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Abstract: An important application of fiber-reinforced polymer (FRP) composites is 
to provide confinement to reinforced concrete (RC) columns to enhance their load-
carrying capacity. However, this application is generally restricted to short columns as 
existing design guidelines do not contain provisions for the design of FRP jackets for 
slender columns. This situation has been due to both the scarcity of test data and the 
lack of rigorous theoretical studies into the behaviour of slender FRP-confined RC 
columns. This paper presents a theoretical model for slender FRP-confined circular 
RC columns based on the numerical integration method; Lam and Teng’s stress-strain 
model is employed to describe the behaviour of FRP-confined concrete in the column. 
Predictions from the theoretical column model are compared with existing test results, 
which demonstrates that the theoretical model is reasonably accurate in reproducing 
the experimental results of FRP-confined circular RC columns. These comparisons 
also demonstrate the need to conduct careful tests on large-scale columns to eliminate 
some uncertainties associated with the existing test data to enable a more conclusive 
verification of the proposed theoretical column model. 
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1 Introduction 
 
The use of externally-bonded fibre-reinforced polymer (FRP) reinforcement for the 
strengthening of reinforced concrete (RC) structures has become a popular technology 
over the past decade. One of the important applications of the FRP strengthening 
technology is in the enhancement of RC column load-carrying capacity through the 
provision of confining FRP jackets (or wraps). The column jacketing technique is 
particularly effective for circular columns as the strength and ductility of concrete in a 
circular section can be substantially increased through lateral confinement. 
 
To facilitate practical applications, various guidelines have been developed for the 
design of FRP systems for strengthening RC structures [1-6]. A significant deficiency 
of these guidelines is that all of them are only concerned with the design of FRP 
jackets for short columns with a negligible slenderness (i.e. second-order) effect; none 
of them includes any information on the design of FRP jackets for slender columns. 
Even for the safe application of the existing design provisions for short RC columns, 
there is a need to define a slenderness limit for short FRP-confined columns. Among 
the existing design guidelines, only the ISIS Canada guideline [2] provides such a 
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definition intended for short FRP-confined RC columns with no significant bending 
(i.e. concentric compression or slightly eccentric compression). The existing 
definitions for short RC columns cannot be used in the design of FRP-confined RC 
columns because FRP confinement leads to a greater slenderness effect in columns as 
has been demonstrated by the limited test results of FRP-confined circular RC 
columns [7-9]. This unsatisfactory situation has been due to both the scarcity of test 
data and the lack of theoretical studies into the behaviour of slender FRP-confined RC 
columns. 
 
Against this background, this paper presents a theoretical model for slender FRP-
confined circular RC columns. This theoretical column model incorporates Lam and 
Teng’s stress-strain model [10] for FRP-confined concrete in circular columns with 
modifications as reported by Teng et al. [11] and is based on the numerical integration 
method [12]. The paper first briefly presents Lam and Teng’s stress-strain model for 
FRP-confined concrete in circular columns and its application in section analysis of 
FRP-confined RC columns. The theoretical column model is next described in detail, 
followed by its verification using experimental results of both RC columns and FRP-
confined circular RC columns. It should be noted that only a very limited number of 
tests on slender FRP-confined circular RC columns have been reported in the open 
literature [7-9] and all those available to the authors are used herein to verify the 
proposed model. 
 
The authors’ work on slender FRP-confined RC columns has been partially motivated 
by the need to formulate design provisions for the Chinese National Standard 
“Technical Code for Infrastructure Application of FRP Composites”, which is 
currently being considered by the Ministry of Housing and Urban-Rural Development 
of China for official approval. This new Code has been developed within the 
framework of the current Chinese Code for Design of Concrete Structures [13]. 
Therefore, some of the considerations in the present study follow the specifications 
given in Ref. [13] and these considerations are highlighted where appropriate. 
 
2 Lam and Teng’s stress-strain model for FRP-confined concrete 
 
2.1 Lam and Teng’s Model 

 
The original version of Lam and Teng’s stress-strain model [10] has been adopted by 
both UK’s Concrete Society design guideline [6] and the latest ACI guideline [4] for 
strengthening concrete structures. Lam and Teng’s model adopts a simple form (a 
parabolic first portion which connects smoothly to a linear second portion) which 
automatically reduces to that for unconfined concrete when no FRP is provided. This 
simple form is described by the following expressions: 
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where c and c are the axial stress and the axial strain respectively,  is the elastic 

modulus of unconfined concrete,  is the slope of the linear second portion, and 
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is the compressive strength of unconfined concrete. The transition strain t  between 

the parabolic first portion and the linear second portion and the slope of the linear 
second portion  are respectively given by: 2E
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where '

ccf  and cu  are respectively the compressive strength and the ultimate axial 

strain of confined concrete. The expressions for '
ccf  and cu  have been recently 

refined by Teng et al. [11] based on recent test results and an accurate analysis-
oriented stress-strain model for FRP-confined concrete [14, 15]. These new 
expressions are given by: 
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where sec )K f oE /(rpt E R   is the confinement stiffness ratio and ,h r co /up   is the 

strain ratio. It should be noted that the confinement ratio '/l cof f can be interpreted as a 

product of K and  ( '
l co Kf f/   ). Here, frpE  is the elastic modulus of FRP in the 

hoop direction, t is the thickness of the FRP jacket, ,h rup  is the hoop rupture strain of 

the FRP jacket, R  is the radius of the confined concrete core, secoE  and co  are the 

secant modulus and the axial strain at the compressive strength of unconfined 
concrete, with o coE f ' /o csec 

co

. When this model is used in a design specification, the 

model may need small adjustments so that the curve reduces to that for unconfined 
concrete in a specific national code. In Ref. [13], normal strength concrete is assumed 
to have 0.002 

'1000c

 and an ultimate axial strain of 0.0033. As a result, 

coE f and the original value of 1.75 for the first term on the right hand side of 

Eq. 5 is replaced by 1.65 in the present study, so that the stress-strain model for FRP-
confined concrete reduces to that for unconfined normal strength concrete given in 
Ref. [13] when no FRP is provided. It should be noted that the refined version of Lam 
and Teng’s stress-strain model with the above two adjustments was used in all the 
calculations reported in the present paper. For brevity, this refined version is still 
referred to simply as Lam and Teng’s model in the remainder of the paper. 
 
2.2 Section analysis using Lam and Teng’s model 

 
Lam and Teng’s model is based on concentric compression tests of FRP-confined 
concrete, but in a column under combined bending and axial compression, a strain 
gradient exists. In section analysis of conventional RC columns, the assumption that 
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the stress-strain curve of concrete in an eccentrically-loaded column is the same as 
that of concrete under concentric compression is widely used. For FRP-confined RC 
columns, whether the same assumption is equally acceptable is not yet completely 
clear. The few existing studies on the behaviour of eccentrically-loaded circular 
columns with FRP confinement [7, 16, 17] have not provided a clear understanding of 
the issue. Based on the information available to date, it seems reasonable at this stage 
to adopt this assumption in the analysis of FRP-confined circular RC sections as has 
been done by previous researchers [18-24].  
 
When the stress-strain curve of FRP-confined concrete subjected to concentric 
compression is directly used in a section analysis, the analysis procedure is similar to 
that for conventional RC columns. The only difference in the analysis procedure 
introduced by the presence of FRP confinement is the use of a different concrete 
stress-strain relationship that considers the confinement effect of the FRP. Numerical 
integration over the section can still be carried out using the layer method in which the 
column section is divided into many small horizontal layers as shown in Fig. 1. Full 
composite action between concrete and FRP is assumed. Compressive stresses are 
taken to be positive and the tensile strength of concrete is ignored. Plane sections are 
assumed to remain plane. Any confinement effect from the hoop steel reinforcement 
is ignored, so the present theoretical column model is applicable only to columns with 
very limited transverse steel reinforcement. The longitudinal steel reinforcement is 
assumed to have an elastic-perfectly plastic stress-strain curve. The axial load  and 
the bending moment 

N
M  at any stage of loading carried by the section with the 

reference axis going through the centre of the section are found by integrating the 
stresses over the section: 
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where R  is the radius of the section,  is the width of the section at a distance cb c  

from the reference axis, nx  is the depth of the neutral axis, si  is the stress in the i th 

layer of longitudinal steel reinforcement,  is the corresponding distance from the 

reference axis, and 
sid

siA  is the corresponding cross-sectional area. The stress of 

concrete c  in the compression zone can be determined from Eq. 1. si  can be 

calculated from: 
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where  and sE yf  are the elastic modulus and the yield strength of the longitudinal 

steel reinforcement respectively. Eq. 6 is applicable at any stage of loading. The 
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ultimate limit state of the column is reached when the strain at the extreme concrete 
compression fiber reaches the ultimate axial strain of FRP-confined concrete, 
signifying crushing of concrete due to FRP hoop tensile rupture. This ultimate axial 
strain is defined by Eq. 5 with the original value of 1.75 for the first term on the right 
hand side replaced by 1.65. 
 
3 Theoretical model for slender FRP-confined RC columns 
 
3.1 General 

 
The method of analysis used herein is the well-known numerical integration method. 
This method was originally proposed by Newmark [12] and has been widely adopted 
in the analysis of RC columns [e.g. 25, 26], steel columns [e.g. 27] and composite 
columns [e.g. 28, 29]. In this study, this method is applied to pin-ended FRP-confined 
circular RC columns subjected to eccentric loads at both ends with the end 
eccentricities being and , respectively (Fig. 2). It should be noted that  is taken 

to be the one with a larger absolute value and is always assigned a non-negative value. 
This means that  has a negative value when the column is bent in double curvature. 

The column with a length l  is equally divided into a desirable number of segments 
each with a length of . The column section at each grid point is divided into a 
desirable number of layers parallel to the neutral axis. The lateral displacement at 
each grid point at a particular loading stage is sought in an iterative manner by making 
use of the axial load-moment-curvature (

1e 2e 2e

1e

l

N M   ) relationship of the column 
section and the numerical integration function of the column. The full-range axial 
load-lateral deflection curve of the column (referred to as the load-deflection curve for 
brevity hereafter) can then be traced in an incremental manner using either a force-
control or deflection-control technique. For the ascending branch of the load-
deflection curve, it is more convenient to use the force-control technique (increasing 
the axial load by small steps). In the case of a stability failure, a descending branch of 
the load-deflection curve exists and the deflection-control technique (increasing the 
deflection of a particular grid point by small steps) should be used to trace the 
descending branch. In summary, the axial load-moment-curvature relationship and the 
numerical integration function are the two key elements of the numerical integration 
method and they are discussed in detail in the following sub-sections, where the 
procedure for generating the full-range load-deflection curve is also described.  
 
3.2 Axial load-moment-curvature relationship 

 
For a given column section, there exists a unique moment-curvature curve under a 
particular axial load N . This moment-curvature curve can be readily constructed 
using the section analysis approach described in the preceding section. For a given 
axial load N , the corresponding moment-curvature curve can be generated by 
specifying a series of suitable strain values for the extreme compression fiber of 
concrete cf  up to its ultimate value cu . For each strain value, the depth of the neutral 

axis nx  is varied until the resultant axial force acting on the section, calculated from 

Eq. 6a, equals the applied axial load. Once the neutral axis position has been 
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determined, the moment can be evaluated using Eq. 6b and the curvature can be 
calculated using the following expression: 
 

cf

nx


                  (8) 


In the present study, every section was divided into 50 horizontal layers. The solution 
process can be taken to have been successfully completed once the difference between 
the resultant axial force and the applied axial load is very small (e.g. within 0.1%); in 
the calculations of the present study, a column axial force difference of was 
adopted as the convergence criterion. Each moment-curvature curve in the present 
study was constructed from 200 equal-curvature segments. 

610 N

 
3.3 Numerical integration for the column deflection 

 
Since the lateral deflection of the column is very small compared to the length of the 
column, the curvature can be taken to be the second order derivative of the lateral 
deflection of the column. Using the central difference equation, the relationship 
between the lateral deflection and the curvature can be expressed as: 
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where ( )if  and ( )i are the lateral deflection and the curvature at the  grid point 

respectively and 

thi

2,3, 1i m  .  is the index of the grid point and  is the 
number of segments that the column is equally divided into (Fig. 2).  was used 
in the present study. Eq. 9 can be rewritten as:  
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Eq. 10 is the numerical integration function used to find the lateral deflection of the 
column. The implementation of this equation is described in the following section.  
 
3.4 Generation of the ascending branch of the load-deflection curve 

 
The axial load is increased by small increments to generate the ascending branch of 
the load-deflection curve. For a given axial load , the first step is to construct the 
corresponding moment-curvature curve using the procedure described above. Under 
this axial load, the first order moment at each grid point can be easily calculated as: 

N

 

1,( ) ( )i iM N e                                                       (11) 

 
where  and  are the first order moment and the initial eccentricity at the  

grid point respectively. Note that the initial eccentricity follows a linear distribution 
1,( )iM ( )ie thi
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with  and . If the lateral deflection of the column is known, the second 

order moment can be expressed as:  
(1) 2e e ( ) 1me  e

i

 

2,( ) ( )iM N f                                                       (12) 

 
and the total moment is then given by:  
 

 ( ) 1,( ) 2,( ) ( ) ( )i i i i iM M M N e f                                (13) 

 
A value for (2)f  needs to be assumed for the analysis to proceed to the next step. The 

assumed value can be any reasonably small value or simply zero. The moment at this 
grid point (2)M  can then be evaluated using Eq. 13 and the curvature at this grid point 

(2)  can be retrieved from the moment-curvature curve corresponding to the present 

axial load using linear interpolations. With (2)M  and (2)  known and noting that 

, the lateral displacement of the third grid point (1)f 0 (3)f  can be evaluated using Eq. 

10. It is evident that the lateral deflection of a column can be traced from grid point to 
grid point by repeating the above procedure. Once the calculations eventually reach 
the other end of the column, its lateral displacement needs to be examined to see if it 
satisfies . If this condition is satisfied, then the correct lateral deflection of the 

column is found. Otherwise, the assumed value of 
( )mf 0

(2)f  needs to be adjusted until 

 is satisfied. It is convenient to select the new value of ( )mf 0 (2)f  to be equal to the 

previous (2)f  value minus ( )

1
mf

m 
 [27]. In the present study, the solution was 

considered to be acceptable if the calculated ( )mf  reached an absolute value smaller 

than  mm. 410

N

A

 
The above procedure determines the lateral deflection of a column under a particular 
axial load. The ascending branch of the load-deflection curve can be obtained by 
calculating the deflection of the column for a series of successively increasing loads. 
In the present study, an initial load increment (i.e. load step size) of 10.1 u  was used, 

where 1u  is the axial load capacity of the column section under consideration when 

subjected to concentric compression as given by: 

N

 
'

1u cc c yN f A f  sA                                              (14) 

 
where c  and sA  are the total cross-sectional areas of concrete and longitudinal steel 

reinforcement, respectively. After a series of load increments, the applied load 
eventually exceeds the maximum load that the column can sustain. This situation 
arises when the moment at any grid point calculated by Eq. 13 exceeds the maximum 
moment on the moment-curvature curve under the present axial load. When this 
occurs, the calculation process needs to restart from the last load level and a smaller 
load increment of 10.01 u  is used for the subsequent load steps. After some steps, a 

similar treatment needs to be adopted with the load step size reduced by a factor of 10. 

N
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The same process is repeated until the load step size is eventually reduced to . 

The axial load capacity of the column  is then taken to be the maximum load for 

which a convergent solution of the lateral deflection can be found. The corresponding 
value of 

6
110 uN

uN

(2)f  is recorded as a reference displacement value reff  for use in the 

generation of the descending branch of the load-deflection curve, as discussed in the 
following sub-section. 
 
3.5 Generation of the descending branch of the load-deflection curve 

 
If a column is controlled by material failure, its load-deflection curve has no 
descending branch. However, if a column is slender enough to trigger stability failure, 
a descending branch of the load-deflection curve exists. In this case, the displacement-
control technique should be used to trace the descending branch. The numerical 
procedure is similar to that described in the previous sub-section with the only 
difference being that the aim is to find the correct axial load under a prescribed value 
of (2)f . 

 
A displacement increment of 0.1 reff  is initially used (i.e. the prescribed value of (2)f  

in the first step is 1.1 reff ). The initial assumed value of the corresponding axial load 

can be taken as . The corresponding deflected configuration can then be calculated 

using the numerical procedure described in the previous sub-section. It should be 
noted that the calculated 

uN

(m)f  always has a negative value, because the actual axial 

load must be smaller than . The assumed axial load is thus successively reduced at 

steps of 0.01  until the calculated 
uN

uN ( )mf  has a positive value. The correct axial load 

can then be determined using the bisection method by setting the last two assumed 
values of axial load to be the upper bound and the lower bound respectively in the 
bisection method. The final axial load derived from the bisection method is the 
solution for the current step and is used as the initial value in the next step. After a 
series of increments of (2)f , the analysis eventually fails to find a convergent solution. 

This situation arises when the moment at any grid point calculated by Eq. 13 exceeds 
the maximum moment on the moment-curvature curve under the present axial load. 
When this occurs, the calculation needs to restart from the previous prescribed value 
of (2)f  and with a smaller displacement increment of 0.01 reff . The entire process is 

repeated and the analysis stops when the increment is reduced to 610
reff .  

 
It should be noted that the accuracy of the present analysis is affected by a number of 
factors (i.e. the number of segments the column is divided into, the number of 
horizontal layers the cross section is divided into, the number of segments the 
moment-curvature curve consists of, and the tolerances adopted in the analysis). A 
convergence study showed that all these factors have been very well looked after in 
the present study (i.e. any refinement to these factors will not have any significant 
effect on the numerical results). A computer program was developed to implement the 
numerical procedure described above using Matlab 7.1. 
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4 Numerical comparison for RC columns 
 
4.1 Comparison with Cranston’s numerical results 
 
The accuracy of the present theoretical model and its numerical implementation is 
first verified using the numerical results of Cranston’s theoretical model [26] for RC 
columns, which was based on a similar numerical integration procedure. Cranston’s 
model [26] used the same stress-strain relationships for both concrete and steel as are 
adopted by the present theoretical column model except that the concrete was 
assumed to have an ultimate axial strain of 0.0035 in the former. This value was also 
used in the present model for this set of comparisons. Table 1 lists the properties of 
the columns analyzed by Cranston [26]. These columns were all pin-ended and were 
eccentrically loaded at only one end. The cross-sectional shape was rectangular rather 
than circular and is illustrated in Fig. 3. The height and the width of the cross section 
are denoted by h and b  respectively and the eccentricity is in the height direction. 
The steel reinforcement ratio is denoted by s  and the distance between the top and 

the bottom layers of the steel reinforcement is denoted by . 'h cuf  is the characteristic 

cube strength of concrete and ,y kf  is the characteristic yield strength of steel 

reinforcement. Cranston [26] normalized the load-deflection curves (Fig. 4) using 
appropriate reference values. The lateral deflection at mid-height of the column midf  

was normalized by the section height while the axial load was normalized by the 
design value of the section axial load capacity under concentric compression , 

which was determined from the design values of material strengths (the numbers 
bracketed in Table 1; the partial safety factors for concrete and steel are 1.5 and 1.15 
respectively). However, the characteristic material strengths were used in the 
numerical analyses. The predictions of both models are shown in Fig. 4. It can be 
clearly seen that these predictions are in excellent agreement for both the material 
failure and stability failure cases.  

uoN

 
4.2 Comparison with Kim and Yang’s experimental results 
 
Predictions of the present theoretical model are also compared with Kim and Yang’s  
test results for RC columns [30]. Details of Kim and Yang’s tests are given in Table 2. 
These specimens were square in shape and had a wide range of concrete strength. All 
these specimens were bent in symmetrical single curvature ( 1e e2 ). In these tests, 

two physically identical columns were prepared for each configuration. Close 
agreement between the present predictions and the test results can be seen in the last 
column of Table 2. In addition, the full-range load-deflection curves were also 
reported by Kim and Yang [30], and those of the normal strength series are compared 
with predictions of the present model in Fig. 5. No further comparisons for RC 
columns are discussed herein because the present method of analysis has long been 
well-accepted for RC columns [25, 26].  
 
5 Numerical comparison for FRP-confined RC columns 
 
5.1 General 
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The small number of experimental studies on slender FRP-confined circular RC 
columns have been carried out by Ranger and Bisby [7], Fitzwilliam and Bisby [8], 
Tao et al. [9], and Hadi [17]. Hadi [17] tested five small-scale (150 mm in diameter) 
circular normal strength concrete columns wrapped with CFRP and subjected to axial 
loading with the same end eccentricity of 42.5 mm. One reference column which 
received no FRP wrapping was also tested. Four of the five FRP-confined columns 
were not provided with internal steel reinforcement so they failed by tensile cracking 
of concrete. Unfortunately, the hoop strains on the FRP jacket were not reported 
which makes it difficult for these test results to be used to verify the proposed 
theoretical column model.  
 
5.2 Columns tested by Fitzwilliam and Bisby and Ranger and Bisby  

 
The two column test series of Ranger and Bisby [7] and Fitzwilliam and Bisby [8] 
were conducted by the same research group and the test configurations of the two 
series are similar. Therefore, these two test series are discussed together, although 
they had different test objectives. Ranger and Bisby [7] varied the load eccentricity 
but fixed the column height while Fitzwilliam and Bisby [8] varied the column height 
but fixed the load eccentricity. In Ranger and Bisby’s test series [7], all the columns 
were 152mm in diameter and 600 mm in height, and were connected to a steel system 
at both column ends to create the pinned end condition and the needed load 
eccentricity. All the columns were reinforced with four 6.4 mm diameter steel bars 
longitudinally and 6.4 mm diameter steel ties spaced at 100 mm transversely with a 25 
mm concrete cover to the longitudinal reinforcement. A total of six load eccentricities 
were considered: 0, 5, 10, 20, 30, or 40 mm. For each load eccentricity, a column 
confined with a single ply of CFRP as well as an unconfined reference column was 
tested. The FRP jacket included a 100 mm overlapping zone with its centerline being 
at the theoretically least compressed point around the circumference. The concrete 
had a cylinder strength of 33.2 MPa, the steel reinforcement had a yield strength of 
710 MPa [31], and the FRP had an elastic modulus of 90 GPa (based on a nominal 
thickness of 0.381 mm) and a rupture strain of 1.12% obtained from tensile coupon 
tests. A summary of Ranger and Bisby’s tests [7] is given in Table 3. 
 
In Fitzwilliam and Bisby’s test series [8], the column height varied from 300 mm to 
1200 mm at an interval of 300 mm and all the columns were tested with a fixed load 
eccentricity of 20 mm. The steel reinforcement and the FRP used in the study were 
the same as those used in Ranger and Bisby [7]. The concrete cylinder strength 
averaged from three batches of cylinder tests conducted during the period of column 
tests was 35.5 MPa [31]. The other test parameters were similar to those of Ranger 
and Bisby’s tests [7]. It should be noted that some columns received longitudinal FRP 
wrapping before hoop FRP wrapping, but these tests have been excluded from the 
present comparison. Fitzwilliam and Bisby’s tests [8] are summarized in Table 4. In 
both test series, the lateral deflection of the column was monitored at three different 
vertical locations with one being located at the mid-height of the column.  
 
Auxiliary tests on standard FRP-confined concrete cylinders under concentric 
compression were also conducted for both test series. The concrete cylinders were 
made from the same concrete and confined with the same type and amount of FRP as 
the columns. These cylinder tests are summarized in Table 5. The concrete cylinders 
in Ranger and Bisby’s study [7] were only confined with a 1-ply CFRP jacket while 
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some of the cylinders in Fitzwilliam and Bisby’s study [8] were confined with a 2-ply 
CFRP jacket because some of the columns tested by Fitzwilliam and Bisby [8] were 
also confined with a 2-ply CFRP jacket. The compressive strength of unconfined 
concrete varied slightly in Fitzwilliam and Bisby’s tests [8] because the concrete 
cylinders were tested at different ages during column testing. It should be noted that in 
Ref. [7], the FRP hoop rupture strain found from their FRP-confined cylinder tests is 
reported to be 0.62%, a much smaller value than that found from Fitzwilliam and 
Bisby’s FRP-confined cylinder tests [8] (1.17% [31]), although the test configurations 
were almost the same in the two test series. It was later confirmed [31] that this small 
value arose from an editorial error and the correct value is 1.15%. The compressive 
strength '

ccf  and the ultimate axial strain cu  for these FRP-confined cylinders 

predicted by Lam and Teng’s model are listed in the last two columns of Table 5. It 
can be seen that the predicted values of the compressive strength are reasonably close 
to the experimental values, however, the predicted values of the ultimate axial strain 
are much larger than the experimental values, particularly for the specimens confined 
with a 1-ply FRP jacket. To minimize the errors that might arise from this discrepancy 
in modeling the column behaviour, the experimental values of '

ccf  and cu  were 

directly incorporated in Lam and Teng’s model in predicting the behaviour of test 
columns. MPa and '

ccf 44.2 0.86%cu   were used in modelling the columns tested 

by Ranger and Bisby [7]. For the columns tested by Fitzwilliam and Bisby [8], 
MPa and ' 40.7ccf  0.788%cu   were used for the 1-ply jacket while  and '

ccf  60.1

1.443%cu   were used for the 2-ply jacket. However, the predicted values of '
ccf  and 

cu  were also used in predicting the behaviour of test columns to produce another set 

of results for comparison. 
 
The predicted axial load capacities of all columns are compared with the experimental 
values in Tables 3 and 4. It can be noted that for all the unconfined columns in Ranger 
and Bisby’s study [7], their axial load capacities are overestimated by the theoretical 
model by some 20% while this overestimation is much smaller for Fitzwilliam and 
Bisby’s tests [8]. The relatively large overestimation observed for Ranger and Bisby’s 
tests [7] may be due to the following factors in the tests: 1) additional eccentricities 
due to geometric/material imperfections and inaccurate alignment of load; and 2) 
spalling of the concrete cover in unconfined columns during testing which reduces the 
effective cross-sectional area. In particular, it can be shown that the theoretical results 
are sensitive to an additional eccentricity, especially when the nominal load 
eccentricity is small. For example, if a 10 mm additional eccentricity is assumed, then 
the predicted axial load capacity of column U-0 becomes 525 kN, which is much 
closer to the experimental value. However, in the comparisons for these two test series, 
no additional eccentricity was used except for columns U-0 and C-0 (subjected to 
nominally concentric compression) where a small eccentricity of 1 mm was used. For 
a column subjected to concentric compression, a small load eccentricity (or other 
forms of imperfection) needs to be introduced into the theoretical model as otherwise 
no lateral deflections can be predicted by the theoretical model. For the FRP-confined 
columns, in most cases, their axial load capacity is underestimated by about 5% to 
15%. The only exceptions occurred for columns C-30 and C-40 which had relatively 
large load eccentricities. Their axial load capacities are overestimated by nearly 20%. 
While these underestimations might be interpreted as being due to the unfavorable 
effect of load eccentricity on confinement effectiveness, such an interpretation 
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requires more evidence because: 1) such a trend cannot be identified from the results 
for the smaller load eccentricities (0, 5, 10, 15, 20 mm); 2) the theoretical predictions 
are sensitive to an additional eccentricity whose exact value is unknown; and 3) 
experimental scatters are likely to exist in these test results. 
 
The theoretical and experimental full-range load-deflection curves of FRP-confined 
columns tested by Ranger and Bisby [7] and Fitzwilliam and Bisby [8] are compared 
in Figs 6 and 7 respectively. Two theoretical curves are shown for each column; they 
were produced using the experimental and the predicted '

ccf  and cu  values 

respectively. All the theoretical curves terminate when the extreme compression fiber 
reaches the ultimate axial strain of confined concrete. It should be noted that column 
C-0 in Ranger and Bisby’s test series [7] and the pair of physically identical columns 
300C-1-0A and 300C-1-0B in Fitzwilliam and Bisby’s test series [8] have been 
excluded from the present comparisons, because only very small lateral deflections of 
these columns were recorded. This is due to the fact that the former had a relatively 
small height-to-diameter ratio of four and was tested under nominally concentric 
compression while the latter only had a length-to-diameter ratio of two, so the 
slenderness effect in these columns was not significant enough to induce significant 
lateral deflections. It can be seen in Figs 6 and 7 that for the same column, the 
theoretical curve produced using the '

ccf  and cu  values predicted by Lam and Teng’s 

model terminates at a larger deformation value, which is closer to test results, than the 
other theoretical curve. This is because the prediction of the deformation capacity of 
these columns largely depends on the value used for the ultimate axial strain of 
confined concrete; this value from Lam and Teng’ stress-strain model is significantly 
larger than that from the FRP-confined cylinder tests (see Table 5). This observation 
also implies that the load eccentricity might have an effect on the stress-strain 
behaviour of FRP-confined concrete (e.g. increasing the ultimate axial strain of FRP-
confined concrete) and this possible effect needs to be fully clarified in the future. It 
can also be seen in Figs 6 and 7 that there exist considerable discrepancies between 
the theoretical and the experimental values of column stiffness. This may be due to 
inaccurate displacement measurements at the initial loading stage because the lateral 
deflections might have been too small to be precisely measured (it is worth noting that 
even some negative lateral displacements at the mid-height of column C-5 were 
recorded). It should also be noted that the lateral displacements of column C-10 were 
not accurate (see Fig. 6b), as confirmed later [31]. Fig. 6b shows that column C-10 
possessed a much larger deformation capacity than column C-20. This contradicts 
engineering intuition, because column C-20 should have a larger deformation capacity 
than column C-10, as the former was loaded with a larger initial load eccentricity and 
both columns failed at similar hoop rupture strains of the FRP jacket (1.07% for 
column C-10 and 1.15% for column C-20).  
 
5.3 Column tests by Tao et al.  

 
Tests on slender FRP-confined circular RC columns performed by Tao et al. [9] have 
also been analyzed using the present theoretical model. A total of 16 columns were 
tested and the properties of these columns are listed in Table 6. All the columns were 
150mm in diameter and reinforced with four 12 mm longitudinal steel bars and 6 mm 
steel ties spaced at 100 mm. The columns had a 21 mm concrete cover to the 
longitudinal steel reinforcement. The C1 series had a column height-to-diameter ratio 
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of 8.4 while this ratio for the C2 series was 20.4. Each series included four different 
load eccentricities (0, 50, 100 and 150 mm) and for each eccentricity, one unconfined 
column and one FRP-confined column were tested. As the load eccentricities adopted 
were relatively large, all the columns were cast with corbel ends and capped with a 
steel plate with V-shaped grooves to achieve the required load eccentricities and a 
pinned end condition. A 150 mm overlapping zone was adopted in forming the FRP 
jacket and the position of the overlapping zone is similar to that adopted by Ranger 
and Bisby [7].  
 
The average cylinder compressive strength of unconfined concrete was found from six 
standard concrete cylinders to be 48.2 MPa. The longitudinal steel reinforcement had 
a yield strength of 388.7 MPa. The CFRP had an elastic modulus of 255 GPa based on 
a nominal thickness of 0.17 mm per ply and a rupture strain of 1.67% based on tensile 
coupon tests. Three auxiliary FRP-confined concrete cylinders were tested under 
concentric compression to determine the stress-strain behaviour of FRP-confined 
concrete. These cylinders were confined with the same type and amount of FRP (2 
plies of CFRP) as the columns. The stress-strain curves predicted using Lam and 
Teng’s model are compared with the experimental curves of the FRP-confined 
cylinders in Fig. 8. It should be noted that only two experimental curves are shown in 
Fig. 8 because the third specimen experienced an unexpected experimental error 
during testing. The hoop rupture strain averaged from the two cylinders is 1.32% and 
this value was used when generating the predicted stress-strain curve. It can be seen 
that the predicted and experimental curves are in close agreement so Lam and Teng’s 
model was directly used in the theoretical column model for the modeling of these 
columns. 
 
The predicted axial load capacities of all columns are listed in Table 6. Again, a small 
eccentricity of 1 mm was used when analyzing columns tested under nominally 
concentric compression (i.e., columns C1-1U, C1-1R, C2-1U, and C2-1R). It is 
important to note that for all the unconfined columns, the predicted axial load capacity 
is considerably larger than the experimental value, particularly for those columns 
subjected to nominally concentric loading. By contrast, the predictions for FRP-
confined columns are much more reasonable although the theoretical column model 
still leads to overestimations. This might be due to the same reasons as given earlier: 
additional eccentricities from geometric/material imperfections, inaccurate alignment 
of load, and the possible spalling of the concrete cover in unconfined columns. In an 
internal report [32] by the same research group, it was suggested that an additional 
eccentricity of 15 mm be used for unconfined columns and an additional eccentricity 
of 7.5 mm be used for FRP-confined columns when modelling Tao et al.’s column 
tests [9]. When this suggestion is adopted, the predicted values (bracketed in Table 6) 
become much closer to the experimental values. With the inclusion of the additional 
eccentricity in the theoretical column model, the average , ,u theo u testN N  ratio for the 

six FRP-confined columns with a non-zero nominal load eccentricity decreases from 
1.11 to 1.01. However, the corresponding ratio for unconfined columns is still 1.19, 
indicating significant overestimation. 
 
Another point worth noting is that the theoretical column model only predicts a 
marginal increase in the axial load capacity due to FRP wrapping, which is 
particularly true for series C2. This observation indicates that the effectiveness of FRP 
confinement decreases as columns become more slender. The same trend can also be 
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observed in the predictions for Fitzwilliam and Bisby’s tests [8]. This is because FRP 
confinement can substantially increase the axial load capacity of an RC section, but 
the flexural rigidity of such a section in the range of confinement-enhanced resistance 
is much lower than its initial flexural rigidity. 
 
The theoretical and experimental full-range load-deflection curves of the FRP-
confined columns tested by Tao et al. [9] are also compared (Fig. 9). An additional 
eccentricity of 7.5 mm was added to the nominal load eccentricity when producing the 
theoretical curves shown in Fig. 9. For specimens C1-1R and C2-1R, two theoretical 
curves are shown. The upper one is for an additional eccentricity of 7.5 mm while the 
lower one is for an additional eccentricity of 15 mm. These two specimens were tested 
under nominally concentric compression, so their behaviour is more sensitive to the 
additional eccentricity. It can be seen that the use of a 15 mm additional eccentricity 
produced closer predictions, but the curves for a 7.5 mm additional eccentricity are 
also reasonably close to the experimental curves. 
 
6 Conclusions 
 
This paper has been concerned with the development and verification of a theoretical 
model for slender FRP-confined RC columns. This theoretical column model 
incorporates Lam and Teng’s stress-strain model for FRP-confined concrete [10] as 
refined by Teng et al. [11] at the section behaviour level and finds the lateral 
deflection of a column through numerical integration at the column behaviour level. 
The predictions of the theoretical column model have been compared with 
experimental results of FRP-confined RC columns reported in the open literature. The 
comparisons and discussions presented in this paper allow the following conclusions 
to be drawn: 
 
1) The numerical integration method has long been successfully used to model 

slender steel columns, RC columns and steel-concrete composite columns. 
However, to the best knowledge of the authors, the work presented in this paper 
represents the first application of the numerical integration method to the analysis 
of slender FRP-confined RC columns.  

 
2) Numerical predictions of the proposed theoretical model have been shown to 

compare well with existing theoretical and experimental results of slender RC 
columns, demonstrating that the numerical integration method was correctly 
implemented.  
 

3) Comparisons of predictions from the theoretical column model and existing test 
results for slender FRP-confined circular RC columns have shown that the 
proposed theoretical model is reasonably accurate in predicting the axial load 
capacity, but significant uncertainty exists in these comparisons as the test 
columns were small so the test results are believed to have been significantly 
influenced by unintended load eccentricities. There is a genuine need to conduct 
tests on larger-scale columns for a more reliable verification of the proposed 
theoretical column model. 
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4) Compared with the predictions for the axial load capacity, larger discrepancies 
exist between predictions of the proposed model and test results for the 
deformation capacity of slender FRP-confined RC columns. One possible reason 
is that the load eccentricity has a significant effect on the ultimate axial strain of 
FRP-confined concrete in an FRP-confined RC column, which is the key to the 
prediction of deformation capacity. More research is needed to clarify this issue, 
including the testing of larger-scale columns. 

 
5) The numerical results have confirmed the experimental observation that the 

effectiveness of FRP confinement in enhancing the load-carrying capacity of a 
column decreases as the column becomes more slender. This is because FRP 
confinement can substantially increase the axial load capacity of an RC section, 
but the flexural rigidity of such a section in the range of confinement-enhanced 
resistance is much lower than its initial flexural rigidity. 

 
6) This paper has been limited to slender FRP-confined circular RC columns, but the 

method of analysis can be easily extended to slender FRP-confined RC columns 
of other section forms if an accurate stress-strain model for FRP-confined 
concrete in a particular section form is available. 
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Table 1 Properties of columns in Fig. 4 

Specimen cuf  

(MPa)
,y kf  

(MPa) 
s  

(%) 

'h h 1 2e e 2e h  l h

Column 1 0.5 15 
Column 2 0.5 25 
Column 3 0.1 40 
Column 4 

31 
(13.8)

414 
(360) 

6 0.7 0 

0.5 40 
 
Table 2 Summary of Kim and Yang’s tests 

b h '

Specimen 
 

(mm)
 

(mm) 
cof  

(MPa) 

yf  

(MPa)
s

(%)

l h 'h h 1 2e e 2e h ,u testN  

(kN) 

,u theoN

(kN) 

,

,

u theo

u test

N

N

60L2-1 63.7 1.03 
60L2-2 

18
65.7 

65.8 
1.00 

100L2-1 38.2 0.96 
100L2-2 

80 80 25.5 387 1.98
30

0.625 1 0.3 

35.0 
36.6 

1.05 
60M2-1 102.8 1.08 
60M2-2 

18
113.5 

111.1
0.98 

100M2-1 45.2 1.22 
100M2-2 

80 80 63.5 387 1.98
30

0.625 1 0.3 

47.6 
55.1 

1.16 
60H2-1 122.1 1.10 
60H2-2 

18
123.7 

134.7
1.09 

100H2-1 54.3 1.17 
100H2-2 

80 80 86.2 387 1.98
30

0.625 1 0.3 

54.9 
63.3 

1.15 
Note: s  is the volumetric ratio of longitudinal steel reinforcement, and  and  are the experimental and theoretical axial load 

capacities of a column, respectively. 
,u testN ,u theoN
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Table 3 Summary of Ranger and Bisby’s tests 
D l

Specimen 
 

(mm)
 

(mm) 
1

2

e

e  

2e  
(mm)

Concrete
Cover 
(mm) 

frpE
 

(GPa)

t  
(mm)

'
cof  

(MPa)
yf
 

(MPa) 
s

(%)
,u testN

(kN)
,u theoN

(kN) 
,

,

u theo

u test

N

N

U-0 90 0 497 641 1.29 
C-0 

152 600 1 0 25 90 0.381 33.2 710 0.71
873 786 0.90 

U-5 90 0 459 584 1.27 
C-5 

152 600 1 5 25 
90 0.381

33.2 710 0.71
770 725 0.94 

U-10 90 0 447 525 1.17 
C-10 

152 600 1 10 25 
90 0.381

33.2 710 0.71
664 655 0.99 

U-20 90 0 351 420 1.20 
C-20 

152 600 1 20 25 
90 0.381

33.2 710 0.71
579 518 0.89 

U-30 90 0 253 322 1.27 
C-30 

152 600 1 30 25 
90 0.381

33.2 710 0.71
337 402 1.19 

U-40 90 0 179 242 1.35 
C-40 

152 600 1 40 25 
90 0.381

33.2 710 0.71
264 305 1.16 
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Table 4 Summary of Fitzwilliam and Bisby’s tests 
D l

Specimen 
 

(mm) 
 

(mm) 
1

2

e

e
2e

 
(mm)

Concrete 
Cover 
(mm) 

frpE
 

(GPa)

t  
(mm)

'
cof  

(MPa)
yf  

(MPa)
s  

(%)
,u testN

 
(kN)

,u theoN

 
(kN)

,

,

u theo

u test

N

N

300U-A 471
300U-B 

152 300 1 20 25 90 0 35.5 710 0.71
462

458 0.98 

300C-1-0-A 675
300C-1-0-B 

152 300 1 20 25 90 0.381 35.5 710 0.71
679

531 0.78 

300C-2-0-B 152 300 1 20 25 90 0.762 35.5 710 0.71 911 684 0.75 
600U-A 152 600  20 25 90 0 35.5 710 0.71 428 448 1.05 

600C-1-0-A 152 600 1 20 25 90 0.381 35.5 710 0.71 563 505 0.90 
900U-A 152 900 1 20 25 90 0 35.5 710 0.71 398 432 1.09 

900C-1-0-A 152 900 1 20 25 90 0.381 35.5 710 0.71 549 468 0.85 
1200U-A 389
1200U-B 

152 1200 1 20 25 90 0 35.5 710 0.71
411

411 1.03 

1200C-1-0-A 451
1200C-1-0-B

152 1200 1 20 25 90 0.381 35.5 710 0.71
481

433 0.93 

1200C-2-0-A 152 1200 1 20 25 90 0.762 35.5 710 0.71 539 466 0.86 
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Table 5 Cylinder tests in Fitzwilliam and Bisby and Ranger and Bisby  
' t '

Source cof  
(MPa) 

frpE
 

(GPa) 
 

(mm) 
ccf  

(MPa) 
cu  

(%) 
,h rup

 
(%) 

'
ccf -predicted 

(MPa) 
cu -predicted 

(%) 
41 0.804 1.140 

39.7 0.768 1.165 34.6 90 0.381 
41.4 0.793 1.192 

46.0 1.24 

35.8 90 0.762 59.8 0.165 1.111 63.9 1.76 
58 0.112 1.175 

Fitzwilliam 
and Bisby 

36.4 90 0.762 
62.5 0.156 1.151 

65.6 1.83 

Ranger and 
Bisby 

33.2 90 0.381 44.2 0.860 1.15 44.7 1.25 
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Table 6 Summary of Tao et al.’s tests 
D l

Specimen 
 

(mm)
 

(mm) 
1

2

e

e
 2e  

(mm)

Concrete
Cover 
(mm) 

'
cof  

(MPa)
yf  

(MPa)
s

(%)
frpE

 
(GPa) 

t  
(mm)

,u testN

 
(kN)

,u theoN  

(kN) 
,

,

u theo

u test

N

N
 

C1-1U 455 942(658) 2.07(1.45) 
C1-1R 

150 1260 1 0 21 48.2 388.7 2.56 255 0.34
765 1018(871) 1.33(1.14) 

C1-2U 149 273(198) 1.83(1.33) 
C1-2R 

150 1260 1 50 21 48.2 388.7 2.56 255 0.34
248 288(243) 1.16(0.98) 

C1-3U 88 119(101) 1.35(1.15) 
C1-3R 

150 1260 1 100 21 48.2 388.7 2.56 255 0.34
124 131(119) 1.06(0.96) 

C1-4U 54.5 75.9(68.6) 1.39(1.26) 
C1-4R 

150 1260 1 150 21 48.2 388.7 2.56 255 0.34
77 79.5(75.0) 1.03(0.97) 

C2-1U 276 668(392) 2.42(1.42) 
C2-1R 

150 3060 1 0 21 48.2 388.7 2.56 255 0.34
386 700(543) 1.81(1.41) 

C2-2U 108 146(114) 1.35(1.06) 
C2-2R 

150 3060 1 50 21 48.2 388.7 2.56 255 0.34
126 149(131) 1.18(1.04) 

C2-3U 62.5 76.1(67.4) 1.22(1.08) 
C2-3R 

150 3060 1 100 21 48.2 388.7 2.56 255 0.34
71.5 77.6(72.9) 1.08(1.02) 

C2-4U 39 54.0(49.7) 1.83(1.27) 
C2-4R 

150 3060 1 150 21 48.2 388.7 2.56 255 0.34
47.5 55.1(52.8) 1.16(1.11) 
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Fig. 1 Strains and stresses over an FRP-confined circular RC section 
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Fig. 2 Schematic of the theoretical model 
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Fig. 3 Cross section of the columns considered in Fig. 4 
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(a) Columns 1 and 2 
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(b) Columns 3 and 4 

 

Fig. 4 Comparisons with Cranston’s theoretical model 
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Fig. 5 Comparisons with Kim and Yang’s tests 
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(a) Column C-5 
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(b) Columns C-10 and C-20 
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(c) Columns C-30 and C-40 

 
Fig. 6 Comparison with Ranger and Bisby’s tests 
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(a) Columns 600C-1-0-A and 900C-1-0-A 
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Fig. 7 Comparison with Fitzwilliam and Bisby’s tests  
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Fig. 8 Comparison with Tao et al.’s cylinder tests 
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(b) Columns C1-3R and C1-4R 
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(c) Columns C2-1R and C2-2R 
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(d) Columns C2-3R and C2-4R 

 
Fig. 9 Comparisons with Tao et al.’s tests on FRP-confined RC columns 
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