area of Hong Kong. This paper presents the ozone and CO
results obtained from 1994 to 2007. The 14-year data reveal
increasing ozone levels at an average rate of 0.58 ppbv/yr.
This increase is associated with the increase in tropospheric
NO2 in China’s fast-developing coastal regions. These find-
ings, combined with the back trajectory results, suggest that
the observed increase in ozone levels is very likely the re-
sult of the increase in the emission of ozone precursors
in upwind source regions in the eastern coastal regions of
China. Long-range transport makes a significant contribu-
tion to the increase in “total ozone” in the urban area of
Hong Kong, thus suggesting the importance of considering
super regional transport in future ozone control strategies.
Although this study indicates an association between the in-
crease in ozone level and the increase in emissions in upwind
source regions, further studies are needed to confirm this as-
sociation and to quantify the relative contribution from each
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source region (including ship emissions over the oceans) to
the ozone changes.
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