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Abstract: Long-span suspension bridges carrying both highway and railway have been built in 

wind-prone regions. The estimation of fatigue damage of such bridges under the long-term 

combined action of railway, highway, and wind loading represents a challenging task in 

consideration of randomness in multiple types of loading. This study presents a framework for 

fatigue reliability analysis of multi-loading long-span suspension bridges equipped with structural 

health monitoring systems (SHMS), and the Tsing Ma suspension bridge in Hong Kong is taken 

as a case study. A limit state function in terms of the daily sum of m-power stress ranges is first 

defined for fatigue reliability analysis. Probabilistic models of railway, highway, and wind loading 

are established based on the measurement data acquired from the SHMS. The daily stochastic 

stress responses induced by the multiple types of loading are simulated at the fatigue-critical 

locations of the bridge deck by using the finite element method and the Monte Carlo Simulation 

(MCS) together with the loading probabilistic models established. The probability distribution of 

the daily sum of m-power stress ranges is estimated based on the daily stochastic stress responses. 

The probability distribution of the sum of m-power stress ranges for a given time period is then 

evaluated in consideration of future traffic growth patterns. Finally, the fatigue failure 

probabilities of the bridge at the fatigue-critical locations are calculated for different time periods. 

The results demonstrate that the health condition of the Tsing Ma Bridge at the end of its design 

life will be satisfactory under current traffic conditions without growth, but that attention should 

be paid to future traffic growth because it may lead to a much greater fatigue failure probability.  

CE Database subject headings: Fatigue; Reliability; Suspension bridges; Structural health 

monitoring; Wind loading; Railway loading; Highway loading.  
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Introduction 

In the last few decades, many long-span suspension bridges have been built throughout the world. 

Some of these bridges carry both trains and road vehicles and are located in a wind-prone region, 

and therefore they are subjected to the long-term combined action of railway, highway and wind 

loading. For such bridges, fatigue is one of the crucial structural safety issues mostly concerned 

by bridge engineers and managers. The fatigue damage of steel bridge structures under traffic 

loading has been investigated by many scholars (Chan et al. 2001; Zhou et al. 2006). Fatigue 

analysis using the Miner’s rule is a well-known approach for the evaluation of steel bridge fatigue 

damage, in which the magnitude of cyclic stress ranges is the principal parameter. It was found 

that a small error in stress ranges could lead to a significant discrepancy in the estimation of 

structural service life. However, uncertainties arising from loads as well as structural modeling are 

unavoidable, which may call the estimation of fatigue damage in question (Chung 2004; Kwon 

and Frangopol 2010). Furthermore, few literatures discuss fatigue damage and reliability of long 

span suspension bridges under multiple types of random loading.  

Recently-developed structural health monitoring technology provides a better solution for the 

problems concerned. Structural health monitoring technology is based on a comprehensive 

sensory system and a sophisticated data processing system implemented with advanced 

information technology and supported by cultivated computer algorithms. The Tsing Ma Bridge in 

Hong Kong is a long-span suspension bridge carrying both highway and railway, and it is also 

located in a wind-prone region (see Figure 1). The Hong Kong Highways Department installed a 

comprehensive structural health monitoring system (SHMS) in the Tsing Ma Bridge in 1997 

(Wong et al, 2001). The SHMS was devised to carry out the monitoring of parameters in four 

categories, namely, environmental status, traffic loads, bridge features and bridge responses. The 

first 18 measured natural frequencies and mode shapes of the bridge acquired from the SHMS 

was used to update a structural health monitoring oriented finite element (FE) model of the bridge 
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(Liu et al. 2009). An engineering approach for dynamic stress analysis of long-span suspension 

bridges under multiple types of dynamic loading was also proposed and verified using the 

measurement data acquired from the SHMS of the Tsing Ma Bridge (Chen et al., 2010).  

The aforementioned works make it possible to propose a framework in this paper for the 

fatigue reliability analysis of long-span suspension bridges under the long-term combined action 

of railway, highway and wind loading. A limit state function in terms of the daily sum of m-power 

stress ranges is first defined for fatigue reliability analysis. Probabilistic models of railway, 

highway, and wind loading are established based on the measurement data acquired from the 

SHMS of the Tsing Ma Bridge. The daily stochastic stress responses induced by the multiple 

types of random loading are simulated at the fatigue-critical locations of the bridge deck by using 

the finite element method and the Monte Carlo Simulation (MCS) together with the loading 

probabilistic models established. The probability distribution of the daily sum of m-power stress 

ranges is estimated based on the daily stochastic stress responses. The probability distribution of 

the sum of m-power stress ranges for a given time period is then evaluated in consideration of 

future traffic growth patterns. Finally, the fatigue failure probabilities of the bridge at the 

fatigue-critical locations are calculated for different time periods. 

Framework for Fatigue Reliability Analysis 

This section sets out the framework for the fatigue reliability analysis of long-span suspension 

bridges under railway, highway, and wind loading. Given the particularity of such bridges, some 

key issues need to be considered. First, there are uncertainties in different types of fatigue loading 

acting on the bridge. Thus, probabilistic models must be established for each individual loading. 

Second, as uncertainties exist in a random combination of the multiple loadings it is necessary to 

calculate multiple loading-induced stochastic stress response time histories. Finally, uncertainties 

also exist in the prediction of future traffic loading. Thus, future traffic growth patterns are 

assumed to estimate fatigue damage accumulation in a given time period.  
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The first step of fatigue reliability analysis is to define a limit state function that adequately 

describes the relationship between fatigue resistance and fatigue loading for a fatigue-sensitive 

structural member. Distinct from deterministic fatigue analysis, the randomness in both the fatigue 

loading and the fatigue resistance shall be considered in the fatigue reliability analysis. In the 

aspect of fatigue resistance, both the fatigue damage accumulation index ∆  and the fatigue 

detail coefficient K are regarded as random variables. Given that the multiple loading-induced 

stress time history is a stochastic process, the number of stress cycles at a given stress range level 

is also a random variable. Furthermore, the operation of urban passenger trains often follows a 

daily timetable, the cycle of railway and highway traffic is close to one day. As a result, the daily 

sum of m-power stress ranges Smr,j (j = 1,  , Nb, where Nb is the total number of days in the time 

period concerned) is treated as a random variable in terms of fatigue loading. Taking these 

random variables into account, the limit state function for fatigue reliability analysis is defined as 

follows. 

b b
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where in  is the applied number of stress cycles at the stress range level r,iσ , which is counted 

from the multi-loading induced daily stochastic stress response time history using the rainflow 

counting method. This study uses the fatigue strength (S-N) curve recommended by British 

Standard (BS, 1980) for fatigue assessment of the Tsing Ma Bridge under multiple loads because 

it was used in the design of the bridge. The type of welded connections of the bridge for the 

fatigue critical locations is classified as type F, which is the same as that used in the design of the 

bridge. m is a parameter in the S-N curve and it is taken as 3.0. According to the two-slope S-N 

curves defined in British Standard, if the stress range level r,iσ  is less than the fatigue limit r,0σ , 

then it will be reduced in proportion (BS, 1980). 1N  and 2N  are the number of stress range 
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levels above r,iσ  and below r,0σ , respectively. The fatigue damage accumulation index,∆ , is 

regarded as a random variable modeled by a lognormal distribution with a mean value µ∆ of 1.0 

and a standard deviation σ∆  of 0.3 (Wirsching, 1984). This random variable actually accounts 

for the uncertainty associated with the use of Miner’s law when it is applied to deal with fatigue 

problems involving variable-amplitude stress ranges. The fatigue detail coefficient K is assumed 

to be a lognormal distribution, and its mean value and standard deviation for different fatigue 

detail classes are obtained from the relevant information provided in Appendix A of British 

Standard (BS, 1980). 

The object of the fatigue reliability analysis of a structural member or system is to estimate 

its failure probability. The fatigue failure probability Pf can be evaluated and related to the 

reliability index β  using the following relationship. 

( ) ( )f ( ) 0P P g β= < = Φ −X                              (3) 

where ()Φ  is the cumulative function of a standard normal distribution. The reliability index β  

is estimated based on the limit state function and using the first-order-reliability method (FORM) 

in this study because of its simplicity. As the variables ∆  and K are not normally distributed, a 

simple approximate transformation method is applied to transform the non-normal distribution 

into a normal distribution for use in the FORM. One of most commonly used recursive algorithms, 

the so-called HL-RF method (Rackwitz and Fiessler 1978), is adopted to solve Equation (3) for 

the reliability index β . Given that the limit state function in Equation (1) is nonlinear, several 

iterations are required to obtain convergence to β . If convergence is not achieved after the first 

iteration, then the iterative process is repeated until n-1β  and nβ  in the step n-1 and n satisfy the 

stopping criterion n n-1 n-1 rβ β β ε− ≤ , for example, r 0.001ε = .  

The estimation of the probability distribution of 
b

mr,j
j 1

N

S
=
∑ and its distribution parameters is the 
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main concern and can be achieved through the following steps. 

1. Establish probabilistic models of railway, highway, and wind loads based on the measured 

load data. 

2. Generate the multiple loading-induced daily stochastic stress responses at the fatigue-critical 

locations by using the finite element method and the MCS together with the loading 

probabilistic models established.  

3. Estimate the probability distribution of Smr from the samples, which are computed from the 

generated daily stochastic stress responses. 

4. Estimate the probability distribution of 
b

mr,j
j 1

N

S
=
∑  from the samples of Smr in the period 

concerned based on the assumed future loadings and traffic growth patterns.  

Probabilistic Models of Multiple Loadings 

Given that the loading conditions of a long-span suspension bridge can be quite different from 

those of other bridges, the establishment of probabilistic models of multiple loadings is 

case-dependent. The Tsing Ma Bridge is taken as a case study here. 

Monitoring of dynamic loading on Tsing Ma Bridge 

The Tsing Ma Bridge in Hong Kong is a suspension bridge with an overall length of 2,160 m and 

a main span of 1,377 m (see Figure 1). The bridge deck carries a dual three-lane highway on the 

top deck and two railway tracks and two carriageways on a lower level within the bridge deck. 

The monitoring of multiple loads is an important item of the SHMS, and several types of sensors 

have been installed on the bridge for this task. Train data are collected by typical strain gauge sets 

installed beneath the railway tracks. Road vehicle data are collected by weigh-in-motion stations. 

Wind data are collected by anemometers installed on the bridge deck and towers. 
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Probabilistic model of railway loading  

Information on the trains running across the bridge is converted from the typical strain data 

recorded underneath the two rail tracks at the location CH 24664.75 on the bridge. As the railway 

traffic volume became stable after the middle of 2005, data on the trains in November 2005 are 

used to build a database of railway loading parameters. The main parameters include the arrival 

instant, running speed, heading direction, number of bogies (two wheel-sets in each bogie and two 

bogies in each vehicle), bogie weight, and bogie spacing.  

The analysis of the measured train data indicates that some of the railway loading parameters 

can be considered as variables whereas others can be regarded as constants. As almost all trains 

running across the bridge have been eight-car trains since 2005, trains are assumed to have a 

constant configuration that is the same as that of a standard eight-car train. The running speeds of 

the trains are assumed to be constant and equal to the mean train speed recorded in the database. 

The weight distribution of the 16 bogie loads in an eight-car train is also assumed to be the same 

for all trains. The gross train weight (GTW) and the train arrival time are treated as random 

variables. The random nature of the GTW is mainly due to uncertainties in the number of 

passengers, whereas the random nature of the train arrival time is due to many reasons, such as 

variability in the running speed and unexpected events. Given that most passing trains follow a 

scheduled timetable, the scheduled arrival time of each train is assumed to be a constant, and the 

difference between the actual and scheduled arrival time is assumed to be a random variable. As a 

result, the actual arrival time of the ith train is the sum of the scheduled arrival time and a random 

deviation.  

The histogram of the GTW is shown in Figure 2 in terms of the established database for the 

GTW. The histogram cannot be fitted by a single conventional probability distribution function. 

Therefore, a mixture model distribution (McLachlan, 2000) is used to describe the probability 
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distribution of the GTW, and the mixture model will be also applied to fit the probability 

distribution of the random variables in the highway loading model. Suppose that the random 

variable X can be described as a mixture of n component random variables Yi. The probability 

density function of X, which is denoted as fX(x), is then a weighted sum of the probability density 

functions of its components ( )
iYf x . 

X
1

( ) ( )
i

n

i Y
i

f x f xα
=

=∑                                (4) 

where the weighted ratio iα  satisfies 0 1iα< <  and 1 1nα α+ + = . The parameters iα  and 

iYf  are determined using the expectation-maximization (EM) algorithm, which is a two-step 

method for finding the maximum likelihood estimates of the parameters in statistical models 

(Bilmes, 1998).  

The probability density function of the GTW is finally obtained using a mixture of two 

weighted normal distributions by the EM algorithm. A lower bound value (around 240 tons) 

representing the empty train scenario is considered in the data fitting for distribution. The mean 

value, standard deviation, and weighted ratio of the first normal function are 328.1 ton, 34.2 ton, 

and 38.2%, and those of the second normal function are 338.1 ton, 12.3 ton, and 61.8%, 

respectively. Figure 2 shows both the measured and fitted distributions. It can be seen that the 

latter matches the former quite well. The scheduled arrival time of each train heading in either 

direction is estimated based on the mean arrival time from the train arrival time database. The 

random variable, which represents the deviation of the actual arrival time from the scheduled 

arriving time, is modeled by a single zero-mean normal distribution with a standard deviation of 

59.4 seconds (see Figure 3). 

Probabilistic model of highway loading  

Information on the road vehicles running across the bridge is recorded by dynamic 

http://en.wikipedia.org/wiki/Discrete_random_variable�
http://en.wikipedia.org/wiki/Discrete_random_variable�
http://en.wikipedia.org/wiki/Probability_mass_function�
http://en.wikipedia.org/wiki/Probability_mass_function�
http://en.wikipedia.org/wiki/Probability_mass_function�
http://en.wikipedia.org/wiki/Iterative_method�
http://en.wikipedia.org/wiki/Maximum_likelihood�
http://en.wikipedia.org/wiki/Parameter�
http://en.wikipedia.org/wiki/Statistical_model�
http://en.wikipedia.org/wiki/Iterative_algorithm�
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weigh-in-motion (WIM) stations at the approach to the Lautau Toll Plaza near the bridge. The 

road vehicle data in November 2005 are adopted to build a database for highway loading 

parameters because of three main reasons. Firstly, the highway traffic information on each lane of 

the bridge was not available until April 2005. Secondly, the number of monthly vehicles on each 

lane of the bridge was not stable until middle of 2005. Lastly, November 2005 reached a 

maximum number of monthly vehicles and other months had slightly less vehicle numbers. Only 

heavy road vehicles with a gross vehicle weight (GVW) of over 3 tons are included in the 

database, as road vehicles with a lower GVW contribute little to the fatigue damage. Accordingly, 

the lower bound value of GVW is taken as 3 tons in the data fitting for distribution. The main 

road vehicle parameters include the vehicle type, arrival time, running speed, heading direction, 

traffic lane used, axle number, axle weight, and axle spacing.  

Given that the length of a road vehicle is very small compared with the total length of the 

suspension bridge, a road vehicle is simplified into a force concentrated on the vehicle center, 

rather than the forces on its axles. Thus, the axle number, axle weight, and axle space of a typical 

road vehicle are not considered. The running speed of a heavy road vehicle is assumed to be a 

constant and determined as the mean value of all of the road vehicles in the database. The GVW 

and time interval between successive vehicles are treated as random variables. The first variable 

describes the loading intensity of road vehicles, and the second is related to the frequency of 

occurrence of road vehicles.  

As the road traffic conditions differ among the slow, middle, and fast lanes, the probability 

distributions of the GVW on the different lanes must be established. Figure 4 shows the 

histograms of the GVW on the slow lanes in both directions, which are estimated based on the 

GVW database. There is more than one peak in the distribution of the GVW on the slow lane, 

which may be due to different categories of road vehicles running across lanes. In this regard, a 

mixture of multiple normal distributions is used to describe the theoretical density function of the 
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GVW on the slow lane, as shown in Figure 4. The theoretical density function fits the measured 

histogram quite well.  

As the time intervals of successive road vehicles during “rush hour” and “normal hour” are 

different, they are separately fitted using different probability distributions. The time period from 

23:00 to 8:00 Hong Kong Time (HKT) is defined as “normal hour” during which fewer road 

vehicles pass over the bridge, whereas the period from 8:00 to 23:00 is called “rush hour”. The 

time interval between successive vehicles on each traffic lane can be derived from the vehicle 

arrival time database. The histograms of the time interval of successive vehicles on the slow lane 

during “rush hour” and “normal hour” are shown in Figure 5. The figure shows that the 

occurrence probability decreases as the time interval increases on all traffic lanes and in both 

periods. The mean time interval during “normal hour” is larger than that during “rush hour.” Of 

the three lanes, the smallest mean time interval is for the slow lane, followed by the middle lane, 

and then the fast lane. The probability density functions of the time interval of successive vehicles 

are modeled as an exponential distribution, as shown in Figure 5. The theoretical density function 

matches the histogram quite well. 

Probabilistic model of wind loading 

The mean wind speed and direction are two random variables considered in the probabilistic 

model of wind loading. The distribution of the wind speed for any given wind direction is 

assumed to follow the Weibull distribution. A joint probability distribution function of the mean 

wind speed and direction is utilized to describe the wind field at the bridge site (Xu et al., 2009). 

The distribution parameters are determined from wind records of the hourly mean wind speed and 

direction during the period from 1 January 2000 to 31 December 2005, which were collected by 

an anemometer installed on the top of the Ma Wan tower of the bridge. Base on the joint 

probability distribution, the maximum hourly normal wind speed in two wind directions are 

considered, respectively for winds over the over-land fetch and over the open-sea fetch. Based on 
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the normal mean wind speed at the bridge deck and the other wind characteristics, the buffeting 

and self-excited forces over the bridge decks can be computed. More details can be found in Liu 

et al. (2009).  

Multiple Loading-induced Daily Stochastic Stress Response 

In addition to the randomness in each loading type, the random combination of the various 

loadings must be also considered. In this section, the daily stochastic stress responses induced by 

multiple types of loading are computed to consider the randomness due to multiple loading effects. 

In the first step, the dominant parameters are determined from probabilistic loading models using 

MCS. The stress responses respectively induced by the railway, highway, and wind loadings are 

then computed by using a computationally efficient engineering approach (Chen et al., 2010). In 

this approach, bridge stress responses induced by trains and road vehicles are calculated based on 

stress influence lines, and that induced by wind is computed considering buffeting and 

self-excited forces on the bridge deck. The stress response time histories due to the multiple loads 

are obtained by the superposition of the three individual stress response time histories. The stress 

analysis was performed using both commercial software MSC/PATRAN and the in-house 

software. Because the train arrival time is scheduled on a daily basis, the one-day time history of 

the stress responses induced by railway loading is computed as one sample. Given the differences 

in the highway traffic conditions between “normal hour” and “rush hour,” the hourly stress 

response time history due to highway loading is computed for 24 hours and then extended to 

one-day stress response time history. As the hourly mean wind speed is considered, the hourly 

stress response due to wind loading is computed for 24 hours and then extended to one-day stress 

response time history. Given that the bridge will be closed to traffic when the mean wind speed 

recorded on site is over a certain value, the bridge stress responses under this condition are 

assumed to be induced by wind loading only. 
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To calculate the stress response induced by railway loading, the GTW of the ith train on the 

jth track is selected based on the GTW probability distribution (Figure 2) and then proportionally 

distributed to each bogie according to the bogie loading distribution. The lower bound value of 

240 tons is used to eliminate the small GTW generated by MCS. The arrival time of the ith train 

on the jth track is determined by the sum of the scheduled arrival time and a random deviation 

that is obtained based on the normal distribution (Figure 3). The stress response caused by the ith 

train on the jth track is then computed using the engineering approach. This process continues 

until the stresses caused by all of the trains traveling in both directions in one day are computed 

and superposed to obtain the one-day stress response time history.  

To calculate the stress response induced by highway loading, the GVW of the ith road 

vehicle of the jth lane is selected based on the GVW probability distribution for the jth lane 

(Figure 4). The lower bound value of 3 tons is used to eliminate the small GVW generated by 

MCS. The time interval between the ith and (i+1)th road vehicles is then selected based on the 

probability distribution of the time interval of successive vehicles, as shown in Figure 5. The 

stress response due to the ith road vehicle on the jth lane is then obtained from a database 

established using the engineering approach. Again, this process continues until the stresses caused 

by all of the road vehicles on all of the highway lanes in one day are computed and superposed to 

form the one-day stress response time history.  

To calculate the stress response induced by wind loading, the hourly mean wind direction is 

randomly selected based on the probability distribution of the mean wind direction, and the mean 

wind speed is subsequently selected based on the probability distribution of the mean wind speed 

in a given wind direction. The stress response due to wind loading in the ith hour is calculated 

through a finite element-based buffeting-induced stress analysis that considers both buffeting 

forces and self-excited forces. This process continues until the stresses due to wind loading in 24 

hours are computed to form the one-day stress time history.  
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Bridge components around the bridge towers are fatigue-critical locations with respect to 

both traffic and wind loading; hence, six of them are chosen for fatigue analysis. They are S1 at 

the top flange of the outer-longitudinal diagonal member close to the Ma Wan Tower, S2 at the 

bottom flange of the outer-longitudinal bottom chord of the Tsing Yi Tower, S3 at the top flange of 

the inner-longitudinal top chord of the Tsing Yi Tower, S4 at the bottom flange of the 

inner-longitudinal bottom chord of the Tsing Yi Tower, S5 at the bottom flange of the T-section of 

the railway beam of the Tsing Yi Tower, and S6 at the top flange of the bottom web of the cross 

frame close to the Tsing Yi Tower. The nominal stress of each fatigue-critical element is computed 

based on the stresses at five points of the two ends of the element. Among the points, four are 

located at each corner of the end section (two at the top flange, and another two at the bottom 

flange), and one is situated at the centroid of the end section. The hot-spot stresses, which reflect 

the stress concentration at welded joints, should be considered in fatigue analysis. The hot-spot 

stresses at the fatigue-critical locations are determined by multiplying the nominal stresses by the 

stress concentration factor (SCF). The SCF factor of 1.4 was adopted in the design of the bridge, 

and it is also supported by the laboratory tests of full-scale joints conducted at The Hong Kong 

Polytechnic University. The fatigue damage at fatigue-critical locations refers hereafter to the 

fatigue damage at these hot spots. 

Figure 6 displays the daily stochastic stress responses at the fatigue-critical location S1 

induced by the railway, highway, wind, and multiple loadings, respectively. There are two railway 

tracks and six highway traffic lanes in the bridge. The stress time history in Figure 6(a) is induced 

by 222 trains traveling on both the north and south tracks. The stress time history in Figure 6(b) is 

induced by 5082, 1716, 524, 5146, 1760, and 526 heavy road vehicles on the slow, middle, and 

fast lanes of the north and south three-lane carriageways, respectively. The stress time history in 

Figure 6(c) is induced by wind at an hourly normal mean wind speed that ranges from 2 to 10 m/s. 

To obtain the multiple loading-induced stress time history, the superposition method is applied to 
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these three time histories. Figure 6(d) gives a sample of the daily stochastic stress time history 

induced by the combination of three loadings.  

Probability Distribution of the Daily Sum of M-power Stress Ranges 

Based on the multiple loading-induced daily stochastic stress time histories generated at the 

fatigue-critical locations, the daily sum of m-power stress ranges Smr can be calculated using 

Equation (2). Smr is a random variable because randomness exists in the stochastic stress time 

history induced by the combined action of the railway, highway, and wind loading. A sufficient 

number of samples shall be considered to estimate the probability distribution of Smr and its 

distribution parameters. The sample size can be determined by considering the accuracy of the 

parameter estimates for the mean value and variance in terms of the statistical error formula 

(Julius and Allan 2000). The sample size N of 200 is calculated in this study for a good 

convergence of both mean and variance estimates. 

200 daily stochastic stress time histories under the current loading conditions are computed 

at the given fatigue-critical locations, and 200 samples of Smr are then obtained from them to 

estimate the probability distribution of Smr and its parameters. As an example, Figure 7 shows the 

histogram and fitted distributions of Smr at the fatigue-critical location S1, in which the unit of Smr 

is m-power of MPa, for the unit of stress range level is MPa. The histogram is estimated based on 

the 200 generated samples, and the fitted density function is modeled as a normal distribution. 

The fitted density function matches the histogram quite well. The mean value and STD of the 

fitted normal distribution are 1.15×1012 and 3.22×108. 

Given that both the railway and highway loading may increase in future, possible future 

traffic loadings are assumed and the fatigue damage induced by them is estimated. The first 

possible future traffic loading is assumed a 30% increase in both railway and highway loading 

compared with the current traffic loading. Another possible future traffic loading is assumed a 
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10% increase in railway loading and a 100% increase in highway loading. The latter assumption 

is based on the finding that the current railway loading is close to the design railway loading of 

the bridge, whereas the current highway loading is much less than the design loading. The growth 

in traffic loading is simulated by increasing the GTW in the probabilistic model of railway 

loading and the GVW in the probabilistic model of highway loading, respectively. The 

probabilistic model of wind loading remains constant because it was established based on the 

120-year design life of the bridge. Following the aforementioned procedure, the random variable 

Smr at the six fatigue-critical locations under three types of loading is fitted with a normal 

distribution. The mean values and STDs of these distributions are listed in Table 1. A comparison 

of the current loading and the first future loading scenario indicates that fatigue damage is very 

sensitive to traffic growth, because a mere 30% increase in traffic loading leads to a more than 

100% increase in Smr (fatigue damage). A comparison of the two future loading scenarios 

indicates that there is more room for increasing the highway loading than the railway loading, 

because Smr in the first loading scenario (a 30% increase in both railway and highway loading) is 

more dangerous than in the second loading scenario (a 10% increase in railway loading and a 

100% increase in highway loading).  

Probability Distribution of the Sum of Daily-summed M-power Stress Ranges 

No traffic growth pattern 

To estimate the probability distribution of the variable 
b

mr,j
j 1

N

S
=
∑ , some assumptions are made 

about future traffic growth patterns so that Smr,j can be generated for the whole period. The period 

concerned is designated as 120 years, which is equal to the design life of the bridge. If no traffic 

growth in 120 years is assumed, the traffic conditions in the whole period are the same as the 

current loading conditions. In the previous part, Smr under the current loading conditions was 
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found to follow a normal distribution, and the distribution parameters estimated are listed in Table 

1. Thus, the random variables of Smr,i (i = 1,  , N, N = 120×365) are assumed to follow an 

identical normal distribution with a mean value of µ and an STD of σ . 120 years of Smr are 

generated from the normal distribution using the MCS method, and then summed to obtain a 

sample of 
b

mr,j
j 1

N

S
=
∑ . Figure 8(a) shows a sample of 120 years of Smr at the fatigue-critical location 

S1 under the condition of no traffic growth. The histogram of 
b

mr,j
j 1

N

S
=
∑  over the 120 years is 

estimated based on 200 samples, and the fitted density function is modeled as a normal 

distribution. Figure 9(a) demonstrates that the fitted distribution matches the histogram quite well. 

Actually, according to the central limit theorem, 
b

mr,j
j 1

N

S
=
∑  follows a normal distribution with a 

mean value of bN µ  and an STD of bN σ  when bN  is sufficiently large (Roussas, 2007). 

The mean value and STD estimated using the central limit theorem are consistent with those fitted 

from the normal distribution in Figure 9(a).  

Traffic growth patterns 

In this section, Smr,j in the bridge design life are generated based on the assumptions of different 

traffic growth patterns. The variable Smr in November 2005 follows the distribution under the 

current loading conditions. Smr in the last month of the 120-year period is assumed to follow the 

distribution under the future loading condition, and its distribution parameters are listed in Table 1. 

Another assumption is that the variable Smr in a given month follows a constant normal 

distribution, and the distribution parameters of the mean value and STD among the different 

months in the 120 years change following the traffic growth patterns defined in the following.  

The first growth pattern is assumed to take a linear pattern in which no growth takes place in 

the first Tr years, but does take place from Tr  to Tt in a linear fashion at a constant growth rate α . 
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The growth function is given as  

( )0 r 0 r   ,    1    X X t T X X t t Tα= ≤ = + >          (Linear)          (5) 

Another two growth patterns are also assumed, both of which are exponential types 

(Righiniotis 2006). Simple algebraic considerations lead to the following expressions. 

( ) r/( )
0 r 0 r   ,    1    t nTX X t T X X n t Tα= ≤ = + >         (Exp-1)         (6) 

and 

( )
r/( )

0 r 0 r
1   ,    1 1 1    

1

t nT

X X t T X X n t T
n

α
α

    = ≤ = + + − >   +     
    (Exp-2)   (7) 

To facilitate the comparison among the different growth patterns, the parameters of the 

exponential types are determined by assuming that when t = Tt = nTr, the variable X = ( )0 t1X Tα+ . 

The distribution parameters of Smr remain constant in the first eight years of the bridge’s life (from 

1998 to 2005), and are equal to the parameters under the current loading conditions. They 

increase in the months between 2006 and 2117 following three growth patterns. The mean value 

of Smr at S1 is taken as an example. The mean value under the current loading is X0 = 1.6 ×107, 

and that under the first future loading scenario is XTt = 3.8 ×107. Figure 10 shows the evolution 

of the normalized mean value X/X0 over time for different traffic growth patterns, Linear, Exp-1 

and Exp-2, respectively. The figure shows the difference in mean values over 120 years among 

the different patterns. The largest value is that of the Exp-2 pattern, followed by the Linear pattern, 

and then the Exp-1 pattern. Based on this finding, the mean value of the normal distribution in 

each month of the 120 years can be determined. The same procedure is repeated to obtain the 

STD for each month of the 120 years. The normal distribution of Smr in each month of the 120 

years is then determined once the pairs of mean values and STDs are known. Finally, the Smr in 

each month is determined based on the corresponding distribution using the MCS method to 

compose a sample of 120 years of Smr. Figure 8(b) displays a sample of 120 years of Smr at S1 for 

the Linear traffic growth pattern from the current loading to the first future loading scenario. 
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Compared with the no growth pattern in Figure 8(a), a notable growth in the Smr occurs over the 

120 years. Similarly, the histogram is estimated from 200 samples of 
b

mr,j
j 1

N

S
=
∑ for 120 years, and 

the theoretical density function is modeled as a normal distribution (see Figure 9(b)). The 

theoretical density function fits the histogram quite well. The same procedure is applied to 

determine the mean value and STD of 
b

mr,j
j 1

N

S
=
∑ over 120 years at different fatigue-critical locations 

and under different traffic growth patterns. 

Reliability Analysis Results 

Based on the limit state function in Equation (1) and the distribution parameters of the variables 

K , ∆ , and Smr, the fatigue reliability index β  can be found by using the HL-RF method. The 

fatigue failure probabilities can be further estimated from the fatigue reliability index using 

Equation (3). The mean value and STD of K for detail F are 121.73 10Kµ = ×  and 

120.52 10Kσ = × . The mean value and STD of ∆  are 1.0µ∆ =  and 0.3σ∆ = . The distribution 

parameters of 
b

mr,j
j 1

N

S
=
∑  across 120 years at the various fatigue-critical locations under different 

traffic growth patterns are determined in the foregoing part. The fatigue damage at the 

fatigue-critical location S1 under the different traffic growth patterns is taken as an example to 

study the evolution of the fatigue failure probability over time (see Figure 11). The first pattern is 

no traffic growth, and the other three patterns are growth from the current loading to the first 

future loading scenario of a linear and exponential type, respectively. The probabilistic model of 

wind loading remains constant, as it is established based on the 120-year bridge design life. To 

compute the fatigue failure probabilities at different time epochs at intervals of 10 years, the 

distribution parameters of 
b

mr,j
j 1

N

S
=
∑  within the period from the bridge being opened to traffic to 
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each subsequent time epoch is estimated from the generated 200 samples. Figure 11 indicates that 

the fatigue failure probabilities increase with time, and that the failure probability without traffic 

growth is smaller than that of the three patterns with traffic growth. Among the three growth 

patterns, the failure probability is the largest for the Exp-2 pattern, followed by the linear pattern, 

and then the Exp-1 pattern.  

The failure probabilities at the fatigue-critical locations at the end of 120 years are computed, 

and the results are listed in Table 2. The highest fatigue failure probability is at S1 and the lowest 

is at S6. A failure probability of 2.3% is recommended in British Standard (BS, 1980), above 

which the concerned structural components are regarded as in danger. The highest failure 

probabilities at the end of 120 years at the six fatigue-critical locations under the current traffic 

conditions without growth are close to the reference failure probability, which implies the health 

condition of the bridge to be satisfactory in terms of fatigue. Special attention should be paid to 

future traffic growth, because it may lead to a failure probability at the end of 120 years that is 

much greater than the reference level. 

Concluding Remarks 

A framework has been proposed in this paper for the fatigue reliability analysis of multiloading 

long span suspension bridges, in which a limit state function that describes the relationship 

between the fatigue resistance and the fatigue loading is defined. The framework has been applied 

to the Tsing Ma suspension bridge, which is subject to railway, highway, and wind loading. The 

probabilistic model of each loading type has been established based on the loading data acquired 

by the structural health monitoring system (SHMS) installed on the bridge since 1997. The 

dominant loading parameters are generated based on the probabilistic loading models using the 

MCS method to simulate the daily stochastic stress responses induced by railway, highway, and 

wind loading at the fatigue-critical locations through the finite element stress analysis. The 
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probability distribution of the daily sum of m-power stress ranges is estimated based on the daily 

stochastic stress responses. Subsequently, the probability distribution of the sum of m-power 

stress ranges within the bridge design life is estimated based on the assumed future loading 

scenarios and traffic growth patterns. Finally, the fatigue failure probabilities for different time 

epochs are solved at fatigue-critical locations. The results demonstrate that the health condition of 

the bridge at the end of its design life is satisfactory under the current traffic conditions without 

any growth, but the attention should be paid to future traffic growth because it may lead to a much 

greater failure probability.  

It is noted that the deterioration due to corrosion is not considered in this study because no 

corrosion data are available for the authors to establish a probabilistic model for effects of 

corrosion on fatigue damage. The effect of mean stress on fatigue damage is also not considered 

since the Miner’s law is used. Nevertheless, these two points deserve further study.  
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A List of Figure Captions 

Figure 1 Tsing Ma Bridge and locations of strain gauges and anemometers 

Figure 2 Histogram and probability density function of gross train weight 

Figure 3 Histogram and probability density function of arrival time deviation  

Figure 4 Histogram and probability density distribution of gross vehicle weight on the slow lane 

Figure 5 Histograms and probability density functions of the time interval between heavy road 

vehicles 

Figure 6 One sample of the daily stochastic stress time history 

Figure 7 Probability density function of the daily sum of m-power stress ranges 

Figure 8 Samples of daily m-power stress ranges over 120 years:  

(a) no traffic growth pattern; (b) linear traffic growth pattern 

Figure 9 Probability density function of the 120 years’ sum of m-power stress ranges:  

(a) no traffic growth pattern; (b) linear traffic growth pattern 

Figure 10 Evolution of the normalized mean value X/X0 over time  

(Tr = 8 years, Tt = 120 years) 

Figure 11 Evolution of the fatigue failure probability over time 
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Figure 1 Tsing Ma Bridge and locations of strain gauges and anemometers 
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Figure 2 Histogram and probability density function of gross train weight 
 

 

Figure 3 Histogram and probability density function of arrival time deviation  
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Figure 4 Histogram and probability density distribution of gross vehicle weight on the slow lane 
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(a) Slow lane in normal hour             (b) Slow lane in rush hour 

Figure 5 Histograms and probability density functions of the time interval between heavy road 

vehicles 
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Figure 6 One sample of the daily stochastic stress time history 
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Figure 7 Probability density function of the daily sum of m-power stress ranges 

 

0 20 40 60 80 100 120
1

1.2

1.4

1.6

1.8

2

2.2 x 107

Time (year)

D
ai

ly
 s

um
 o

f m
-p

ow
er

 s
tr

es
s 

ra
ng

es

   
0 20 40 60 80 100 120

1

1.5

2

2.5

3

3.5

4

4.5 x 107

Time (year)

D
ai

ly
 s

um
 o

f m
-p

ow
er

 s
tr

es
s 

ra
ng

es

 

(a)                                   (b)  

Figure 8 Samples of daily m-power stress ranges over 120 years:  

(a) no traffic growth pattern; (b) linear traffic growth pattern 
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   (a)                                     (b)  

Figure 9 Probability density function of the 120 years’ sum of m-power stress ranges:  

(a) no traffic growth pattern; (b) linear traffic growth pattern 
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Figure 10 Evolution of the normalized mean value X/X0 over time  

(Tr = 8 years, Tt = 120 years) 
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Figure 11 Evolution of the fatigue failure probability over time 
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A List of Table Captions 

Table 1 Mean value/standard deviation of the daily sum of m-power stress ranges 

Table 2 Fatigue failure probabilities at the end of 120 years at the fatigue-critical locations  

 

Table 1 Mean value/standard deviation of the daily sum of m-power stress ranges 

Load case CL: R+ H +W FL1: 1.3R+ 
1.3H+ W 

FL2: 1.1R+ 
2.0H+ W 

Fatigue 

critical 

location 

 S1 1.6×107/ 1.0×106 3.8×107/ 1.8×106 3.8×107/ 1.6×106 
 S2 1.5×107/ 1.0×106 3.8×107/ 1.5×106 3.2×107/ 1.4×106 
 S3 9.5×106/ 7.5×105 2.5×107/ 1.3×106 1.6×107/ 1.0×106 
 S4 9.2×106/ 7.6×105 2.5×107/ 1.3×106 1.7×107/ 9.9×105 
 S5 6.7×106/ 4.4×105 2.0×107/ 8.5×105 1.1×107/ 6.2×105 
 S6 6.1×106/ 3.0×105 1.9×107/ 5.8×105 1.2×107/ 4.5×105 

Note: CL- Current loading, FL1- Future loading 1, FL2- Future loading 2; R- Railway loading, H- 

Highway loading, W- Wind loading. 

 

Table 2 Fatigue failure probabilities at the end of 120 years at the fatigue-critical locations  

Load case CL CL→FL1 CL→FL2 
Growth pattern Constant Linear Exp-1 Exp-2 Linear Exp-1 Exp-2 

Fatigue 

critical 

location  

S1 0.024 0.22 0.18 0.26 0.22 0.18 0.26 
S2 0.017 0.20 0.16 0.25 0.13 0.11 0.16 
S3 6×10-3 0.03 0.02 0.05 5×10-3 5×10-3 6×10-3 
S4 5×10-3 0.03 0.02 0.04 6×10-3 5×10-3 8×10-3 
S5 2×10-5 6×10-3 3×10-3 0.01 3×10-4 3×10-4 4×10-4 
S6 8×10-6 4×10-3 2×10-3 8×10-3 3×10-4 3×10-4 5×10-4 
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