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Abstract: Intermediate crack induced debonding (IC debonding) is a common failure 
mode of RC beams strengthened with externally bonded FRP reinforcement. Although 
extensive research has been carried out on IC debonding, much work is still needed to 
develop a better understanding of the failure mode and a more reliable strength model. 
This paper presents an advanced finite element (FE) model based on the smeared crack 
approach for predicting IC debonding failure. Existing FE models of the same type are 
generally deficient in capturing localized cracks (both their pattern and widths). This 
deficiency is overcome in the proposed FE model through the accurate modeling of 
interfaces between the concrete and both the internal steel and the external FRP 
reinforcements. The capability and accuracy of the proposed model are demonstrated 
through comparisons of its predictions with selected test results. The importance of 
accurate modeling of localized cracking is also explained using numerical results obtained 
from the FE model. 
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INTRODUCTION 

It is now a common practice to bond fiber-reinforced polymer (FRP) reinforcement in the 
form of pultruded or wet-layup plates to the tension face of reinforced concrete (RC) 
beams (i.e. FRP-plated RC beams) to increase their flexural load-carrying capacity. Such 
strengthened beams often fail by debonding in two types of modes (e.g. Buyukozturk et al. 
2004; Hollaway and Teng 2008; Teng and Chen 2009): (a) intermediate crack (IC) 
induced debonding in which debonding is initiated at a major flexural crack and 
propagates towards a plate end; and (b) plate end debonding (including a number of 
distinct modes) in which debonding initiates at the plate end. Debonding failures involve 
complex mechanisms and are still a topic of intensive current research (Teng and Chen 
2009). 
 
An extensive review of existing studies on the numerical modeling of debonding failures 
in FRP-plated RC members has recently been conducted by Chen (2010) from the 
perspective of the modeling approaches used. A summary of the main studies after year 
2000 is given in Table 1, while further details of the review are available in Chen (2010). 
The present paper presents a more advanced and more accurate finite element (FE) 
approach based on the popular and versatile smeared crack approach for the prediction of 
IC debonding failure. Table 1 shows that existing finite element (FE) models based on the 
smeared crack approach except Niu and Karbhari (2008) generally do not include an 
appropriate model for the bond behavior between concrete and internal steel reinforcement. 
The FE model of Niu and Karbhari (2008), which does depict this bond behavior, is not a 
predictive model because in their FE model, the important parameters for defining bond 
behavior between concrete and FRP, such the interfacial fracture energy, need to be 
identified from experimental data. 
 
The lack of attention to the modeling of bond behavior between concrete and internal steel 
reinforcement has been due to both the need for researchers to focus on the more pressing 
issues (e.g. bond behavior between concrete and externally bonded FRP reinforcement) in 
the past and the inadequate appreciation of its importance to the prediction of IC 
debonding failure in FRP-plated RC beams. It is important to note that IC debonding 
failure is driven by the appearance and widening of the main cracks, so the accurate 
prediction of crack paths and widths are a pre-requisite for the accurate prediction of 
debonding failures; the latter depends on the accurate modeling of bond behavior between 
concrete and internal steel reinforcement. 
 
In the proposed FE model, the interfaces between the concrete and both the internal steel 
and the external FRP reinforcements are accurately captured using interfacial elements 
with appropriate bond-slip properties, eliminating the above-mentioned deficiency in 
existing FE models. The capability and accuracy of the proposed FE model are 
demonstrated through comparisons of its predictions with selected test results. 

EXISTING FE STUDIES ON IC DEBONDING FAILURE 
 
Discrete-Crack Approach versus Smeared-Crack Approach 
 
The two common approaches for modeling concrete cracking (ACI 446.3R 1997), the 
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discrete-crack model and the smeared crack model, have both been used to model IC 
debonding (see Table 1). The former simulates a crack as a geometrical identity so 
discontinuities arising from cracking are physically modeled. By contrast, the smeared 
crack model treats cracked concrete as a continuum and captures the deterioration process 
of cracked concrete using a constitutive relationship and hence smears cracks over the 
continuum. 
 
When the discrete crack approach is implemented in an FE model, the cracks are 
commonly defined along element boundaries. This inevitably introduces mesh bias (ACI 
446.3R 1997). Attempts have been made to solve this problem by developing automatic 
re-meshing algorithms (e.g. Yang et al. 2003), but overcoming computational difficulties 
associated with topology changes due to re-meshing is still a challenge (de Borst et al. 
2004). 
 
The smeared crack approach has its drawbacks too. The main drawback is the strain 
localization phenomenon: the energy consumed during crack propagation approaches 
zero when the element size approaches zero; as a result, the results are not 
mesh-objective. Various mathematical devices (i.e. localization limiters) have been 
proposed to overcome this mesh non-objectivity problem. One of the successful 
localization limiters is the crack band model (Bazant and Planas 1998), which relates the 
element size to the constitutive law of concrete so that the fracture energy is independent 
of element size. When the crack band model is adopted, the discrete crack model and the 
smeared crack model yield about the same results if the crack opening displacement wt in 
the discrete crack model is taken as the cracking strain εcr accumulated over the width hc 
of the crack band in a smeared crack model (Bazant and Planas 1998):    

c
h

crt dhw
c

∫= ε                                                                         (1) 

 
The above discussion provides the necessary background to the summary of the main 
existing studies on the numerical (mainly FE) modeling of debonding failures in 
FRP-plated RC members and for the present work. In the FE model presented in this 
paper, the smeared crack approach is adopted within the framework of the crack band 
model. The smeared crack approach has also been adopted by most existing FE models 
which are capable of predicting IC debonding failures with reasonable success (e.g. 
Neale et al. 2006; Lu et al. 2007). 
 
Accuracy of the Smeared Crack Approach 
For the accurate modeling of IC debonding failure, accurate modeling of localized 
flexural cracking is essential. To predict localized cracks accurately, an FE model based 
on the smeared crack approach must include the following three elements: (a) an 
accurate constitutive model for modeling cracked concrete, especially the post-cracking 
behavior of concrete; (b) an accurate bond-slip model for the bond behavior between 
concrete and external FRP reinforcement; and (c) an accurate bond-slip model for bond 
behavior between concrete and internal steel reinforcement. Among the existing FE 
models based on the smeared crack approach, none [except Niu and Karbhari’s (2008) 
model which is not a predictive model as discussed above] has included all three 
elements and the most advanced models (e.g. Lu et al. 2007) are generally inadequate in 
including the third element (Table 1). 
 
The bond-slip behavior between steel bars and surrounding concrete has an important 
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effect on concrete cracking behavior as demonstrated by previous studies (e.g. Rot 1988; 
Rots and Blaauwendraad 1989; Cervenka et al. 2003; Jendele and Cervenka 2006; Yang 
and Chen 2005). Therefore, if element (c) mentioned above is not included in an FE 
model, the cracks as well as the debonding failure cannot be accurately predicted. As a 
result, Lu et al. (2007) had to resort to a dual debonding criterion first explained in Teng 
et al. (2004), which enabled IC debonding to be accurately predicted; a similar approach 
was used by Neale (2006) as explained later by Baky et al. (2007). However, the cracks 
predicted by such an FE model are still inaccurate due to the perfect bond assumption 
made for steel tension bars, as further discussed later in the paper. 

PROPOSED FE MODEL 
In the present study, efforts were made to develop an FE model which takes the three 
elements mentioned above all into proper account. The proposed model is a 
two-dimensional FE model and has been implemented in ABAQUS (ABAQUS 6.5, 
2004). It is based on the smeared cracked approach so that the crack paths need not be 
pre-defined and employs the crack band model to overcome the mesh sensitivity problem 
associated with the conventional smeared crack model. The bond-slip behavior between 
concrete and reinforcements (both internal steel bars and external FRP plates) is modeled 
using appropriate bond-slip models. Further details of the FE model are described below. 
 

Modeling of Concrete 
The concrete is modeled using the plane stress element CPS4 in ABAQUS (ABAQUS 6.5 
2004). The crack band model is defined within the framework of the concrete damaged 
plasticity model [see Lubliner et al. (1989) and Lee (1996) for more details] in ABAQUS. 
For concrete under uniaxial compression, the equation suggested by Saenz (1964) is 
adopted following Chen (1982):  

( )[ ]( ) ( )221 ppppa
a

εεεεσε
εσ

+−+
=                                        (2) 

in which σ and ε are the compressive stress and the compressive strain respectively, σp 
and εp are respectively the experimentally determined maximum stress and its 
corresponding strain, and α is an experimentally determined coefficient representing the 
initial tangent modulus. In the present study, α was set to be equal to the elastic modulus 
of the concrete Ec and the ACI 318 (2002) equation was used to estimate Ec from the 
cylinder compressive strength (i.e. '4730 cc fE =  in MPa); σp and εp were set to be 
equal to fc

’ and 0.002 respectively. 
 
For concrete under uniaxial tension, the tension-softening curve of Hordijk (1991) which 
was derived on the basis of an extensive series of tensile tests of concrete is employed 
following Jendele and Cervenka (2006):   
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where wt is the crack opening displacement, wcr is the crack opening displacement at the 
complete release of stress or fracture energy, σt is the tensile stress normal to the crack 
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direction, and ft is the concrete uniaxial tensile strength. GF is the fracture energy 
required to create a stress-free crack over a unit area, and c1=3.0 and c2=6.93 are 
constants determined from tensile tests of concrete. In FE simulations, if no test data are 
available,  ft and GF may be estimated from the following CEB-FIP (1993) equations: 
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where da is the maximum aggregate size. In this study, it is assumed that da = 20 mm if 
information on the maximum aggregate size is not available. It should be noted that in 
Eq (6), if '

cf  and da  have units of MPa and mm respectively, FG  has a unit of N/mm 
(Bazant and Becq-Giraudon 2002).  
 
The stress-displacement curve defined by Eqs (3)-(6) can be transformed into a 
stress-strain curve according to the crack band model as depcited by Eq. (1). In 
ABAQUS, the crack band width hc is defined as the characteristic crack length of an 
element (ABAQUS 6.5 2004). In the present study, the recommendation for estimating 
the crack band width made by Rots (1988) is followed. For instance, the characteristic 
crack length of a plane stress four-node square element with four integration points is 
taken to be e2 , where e is the length of the square element. 
 
In the present study, it is assumed that the Poisson’s ratio ν = 0.2 and the dilation angle ψ 
= 35o. Numerical results presented in Chen (2010) showed that both parameters have 
little effect on the numerical results if failure is not controled by the compressive 
crushing of concrete. 
 
Definition of Damage Evolution  
In the proposed FE model, a user-defined damage curve is employed to account for the 
progressive degradation of concrete as the cracks widen. The tensile stress-strain curve 
defined by Eq. (3) is illustrated in Figure 1. If the concrete is undamaged after entering 
the softening range ( ctt Ef>ε ), the unloading path of the stress-strain curve has a slope 
equal to , and the corresponding elastic strain cE ct

el
t Eσε = , where tσ  is the tensile 

stress in the concrete. If the concrete is damaged due to cracking, the slope of the 
unloading path is reduced to ct Ed )1( − , and the corresponding elastic strain 

[ ], (1 )el
t d t t cd Eε σ= − , where is the tensile damage factor of cracked concrete.  td

 
In ABAQUS, the cracking strain of cracked concrete is defined as  
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For damaged concrete, the equivalent plastic strain is defined as   
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dtt
pl

t ,εεε −=                                                           (8) 
 
Substituting Eq. (7) into Eq. (8) yields 
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One method to define tensile damage is to assume that  for all post-cracking 
values of 

0=pl
tε

tσ , which means that the unloading path of the stress-strain curve passes 
through the origin of the coordinate system as depicted by Figure 1.  
 
According to Bazant and Planas (1998), the crack opening displacement wt can be taken 
as the cracking strain accumulated over the width hcr

tε c of the crack band [see Eq. (1)]. 
If it is further assumed that the cracking strain  is constant over the width of the 
crack band so that the following expression can be obtained: 
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in which  is the equivalent ‘plastic’ crack width corresponding to the equivalent 
plastic strain within the framework of the crack band model. As a result, the above 
assumption of   is equivalent to .  By assumping , the 
following expression can be deduced for : 
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It should be noted that, according to the above definition of tensile damage of concrete, 
the damage evolution law is directly determined by the post-cracking tension-softening 
law, such as that depicted by Eq. (3). An example of the dt-wt curve determined by the 
above method is shown in Figure 2. This tensile damage model also leads to a reasonable 
model for the shear resistance degradation of cracked concrete; as a result, the cracking 
behavior (e.g. crack paths and widths ) of FRP-plated RC beams can be accuratly 
predicted as demostrated next.  
 
Modeling of Steel, FRP and Bond Behavior 
 
In the proposed FE model, both the steel and the FRP reinforcements are modeled using 
truss elements. The steel reinforcement is assumed to be elastic-perfectly plastic and the 
FRP reinforcement is assumed to be linear-elastic-brittle. The bond behavior between 
internal steel (both longitudinal bars and stirrups) and concrete is modeled using the 
interfacial element COH2D4 in ABAQUS. In the direction parallel to the steel-concrete 
interface, the properties of the interfacial elements are defined using the CEB-FIP (1993) 
bond-slip model. An example curve of the CEB-FIP (1993) steel-concrete bond-slip 
model is shown in Figure 3(a) for fc

’ = 30 MPa. It should be noted that the CEB-FIP 
(1993) model includes specification of the unloading branch for cyclic loading which is 
not used in the present FE model; instead, the unloading branch is defined to go through 
the origin [Fig. 3(a)] following the defined damage evolution law. This different 
treatment of unloading behavior does not have a significant effect on the numerical 
results until the peak load of the beam is reached as the steel-concrete interface is 
unlikely to experience any unloading before the peak load is attained (Chen 2010). In the 
direction normal to the interface, it is assumed that there is no relative displacement 
between the steel reinforcement and the concrete. 
 
The bond behavior between FRP and concrete is also represented using the same 
interfacial element in ABAQUS (ABAQUS 6.5 2004). Parallel to the interface, the 
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properties of the interfacial elements are defined using the simplified bond-slip model for 
FRP externally bonded to concrete developed by Lu et al. (2005). Based on the study of 
Chen et al. (2007), the bond-slip curve is assumed to unload linearly through the origin 
[Figure 3(b)] when the interface is in the softening range. Normal to the interface, the 
interface elements are assumed to behave linear-elastically with their stiffness being the 
stiffness of the adhesive layer. The FRP-concrete interfacial behavior so defined means 
that interaction between the two directions (i.e. normal and shear directions) is assumed 
to be insignificant and is ignored in the FE model. That is, it is assumed that IC 
debonding depends only on the bond-slip behavior parallel to the FRP-to-concrete 
bonded interface. This simple assumption is based on the following considerations: 1) 
both closed-form analytical solutions (e.g. Smith and Teng 2001) and careful linear elastic 
finite analyses (e.g. Teng et al. 2002a) have shown that the interfacial normal stress of the 
FRP-to-concrete bondline away from the plate ends is very small compared to the 
interfacial shear stress, implying that the effect of normal stress on IC debonding is 
insignificant; 2) existing laboratory tests showed that IC dedonding generally propagates 
along the FRP-to-concrete bondline (e.g. Brena et al. 2003; Matthys 2000). Numerical 
results not presented here showed that the normal stresses generally remain at relatively 
low values compared to either the concrete tensile strength  or the maximum 
interfacial shear stress 

tf

maxτ  [Figure 3(b)] during the loading/debonding process, further 
justifying this simple assumption. 
 
Solution Strategy 
Convergence difficulties are often encountered when standard static solution methods 
[e.g. the displacement control strategy and the arc-length method; refer to Crisfield (1991, 
1997) for more details] are employed to solve nonlinear deformation problems of 
FRP-plated RC beams involving concrete cracking and FRP debonding. In the present 
study, a dynamic approach (Chen et al. 2009) is employed for the numerical solution of 
the FE model. In this dynamic approach, an essentially static nonlinear deformation 
problem is treated as a dynamic problem and solved using the Hilber-Hughes-Taylor α 
method (Hilber 1976) available in ABAQUS 6.5 (2004), which is an implicit time 
integration method. A salient feature of the dynamic solution method is that the static 
solution can be obtained with satisfactory accuracy, while convergence difficulties 
associated concrete cracking and FRP debonding are overcome. In addition, the local 
dynamic processes associated with concrete cracking and FRP debonding can be 
captured. A detailed description of the dynamic solution strategy, including its validity 
and advantages, is given in Chen (2010). 

VERIFICATION OF THE PROPOSED FE MODEL 
 
A number of laboratory tests on IC debonding failure of FRP-plated RC beams/slabs 
from various sources have been successfully simulated using the proposed FE approach. 
The test specimens covered a large range of the following parameters: (a) specimen 
dimensions including different shear span ratios; (b) material properties; and (c) 
strengthening configurations (e.g. different width ratios between the FRP plate and the 
RC beam). The FE model has also been employed to predict the crack pattern and widths 
of several test specimens with or without FRP strengthening, which showed that the 
present FE model is capable of accurate prediction of cracking behavior.  
 
Due to space limitation, only the numerical results for eight test specimens from two 
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independent sources are presented to demonstrate the accuracy of proposed FE approach 
for IC dedonding failure. Five of the specimens are from Matthys (2000) which include 
two control RC beams and three FRP-plated RC beams that failed by IC debonding, 
while the other three specimens are from Brena et al. (2003) including one control RC 
beam and two FRP-plated RC beams that failed by IC debonding. These specimens were 
chosen for comparison because the necessary test data of these beams are clearly 
reported in the publications. It should be noted that all beams presented in Matthys (2000) 
that failed by IC debonding were simulated to ensure reliable comparison; from Brena et 
al.’s (2003) study, only two of the FRP-plated RC beams (i.e. C2 and D2) were simulated 
as the other beams tested by Brena et al. (2003) involved aspects beyond the scope of the 
present study. More numerical simulations of FRP-plated RC beams/slabs that failed by 
IC debonding are presented in Chen (2010). 
 
Specimens of Matthys (2000) 
Matthys (2000) tested two control beams (BF1 and BF7) and seven beams strengthened 
in flexure with FRP (BF2-BF6, BF8 and BF9). Beams BF4, BF5 and BF6 were 
pre-cracked, preloaded or anchored at the plate ends respectively; FE modeling of these 
beams is beyond the scope of the present study. Therefore, only the two control beams 
(BF1 and BF7) and the four FRP-plated beams, namely BF2, BF3, BF8 and BF7, were 
simulated using the FE model to verify the accuracy of the proposed FE model in 
predicting IC dedonding failure. The numerical results of BF3 are not presented herein 
because both the test behavior and the predicted behavior are nearly identical to that of 
BF2. Details of beams BF1, BF2, BF7, BF8 and BF9 are given in Table 2. 
 
For each of the five beams, only half of the specimen was modeled by taking advantage 
of symmetry. Results of a mesh convergence study not presented here showed that the 
numerical results (e.g. the load-displacement curve, crack pattern and the FRP debonding 
strain) changed very slightly when the maximum concrete element size was less than 20 
mm. As a result, a maximum element size of 10 mm was used for the concrete in 
modeling the five beams tested by Matthys (2000). Matching element sizes were chosen 
to represent the FRP and the steel bars. 
 
Figure 4 shows that the test load-displacement curves are accurately predicted by the 
proposed FE model. The predicted ultimate loads of beams BF1, BF2, BF7, BF8 and 
BF9 are 142.6 kN, 186.7 kN, 75.51 kN, 114.6 kN and 94.06 kN respectively, which are 
close to the corresponding test values of 144.2 kN, 185.0 kN, 80.7 kN, 111.3 kN and 
95.08 kN (Matthys 2000); the percentage differences are only 1.1%, 0.91%, 6.4%, 2.9% 
and 1.8% respectively. The predicted displacements at the ultimate load are also very 
close to the test values. Figures 5(a)-5(e) show the predicted crack patterns at the 
ultimate load for beams BF1, BF2, BF7, BF8 and BF9 respectively, which match closely 
the test crack patterns given in Matthys (2000). 
 
Figure 6(a) shows the strain distributions in FRP at the ultimate load for beams BF2, BF8 
and BF9, while the corresponding interfacial shear stress distributions are shown in 
Figure 6(b). The test maximum values of the FRP strain are also shown in Fig. 6(a) as 
dashed lines for comparison. The predicted maximum FRP strain values of beams BF2, 
BF8, BF9 are ,  and 10392 respectively, which are close to the test 
maximum strain values of , 5800  and 10000 . The predicted maximum 
FRP strain value is always slightly larger than the corresponding test value, which is 

7008 με 6653 με  με
6700 με  με  με
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reasonable given the highly non-uniform strain distribution in the FRP [Fig. 6(a)] and the 
limited number of strain gauges used for measuring the FRP strain (Matthys 2000). From 
Figure 6 it can also be seen that at the ultimate load, debonding of the FRP plate had 
initiated around the location of the loading point and propagated by a certain distance 
towards the plate end; the debonded regions can be identified as the regions of constant 
FRP strain in Figure 6(a), or the regions of zero shear stress in Figure 6(b). The 
numerical results given in Figures 4-6 clearly demonstrate that the proposed FE approach 
is capable of correctly predicting the IC debonding failure mode. Furthermore, it 
provides accurate predictions of the ultimate loads and the maximum values of the 
longitudinal strain in the FRP plate at debonding failure. 
 
Specimens of Brena et al. (2003) 
Details of the three beams (C, C2 and D2) tested by Brena et al. (2003) can be found in 
Table 2. A maximum element size of 15 mm was used for the concrete in these three 
beams based on a mesh convergence study. Matching element sizes were chosen to 
represent the FRP and the steel reinforcement. The numerical results are presented in 
Figures 7-9 for these beams in the same fashion as for the beams of Matthys (2000) in 
Figures 4-6.  
 
Figures 7-9 show that the proposed FE model predicts the failure mode (i.e. IC 
debonding) correctly and accurately predicts the ultimate load, the maximum 
longitudinal strain in the FRP plate at debonding failure. 
 
It should be noted that Brena et al. (2003) did not report the experimental crack patterns 
of the beams but indicated that debonding initiated at a main flexural crack located near a 
loading point and then propagated towards a plate end. Numerical results not presented 
here showed that the predicted IC debonding failure mode was caused by the opening-up 
of the main flexural crack at about 200 mm from the mid-span for both beams C2 and D2. 
This crack is one of the two main flexural cracks in the constant moment region within 
half the beam span and is close to the loading point [Figs. 8(b) and 8(c)]. Clearly the 
predicted failure process is in agreement in the test observations. 

ROLE OF BOND MODELLING IN PREDICTING IC DEBONDING 
 
The importance of modeling the FRP-concrete bond behavior to the reliable prediction of 
IC debonding is obvious and has attracted the attention of many recent studies (e.g. 
Wong and Vecchio 2003; Teng et al. 2004; Niu and Wu 2005; Pham and Al-Mahaidi 
2005; Niu and Wu. 2005; Neale et al. 2006; Baky et al. 2007; Lu et al. 2007; Smith and 
Gravina 2007; Niu and Karbhari 2008). However, the importance of accurate modeling 
of the steel-concrete bond behavior has not been given sufficient attention as pointed out 
earlier. To overcome the deficiency associated with the assumption of a perfect bond 
between steel tension reinforcement and concrete in their FE models, some researchers, 
such as Lu et al. (2007) and Neale et al. (2006) [see Baky et al. (2007) for a detailed 
discussion], employed a dual debonding criterion (or a similar approach) to enable IC 
debonding to be accurately predicted. Some FE models are still incapable of accurate 
prediction of localized cracking. Numerical results are presented below to elucidate this 
issue. In the present FE model, the bond behavior between steel stirrups and concrete is 
properly considered, but its effect on the flexural and IC debonding behavior is 
negligible and is not further discussed in this section. 
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Three beam specimens, namely BF1, BF2 and BF8 of Matthys (2000) are examined 
herein for three common scenarios: (1) BF1 represents typical RC beams failing in 
flexure; (2) BF2 represents FRP-plated RC beams where IC debonding occurs only 
slightly before the crushing failure of the compressive concrete; and (3) BF8 represents 
FRP-plated RC beams where the extreme compressive fibre of concrete is far from 
compressive failure when IC debonding occurs. Among the beams discussed in the 
preceding section, beams BF1, BF7 and C belong to the first scenario, beams BF2 and 
BF9 belong to the second scenario, and beams BF8, C2 and D2 belong to the last 
scenario. 
 
For each of the above scenarios, numerical results from three different bond modeling 
approaches are compared herein. The first approach is that adopted by the proposed FE 
model. The second approach differs from the first approach in that the steel is assumed to 
be perfectly bonded to the concrete. The third approach differs from the second approach 
in that the effect of the bond-slip properties of steel bars is approximated using the 
tension stiffening model of Bentz (2005) for the concrete surrounding the steel tension 
bars. For the concrete away from the steel tension bars, the concrete is modeled as plain 
concrete, and the modeling approach of the present FE model is used. Bentz’s (2005) 
tension-stiffening model is adopted because it is based on a large experimental database 
from different research groups and reflects reasonably well the effect of the amount of 
steel reinforcement on the tension-stiffening behavior of concrete. 
 
For beam BF1, very similar load-displacement curves were obtained using the three 
different approaches and all are close to the test load-displacement curve. These results 
are not presented here due to space limitation. In Figure 10(a), the numerical predictions 
are compared with the test results for beam BF2. The first and second approaches predict 
very similar results which are also in close agreement with the test results. The 
predictions of the third approach differ from the other results mainly in the displacement 
at the ultimate, being 29.66 mm according to the third approach which is about 10% 
smaller than the test value of about 33 mm. Some small differences are also seen in the 
predicted beam stiffness between the three approaches. 
 
Figure 10(b) shows that for BF8, the three approaches lead to similar load-displacement 
responses before the ultimate load is reached. However, they lead to substantially 
different ultimate loads (114.55 kN, 123. 02 kN and 130.82 kN for the first, second and 
third approaches respectively) and corresponding displacements (26.35 mm, 30.81mm 
and 33.22 mm respectively), with the predictions from the first approach being close to 
test results of 111.3 kN and about 25 mm. 
 
Figures 11 and 12 show the predicted crack patterns at the ultimate load for beams BF2 
and BF8 respectively. As the crack patterns predicted by the proposed FE model for these 
two specimens are already shown in Fig. 5, only the crack patterns predicted using the 
second and third approaches are shown in these figures. Compared with the crack 
patterns predicted by the proposed FE model, a significant feature of the crack patterns 
predicted using the second approach and the third approach is that more secondary 
cracks now exist near the beam soffit (Figs. 11-12). That is, the crack deformation near 
the beam soffit becomes less localized/more distributed, which has a significant effect on 
the accurate prediction of IC debonding failure as discussed earlier. Another feature is 
that the perfect bond assumption for steel tension bars leads to closer crack spacings for 
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the main flexural cracks [Fig. 11(a) versus Fig 5(b); Fig. 12(a) versus Fig 5(d)], which 
also has a significant effect on the prediction of IC debonding according to the studies of 
Teng et al. (2006) and Chen et al. (2007). Numerical results not presented here showed 
that the perfect bond assumption for steel tension bars have a similar effect on the 
predicted crack pattern of beam BF1. 
 
Figures 13(a) and 13(b) show that the crack width development curves of the critical 
flexural crack from the proposed FE model are very close to the test curves for both 
beams BF2 and BF8 (Matthys 2000). The crack width curves obtained using the second 
and third approaches differ substantially from the test curves; both approaches predict 
much slower crack width development than the prediction of the proposed FE model. 
These differences exist because the perfect bond assumption and the tension-stiffening 
model tend to spread crack formation over a finite region (in the form of secondary 
cracks) and thus do not lead to accurate prediction of localized crack formation (Figures 
11-12). Numerical results not presented here showed that the proposed FE model is 
capable of accurate prediction of crack width development in beam BF1. 
 
The bond assumptions of the second and third approaches mean that they cannot provide 
accurate predictions of IC debonding failure which is directly driven by the widening of 
the critical flexural crack; they always over-estimate both the ultimate loads and the 
corresponding displacements as seen in Fig. 10(b), except for cases where the IC 
debonding failure load is only slightly lower than the failure load of concrete 
compressive crushing or FRP tensile rupture. For the latter situation, the three different 
modeling approaches lead to very similar predictions for both the ultimate load and the 
corresponding displacement as seen in Figure 10(a). 
 
It is of interest to note that at IC debonding failure, the width of the critical flexural crack 
[Figures 13(a) and 13(b)] is nearly double the ultimate slip of the bond-slip curve at 
which the bond stress is almost reduced to zero [Figs. 3(b)]. This is, however, only a 
qualitative observation because the IC debonding failure is affected not only by the crack 
width but also by many other factors [e.g. the crack spacing and the width of adjacent 
flexural cracks as shown by Teng et al. (2006) and Chen et al. (2007)]. The slips between 
FRP and concrete at the two faces of the crack are also not necessarily the same. 
 
Figures 14(a) and 14(b) show the predicted development of the concrete compressive 
strain in the critical zone for beams BF2 and BF8 respectively. Figure 14(a) indicates that 
for beam BF2, all three bond modeling approaches predict a large maximum concrete 
compressive strain (e.g. ) at the ultimate load of IC debonding failure, after 
which this strain increases rapidly, leading to compressive crushing of concrete . 

5000 με>

 
For beam BF8, IC debonding is followed by concrete compression failure of the residual 
RC beam [Figure 14(b)]. At IC debonding failure, the proposed FE model predicts a 
maximum concrete compressive strain of about1400 , which is much less than the 
limit for concrete compression failure. For beam BF1, numerical results not presented 
here showed that the failure process involves yielding of tension bars followed by 
concrete compressive failure, which is a typical of conventional RC beams. 

 με

 
Figures 15(a) and 15(b) show the predicted FRP strain distributions at the ultimate load 
for beams BF2 and BF8 respectively. For beam BF2 where concrete compressive failure 
dominates the failure process, the three bond modeling approaches lead to very similar 
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maximum FRP strains, but the prediction from the proposed FE model ( ) is still 
the closest to the test value of  [Fig 15(a)]. For beam BF8 where IC debonding 
occurs much earlier than the consequent concrete compressive failure of the residual 
beam, the three different approaches lead to significantly different FRP maximum strains 
(with the three values being , 7  and 8923  for the first, second and 
third approaches respectively) [Figure 16(b)]. The proposed FE model again provides the 
most accurate prediction which also agrees reasonably well with the test value of 

. 

6999 με
6700 με

6653 με 996 με με

5800 με

CONCLUSIONS 
 
Following a critical examination of the limitations of existing FE approaches for the 
prediction of debonding failures in FRP-strengthened RC beams, this paper has 
presented a more advanced and more accurate FE approach. In the proposed approach, 
concrete cracking is modeled using the smeared crack approach within the framework of 
crack band model while the bond-slip responses between concrete and both internal steel 
and external FRP reinforcements are accurately represented using interfacial elements. A 
dynamic approach is adopted to overcome convergence difficulties encountered by static 
solution methods in tracing the nonlinear behavior of FRP-strengthened RC members 
involving concrete cracking and FRP debonding. Numerical results obtained using the 
proposed FE model for a variety of test beams have demonstrated the accuracy and 
capability of the proposed approach. The proposed FE approach leads to accurate 
predictions not only for the overall load-displacement response and the IC debonding 
failure load but also for the more detailed aspects such as crack paths and width as well 
as strains in the FRP and the concrete. Through the use of the dynamic solution process, 
the FRP debonding process of the beam and the response of the residual beam after the 
FRP reinforcement has separated from the RC beam can also be simulated. The proposed 
FE model is thus superior to all previous FE models for IC debonding failure in 
FRP-plated RC beams and the first FE model that possesses the capability for simulating 
the full-range (including post-failure) response of FRP-plated RC beams that fail by IC 
debonding. 
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Table 1. Existing Studies on the Numerical Modeling of Debonding Failure in FRP-Plated RC Members 
 

Modeling of concrete cracking and bond behavior Numerical modeling approach Reference 
Post-cracking behavior of 
concrete  

FRP-concrete bond 
behavior 

steel-concrete 
bond behavior 

Capability/Remarks 

Finite difference method, beam model 
with local deformation at grid points 

Smith and Gravina (2007) One-dimensional; brittle Lu et al.’s (2005) 
model 

CEB-FIP (1993) Close predictions till the onset 
of debonding 

FEM, beam model Barbato (2009) One-dimensional; nonlinearly 
reducing stresses 

Perfect bond Perfect bond Unable to predict debonding 
failure 

Wong and Vecchio (2003) B(a)-MCFT (Vecchio and 
Collins 1986) 

Linear-elastic & 
elastic-plastic (e)  

B(a) Mesh-sensitive 

Teng et al. (2004) and Lu 
et al. (2007) 

A(a) -Linear softening model Lu et al.’s (2005) 
model 

Perfect bond Dual debonding criterion 
needed 

Pham and Al-Mahaidi 
(2005) 

A(a)-Hordijk’s model (1991) Bilinear model(f) Perfect bond  Non-predictive 

Coronado and Lopez 
(2006) 

A(a) -Bilinear model Perfect bond Perfect bond NA 

Neale et al. (2006), Baky 
et al. (2007) and Kotynia 
et al. (2008)  

B(a)-Bilinear model Lu et al.’s (2005) 
model 

B(a) Mesh-sensitive 

Nour et al. (2007) B(a) -Massicotte et al.’s 
(2007) model 

Perfect bond B(a) Mesh-sensitive 

FEM, smeared crack approach  

Niu and Karbhari (2008) A(a) -Linear softening model Bilinear model(c)  CEB-FIP (1993) Non-predictive 
FEM, discrete crack approach Yang et al. (2003) LEFM Crudely modeled Crudely modeled Difficulties due to re-meshing 
FEM, discrete crack approach, 
Pre-defined main flexural cracks 

Niu and Wu (2005) Linearly reducing stresses   Bilinear model(b) Morita et al.’s 
(1967) model 

Non-predictive 

Kishi et al. (2005) Smeared cracks- A(a);  
discrete cracks-LEFM 

Linear-elastic–brittle 
model(d)  

CEB-FIP (1993) Non-predictive FEM, combined use of discrete & 
smeared crack approaches, pre-defined 
main cracks based on test observations Pham et al. (2006) and  

Camata et al. (2007)  
Smeared cracks- A(a); discrete 
cracks-bilinear model   

Cervenka et al.’s 
(1998) model(c)

Perfect bond Non-predictive 

(a) A = Tension-softening concrete stress-strain model; B = Tension-stiffening concrete stress-strain model (through which effect of steel-concrete bond is considered). 
(b) The key parameters such as the interfacial fracture energy and maximum shear stress were varied in a parametric study.  
(c) The fracture energy needs to be determined from a parametric study based on beam test results. 
(d) The interfacial shear strength and tangential stiffness need to be determined from test results. 
(e) Parameters in the bond models were determined from limited test data. 
(f) Parameters in the bond model were determined from shear-lap tests. 
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Table 2. Geometrical and Material Properties of Selected Beams for Numerical Simulation 
 

Source Matthys (2000) Brena et al. (2003) 

Beam name BF1 BF2 BF7 BF8 BF9 C C2 D2 
Concrete cylinder compressive strength fc

', MPa 33.7 36.5 38.5 39.4 33.7 35.1 35.1 37.2 
Span L/shear span s, mm 3800/1250 3000/1220 
Width bc, mm 200 203 Beam 

dimensions Height hc /effective depth d, mm 450/410 406/368 
Tension bars (deformed) /yield strength fyt, MPa 4Y16/590 2Y16/590 2Y16/440 
Compression bars (deformed)/yield strength fyc, MPa 2Y16/590 2Y9.5/440  
Stirrups Y8@100 (deformed, double legs) Y7@102 (deformed, double legs) 
Yield strength of stirrups fyv, MPa 560 596 

Steel 
reinforcement

Elastic modulus of all steel bars Es, GPa 200  200  
Type (P = pultruded; W= wet layup) P P W W P 
Nominal (fibre) thickness n × tf, mm 1.2 1.2 2×0.111 2×1.04 1.19 
Strip width bf, mm 100 100 100 50 50 
Strip length Lf, mm 3660 3660 3660 2744 2744 
Tensile strength ff, MPa 3200 3200 3500 760 2400 

FRP 
reinforcement

Elastic modulus Ef, GPa 

None

159 

None

159 233 

None 

62 155 
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Fig. 3. Bond-slip models: (a) CEB-FIP’s (1993) steel-concrete bond-slip curve for fc
’ = 

30 MPa; (b) Lu et al.’s (2005) FRP-concrete bond-slip curve for fc
’=30 MPa and bf /bc = 1 
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Fig. 4. FE versus test load-displacement curves for Matthys’ (2000) specimens 
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(a) 
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(e) 

Fig. 5. FE crack patterns at ultimate load for Matthys’ (2000) specimens: (a) beam BF1; 
(b) beam BF2; (c) beam BF7; (d) beam BF8; (e) beam BF9  
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(b) 

Fig. 6. FE FRP strains and interfacial shear stresses at the ultimate load for Matthys’ 
(2000) specimens: (a) FRP strain distributions; (b) interfacial shear stress distributions  
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Fig. 7. FE and test load-displacement curves for Brena et al.’s (2003) specimens  
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(a) 

 
(b) 

 
(c) 

Fig. 8 FE crack patterns at ultimate load for Brena et al.’s (2003) specimens: (a) beam C; 
(b) beam C2; (c) beam D2 
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Fig. 9. FE FRP strain distributions at ultimate load for Brena et al.’s (2003) specimens
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Fig. 10. Effect of bond modeling on load-displacement curve: (a) beam BF2; (c) beam 
BF8 
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(a) 

 
(b) 

Fig. 11. Effect of bond modeling on crack pattern at ultimate load for beam BF2: (a) 
perfect bond for tension bars; (b) tension-stiffening model 
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(a) 

 
(b) 

Fig. 12. Effect of bond modeling on crack pattern at ultimate load for beam BF8: (a) 
perfect bond for tension bars; (b) tension-stiffening model 
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Fig. 13. Effect of bond modeling on the width of the critical flexural crack: (a) beam 
BF2; (b) beam BF8 
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(b) 

Fig. 14. Effect of bond modeling on concrete compressive strain in the critical zone: (a) 
beam BF2; (b) beam BF8 
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(b) 

Fig. 15. Effect of bond modeling on strain distribution in FRP: (a) beam BF2; (b) beam 
BF8 
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