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Abstract: This paper presents a three-dimensional (3-D) meso-scale finite element (FE) model 
for near-surface mounted (NSM) FRP strip-to-concrete bonded joints established using the 
general-purpose FE software package MSC.MARC. In the FE model, elements of the order of 
1 mm in size are employed. The concrete is simulated using the orthogonal fixed smeared crack 
model while the FRP and the adhesive are treated as linear brittle-cracking materials. The FE 
model is calibrated and verified using results of well-documented bonded joint tests. Using the 
verified FE model, the failure process of NSM FRP strip-to-concrete bonded joints is carefully 
studied; furthermore, the local bond stress distributions and the bond-slip relationships are 
extracted and analyzed. This 3-D meso-scale FE model offers a powerful tool for deployment 
in further investigations to establish bond-slip models and bond strength models for NSM FRP 
strip-to-concrete bonded interfaces. While the present study is focused on NSM FRP strips, the 
proposed modeling approach is generally applicable to NSM FRP bars of other cross-sectional 
shapes. 
 
Keywords: three-dimensional (3-D) analysis, meso-scale modeling, finite element (FE) 
modeling, near surface mounted (NSM) FRP, strip, interface, bond behavior 
 

1 Introduction  

Reinforced concrete (RC) members can be strengthened with near-surface mounted (NSM) 
FRP bars of various cross-sectional shapes [1]. Over recent years, the NSM FRP strengthening 
method has become an attractive alternative to the popular technique of externally bonded FRP 
plates/sheets [2]. To develop a reliable design theory for the NSM FRP technique, a 
fundamental issue to clarify is the bond behavior between NSM FRP and concrete. The 
conventional approach for studying this bond behavior is to conduct tests on NSM 
FRP-to-concrete bonded joints (simply referred to as bonded joints for simplicity where 
appropriate) [3-8]. However, test data of NSM FRP-to-concrete bonded joints are still very 
limited compared with those available for externally bonded FRP reinforcement. 
 
The behavior of NSM FRP-to-concrete bonded joints is more complicated than that of 
externally bonded FRP-to-concrete joints as the former depends on many more parameters 
including the material, shape, surface configuration and size of the NSM FRP bar, the shape 
and size of the groove, and the properties of both the concrete substrate and the adhesive filler 
(generally an epoxy). As a result, it is very difficult to achieve a comprehensive understanding 
of the effects of all these factors on the bond behavior between NSM FRP and concrete through 
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(exhaustive) laboratory tests only. In addition, it is highly challenging if not impossible to 
accurately capture the local details of bond behavior between NSM FRP and concrete in a 
laboratory test (e.g. the local bond-slip response) due to difficulties in placing strain gages on 
the NSM FRP bar without disturbing the bond properties; this is in contrast to externally 
bonded FRP plates/sheets where strain gages can be attached to their surface to monitor the 
local bond behavior. Given the above considerations, reliable finite element (FE) studies are 
very attractive to supplement experimental studies in understanding the bond behavior between 
NSM FRP and concrete. 
A review of the existing literature indicates that an accurate FE model for NSM 
FRP-to-concrete bonded joints, with sufficient details in terms of constitutive laws for the 
constituent materials, is not yet available. Lundqvist et al. [9] used the damaged plasticity 
model for concrete to study the anchorage length of NSM FRP strips in beam pull-out tests but 
did not succeed in predicting the failure loads of the tests because the analysis stopped 
prematurely due to numerical problems. Lundqvist et al. [10] examined only the linear elastic 
behavior of NSM FRP-to-concrete bonded joints. In other existing studies [e.g. 3, 11], interface 
elements with an assumed bond-slip relationship were used to simulate the behavior of NSM 
FRP-to-concrete bonded joints; these FE models are not truly predictive as their predictions 
depend on the bond-slip relationship adopted for the FE model. 
 
In contrast to the lack of FE studies on NSM FRP-to-concrete bonded joints, extensive research 
has been undertaken on externally bonded FRP-to-concrete bonded joints [e.g. 12-14]. This 
work has shown convincingly that a reliable FE model employing elements of very small sizes 
(referred to as meso-scale elements) can be a powerful and economical alternative to laboratory 
testing to gain a full understanding of the complex behavior of FRP-to-concrete bonded joints 
and to generate numerical results for the development of a local bond-slip relationship model. 
Lu et al. [12] developed the first reliable 2-D meso-scale FE model using elements of the order 
of 0.5 mm and an orthogonal fixed smeared crack model to simulate the local bond-slip 
behavior and local failure process of externally bonded FRP-to-concrete bonded joints. 
Adopting a similar approach, this paper presents a 3-D meso-scale FE model for NSM 
FRP-to-concrete bonded joints. The present paper is focused on the FE modeling of bonded 
joints between NSM FRP strips (i.e. bars of narrow rectangular section) and concrete for the 
simulation of failure process and the prediction of the local bond-slip relationship, although the 
proposed modeling techniques can also be employed to model the bond behavior of NSM FRP 
bars of other cross-sectional shapes. 
 

2 Bond tests and FE modeling 

2.1 Bond test methods 

Two popular bond test methods have been adopted by researchers to investigate the bond 
behavior of FRP bars near-surface mounted to concrete: (1) the beam pull-out test, and (2) the 
direct pull-out test. The beam pull-out test for NSM FRP bars was derived from the pull-out 
bending test for assessing the bond characteristics of conventional steel bars and was used to 
study the bond behavior of NSM FRP bars by Nanni et al. [15]. The direct pull-out test is 
conducted on a concrete block embedded with an NSM FRP bar and is usually conducted under 
displacement control. The direct pull-out test setup has three main variations: traditional 
one-side direct pull-out test [e.g. 4, 6], two-side direct pull-out test [e.g. 16], and C-shaped 
block direct pull-out test [e.g. 3]. In the present study, the NSM CFRP strip-to-concrete bonded 
joint specimens analyzed are from Li et al. [6], in which the one-side direct pull-out test 
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approach (Fig. 1) was adopted. These specimens were selected for analysis because all needed 
details of the tests including the measured strain distributions of the FRP strip are readily 
available to the authors. 

2.2 Li et al.’s pull-out tests 

A total of five NSM CFRP strip-to-concrete bonded joints were tested by Li et al. [6], with the 
bond lengths being 30 mm, 100 mm, 150 mm, 200 mm and 250 mm respectively. The concrete 
block had a square section of 150 mm×150 mm and a length of 350 mm, and the bonded 
region of the NSM strip started at 50 mm away from the loaded end (Fig. 1). The groove size 
had a design width gw of 8 mm and a design height gh of 22 mm, but post-preparation 
measurements indicated that the actual values were about 9 mm and 22 mm.  
 
The concrete had an averaged cube compressive strength cuf  of 29 MPa . The cylinder 
compressive strength cf  can be estimated from  

cuc ff 8.0=                          (1) 
and the tensile strength tf  can be estimated as [17]  

3
2

10
8

4.1 ⎟
⎠
⎞

⎜
⎝
⎛ −

= c
t

f
f                       (2) 

The groove-filling material was a two-component epoxy adhesive with a mixing ratio of 2 
(resin):1 (hardener) by weight. The tensile strength and elastic modulus of the adhesive 
averaged from five tensile coupon tests were 42.6 MPa  and 2.62 GPa  respectively. The 
Poisson’s ratio of the epoxy is assumed to be a typical value of 0.35. The CFRP strips had a 
thickness of 2 mm and a width of 16 mm. The ultimate tensile strength and elastic modulus of 
the CFRP strips were 2068 MPa  (according to the manufacturer) and 151GPa (deduced from 
readings of strain gauges installed on the exposed part of the NSM CFRP strip in the bonded 
joint tests), respectively. Two CFRP strips were bonded together using the groove filling 
adhesive, forming a compound strip whose total thickness was approximately 5 mm (i.e., 4 mm 
of CFRP plus about 1 mm of adhesive), whereas the width was still 16 mm. The use of a 
compound strip instead of a normal strip is to allow the installation of strain gauges between 
the two strips of a compound strip so that the strain gauges would not interfere with the 
interfacial behavior. It should be noted that the elastic modulus of the compound strip for FE 
modeling in this study was modified according to its real thickness as follows: 

MPaE f 8.1205/4151 =×= . The Poisson’s ratio of the CFRP compound strip was assumed 
to be 0.2. The effect of using a nearly zero Poisson’s ratio (0.002) was also explored before 
choosing this Poisson’s ratio for use in the parametric study; it was found that such a small 
Poisson’s ratio led to load-displacement curves which are almost identical to those obtained 
with a Poisson’s ratio of 0.2 with the ultimate loads differing by less than 1%. Details of the 
specimen are listed in Table 1. 
 

2.3 Finite element model for bonded joint specimens 

The FE model was built using the general-purpose FE software package MSC.MARC [18] 
with the tension-softening curves and the shear retention factor models for the cracked concrete 
incorporated through user-defined subroutines. Based on the configuration of the test setup, 
only half of the specimen was modeled by taking advantage of symmetry; that is, the horizontal 
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displacements on the plane of symmetry (Fig. 2) were prevented. Furthermore, the 50 mm high 
bottom layer of concrete was not taken into account to reduce significantly the computational 
time; this simplification should only have an insignificant effect on the crack propagation near 
the NSM bar as was found through some preliminary FE analyses. The bottom surface of the 
numerical model was restrained against vertical displacements but was allowed to move 
horizontally (Fig. 2). The horizontal restraints at the loaded end of the concrete block and the 
vertical restraints at the far end of the concrete block (Fig. 1) were simulated by setting the 
corresponding displacements to zero in the FE model. The numerical specimen was loaded by 
imposing a displacement at the end of the CFRP strip. 
 
The 3-D, eight-node, first-order, isoparametric solid element with full Gaussian integration 
available in MSC.MARC was used to model the concrete block, the CFRP strip and the 
adhesive. The FE mesh in and near the bonded region was finer than elsewhere. After a 
convergence study to be presented later, the final mesh of the FE model was determined as 
follows: 1) the element size for the FRP strip was 0.83 mm in its thickness direction (3 
elements), 1.23 mm in its height direction (13 elements), and 1.25 mm in the longitudinal 
direction; 2) the element size for the adhesive was about 0.5 mm in its thickness direction (4 
elements), 1.23 mm in the height direction (13 elements in the strip height region), and 1.25 
mm in the longitudinal direction; and 3) the element size for the concrete was 1.25 mm within 
the central zone of 30 mm from the plane of symmetry, 60 mm from the top surface of the 
concrete block, and the bonded region plus 10 mm in each direction in the longitudinal 
direction. The maximum side length of concrete elements in the remaining parts was 2.5mm. 
The mesh adopted for specimen CS-150 is shown in Fig. 3, which includes an overall view of 
the mesh and a detailed view near the loaded end. 
 

3 Constitutive laws and material properties 

3.1 General 

Failure of a NSM FRP-to-concrete bonded joint may occur in one of the three constituent 
materials (FRP, adhesive and concrete) or at one of the two bi-material physical interfaces 
(FRP/adhesive and concrete/adhesive interfaces). The former is commonly referred to as 
cohesion failure while the latter is commonly referred to adhesion failure. Adhesion failure can 
be and should be avoided through the proper surface preparation of the two adherends so that 
failure of the bonded joint is determined by the material strengths of the three constituent 
materials. In theory, cohesion failure can occur in any of the three constituent materials, but 
existing tests on NSM FRP-to-concrete bonded joints have indicated that in most cases, 
cohesion failure occurs in the concrete as the adhesive normally has a much high tensile 
strength than the concrete. In practical applications, it should also be ensured that failure is 
governed by cohesion failure in concrete through appropriate surface preparation and through 
the use of an appropriate adhesive as otherwise the strength of concrete cannot be fully utilized. 
Cohesion failure in FRP is the least likely and is not considered in the present study, but the 
possibility of cohesion failure in the adhesive is considered in the present study. 
 
Consequently, the modeling of concrete is of particular importance. As mentioned earlier, the 
so-called meso-scale FE approach was first proposed for externally bonded FRP-to-concrete 
bonded joints to investigate the interfacial debonding failure process and the local bond-slip 
relationship by Lu et al. [12]. It should be noted that the meso-scale FE analysis here is 
different from the meso-mechanical model in which the concrete is treated as a three-phase 
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composite including the cement matrix, aggregate and matrix-aggregate interface [e.g. 19, 20]. 
Instead, a meso-scale FE model still treats the concrete as a homogenous material and thus 
reflects the average response of concrete, but uses very small elements to capture the complex 
process of cracking of the concrete. 
 

3.2 Modeling of concrete 

3.2.1 Modeling approaches for cracked concrete 

In the present study, the cracking of concrete was simulated using the orthogonal fixed smeared 
crack model available in the general-purpose software package MSC.MARC [18], and a very 
fine FE mesh, which simulates cracking by changing the constitutive relationship, in contrast to 
the discrete crack concrete model which treats a crack as a geometry entity [e.g. 21]. It allows 
one crack at one integration point for one-dimensional elements, two orthogonal cracks for 
two-dimensional elements and three orthogonal cracks for three-dimensional elements.  
 
Besides the orthogonal fixed smeared crack model, two other popular approaches for modeling 
cracked concrete are the multi-directional smeared crack model and the rotating smeared crack 
model [22]. In the multi-directional smeared crack model, when the angle between the 
maximum principal tensile stress and the existing crack direction exceeds a certain value 
(referred to as the threshold angle hereafter), new cracking occurs perpendicular to the 
direction of the current maximum principal stress. The rotating smeared crack model can be 
divided into two main types [22]. The first type is called the non-coaxial rotating smeared crack 
model, in which the directions of the principal stresses can be different from those of the 
principal stains; the second type is called the coaxial rotating smeared crack model, in which 
the directional alignment between the principal stresses and the principal strains is forced. The 
concept of the rotating smeared crack model has been criticized in that the rotation of the crack 
lacks physical meaning and some parameters need to be determined empirically [12]. The 
multi-directional smeared crack model is thought to be the most advanced in theory, but the 
threshold angle for the appearance of new cracking is difficult to define, and numerical 
convergence is usually a great challenge. Due to the above considerations, the multi-directional 
model and the rotating smeared crack model have seldom been incorporated into 
general-purpose software packages which are capable of handling complicated 3-D nonlinear 
analysis as well as heavy computation. On the contrary, these software packages usually 
include the orthogonal fixed smeared crack model. If a good shear retention factor model is 
employed and the element size is made small enough, accurate FE modeling of crack 
appearance and propagation is possible using the orthogonal fixed smeared crack model. 
Indeed, this meso-scale FE method based on the orthogonal fixed smeared crack model has 
been successfully used by the authors’ group in the FE modeling of externally bonded 
FRP-to-concrete joints [12], and was thus also adopted in the present study. 
 
The smeared crack model for concrete was first introduced by Rashid [23] and since then has 
been adopted by numerous researchers. One of the intrinsic properties of concrete is its 
tension-softening behavior (i.e. the stress-strain curve exhibits a descending branch after 
cracking), which leads to the well-known mesh sensitivity issue. To mitigate the mesh 
sensitivity problem, Bazant and Oh [24] proposed the crack band model, which relates the 
element size to the tension-softening behavior of concrete based on the fracture energy concept. 
The crack band model was adopted in the present study. 
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3.2.2 Yield and failure surfaces 

The yield surface proposed by Buyukozturk [25] (Eq. 3) with the associated flow rule was 
adopted in this study. The failure surface adopted is a combination of Buyukozturk’s [25] 
model (Eq. 3) and the maximum tensile stress criterion ( Eq. 4). The yield surface and the 
failure surface employed in this study are the criteria recommended by MSC.MARC [18] for 
modeling concrete. 

2*2
11

*
2 )(33 σξχσ =++ IIJ                   (3) 

03cos32),,( 1221 =−+= tfIJJIf θθ              (4) 
where 1I  and 2J  are the first invariant of stresses and the second invariant of deviatoric 
stresses respectively; ξ , χ  and *σ  are material constants and equal to 0.2, 3  and 3/^σ  

respectively [25]; ^σ is the yield stress of concrete, taken to be 
3

cf in the present study 

according to Buyukozturk [25] when Eq. 3 is used to define the yield surface and the 
compressive strength cf  when Eq. 3 is used to define failure surface; tf  is the tensile strength 
of concrete; and θ  is the angle of similarity. 
 
This approach is similar to that used by Chen [26], in which the Mohr-Coulomb criterion and 
the maximum tensile stress or strain criterion were combined to simulate the behavior of 
concrete. 
 

3.2.3 Uniaxial compressive stress-strain curve 

The following uniaxial compressive stress-strain curve which was modified by Elwi and 
Murray [27] from Saenz’s curve [28] was adopted in this study (Fig. 4): 
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where 0σ  and 0ε  are the maximum stress and the corresponding strain respectively, and are 
assumed to be the compressive cylinder concrete strength ( cf ) and 0.002 respectively 
following Chen [26]; uε  and uσ  are the ultimate strain and the corresponding stress 
respectively, and are assumed to be 0.0038 and cf85.0  following Hognestad [29] respectively; 
If the compressive strain in the concrete reaches 0.0038, the concrete fails by crushing and the 
stress drops to zero; 0E is the initial elastic modulus and is calculated according to ACI-318 
[30]: cfE 47300 = ; and sE  is the secant modulus at the maximum stress: 00 / εσ=sE . 
 

3.2.4 Tension-softening curve 

Three tension-softening curves were considered in this study: (a) the linear softening curve 
[31], (b) the bilinear softening curve [32] and (c) the exponential softening curve [33]. The 
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linear softening curve is based on the assumption that the tensile stress reduces linearly to zero 
at a crack opening displacement of 0w  (Fig. 5a); the bilinear softening curve is based on the 
assumption that the tensile stress reduces linearly to 1/3 of the ultimate tensile stress at a crack 
opening displacement of 2/9 0w  firstly and then reduces linearly to zero at 0w  (Fig. 5b); and the 
exponential softening curve is based on the assumption that the softening branch follows the 
following exponential function [33] (Fig. 5c):  
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where w  is the crack width (i.e. crack opening displacement), and 0w  is the crack width at the 
complete release of stress or fracture energy. The 0w  value for these three tension-softening 
models is different. It can be related to the tensile fracture energy ftG  as tft fGw /20 =  for the 
linear softening curve, tft fGw /6.30 =  for the bilinear softening curve and tft fGw /4.50 =  for 
the exponential softening curve respectively, based on the following relationship: 

ftt Gdw =∫σ                         (8) 

The tensile strength of concrete tf  (Eq. 2) and the tensile fracture energy ftG  (Eq. 9) proposed 
by CEB-FIP [17] were used in this study. 
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aaft

fDDG +−=             (9) 

where aD  is the maximum aggregate size. 
 
The unloading and reloading curves of the tensile stress-crack opening displacement 
relationship follow the linear path that passes through the origin of the coordinate system as 
shown in Fig. 5. 

3.2.5 Shear retention factor 

The shear retention factor is the ratio of secant shear modulus of concrete after cracking to that 
before cracking, which reflects the shear stress-strain (or slip) relationship after cracking of 
concrete and significantly influences the predicted behavior of cracked concrete. In the present 
FE model, the shear stress-slip relationship is preferred to the shear stress-strain relationship, 
considering that the later one is mesh sensitive. Six popular shear stress-slip models were 
examined. Typical shear stress-slip curves of these six models are shown in Fig. 6 for a crack 
width of 0.5 mm. The secant shear moduli Gcr for the six models are given in Eqs. 10 to 15 
below. 
 
1) Bazant and Gambarova’s shear stress-slip model [34] 
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respectively. 
 
2) Walraven and Reinhardt’s shear stress-slip model [35] 
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3) Yamada and Aoyagi’s shear stress-slip model [36] 
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4) Okamura and Maekawa’s shear stress-slip model [37] 
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5) Kang’s shear stress-slip model [38] 
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6) Vecchio and Lai’s shear stress-slip model [39] 
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Once the scant shear modulus crG  of the cracked concrete is determined, the shear retention 
factor sβ  of the concrete after cracking can be calculated as [40] 

cr

cr
s GG

G
+

=
0

β                       (16) 

where 0G is the shear modulus of un-cracked concrete. 

3.3 Modeling of FRP and adhesive 

The compound CFRP strip was modeled as an elastic isotropic brittle material with its 
stress-strain curve shown in Fig. 7a. Although the compound CFRP is an orthotropic material 
in reality [41], the isotropic assumption here should not lead any significant errors given that 
the Poisson’s ratio has little effect on the predictions as mentioned early and the FRP strip is 
very thin (so that little deformation in the specimen is due to the lateral deformation of the 
strip). 
 
The adhesive was also modeled as a linear elastic isotropic brittle material in tension (Fig. 7b), 
and its cracking behavior was simulated using the same approach as that for concrete. For 
compression-dominated behavior, the adhesive was modeled as an elastic perfectly-plastic 
material obeying the von Mises yield criterion. For tension-dominated behavior, the maximum 
tensile stress criterion was still adopted to determine the initiation of cracking. The shear 
retention factor was set to be zero (A very small value of 0.002 was actually used to avoid 
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numerical problems) after cracking based on the consideration that the aggregate interlocking 
effect does not exist in an adhesive.  
 

4 Calibration of the FE model 

In this section, FE predictions of specimen CS-150 tested by Li et al. [6] are examined to 
calibrate the proposed FE model. Mesh convergence, the tension-softening model and the 
shear retention factor model for concrete are discussed below. 

4.1 Mesh convergence 

Chen and Pan [42] and Lundqvist et al. [10] conducted 3-D linear elastic FE analyses to study 
stress concentration in respectively external FRP-to-concrete and NSM FRP-to-concrete 
bonded joints. Teng et al. [43] conducted 2-D linear elastic FE analyses to study stress 
concentration near plate ends in RC beams strengthened with an externally bonded plate. In 
their FE models, very small elements were used (e.g. the smallest elements used near the plate 
ends were 0.1 mm in size). Although stress singularity points also exist in the present problem 
in the elastic range, it is not necessary to employ very small elements as in these two previous 
studies for two reasons: first, this study is more concerned with the failure process rather than 
the precise elastic stress distributions near stress singularity locations; second, once cracking 
occurs, stress concentration at stress singularity points is released or much reduced. 
 
The mesh convergence study considered three different meshes composed of cube or nearly 
cubic elements. The crack band width (characteristic length) used in the present study was the 
cubic root of the volume of the element (i.e. the element side length if the element is cubic). In 
transforming a stress-strain relationship to a stress-crack width relationship, this crack band 
width (characteristic length) was used. These meshes include:  
1) Mesh 1: In this mesh, most concrete elements have a size of 5 mm near the groove and a 

maximum size of 7.5 mm away from it. The adhesive is modeled using one element in the 
thickness direction. The CFRP is modeled using one and three elements respectively in the 
thickness and height directions. 

2) Mesh 2: In this mesh, most concrete elements have a size of 2.5 mm near the groove and a 
maximum size of 5 mm away from it. The adhesive is modeled using two elements in the 
thickness direction. The CFRP strip is modeled using 2 and 6 elements in the thickness and 
height direction respectively; and  

3) Mesh 3: In this mesh, most concrete elements have a size of 1.25 mm near the groove and 
a maximum size of 2.5 mm away from it. The adhesive is modeled using 4 elements in the 
thickness direction. The CFRP strip is modeled using 3 and 13 elements in the thickness 
and height directions respectively.  

 
The shear retention factor deduced from Okamura and Maekawa’s shear stress-slip model [37] 
and the exponential tension-softening curve were adopted in the mesh convergence study. The 
load-displacement curves obtained from the three meshes are shown in Fig. 8. Mesh 3 (with the 
smallest concrete element size being 1.25mm) produced similar results to Mesh 2 (with the 
smallest concrete element size being 2.5mm), but Mesh 1 led to a relatively large error of the 
predicted ultimate load compared with the other two meshes. Mesh 3 was treated as a 
converged mesh and adopted in the subsequent FE analyses. 
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4.2 Tension-softening curve 

As mentioned earlier, three tension-softening models were studied to investigate whether they 
influence the FE predictions when the same fracture energy is adopted in the crack band model. 
The load-displacement curves obtained using the three tension-softening models are shown in 
Fig. 9. These results show that: (a) within the linear range, the three models lead to almost the 
same results; (b) in the nonlinear range between about 27 kN and the peak load, some 
differences exist between the results from the three tension-softening models; the linear one 
leads to the largest load while the exponential one leads to the smallest load. The differences 
between the ultimate loads, however, are very small; and (c) in the descending range, 
predictions obtained with the three tension-softening models are also slightly different. On the 
whole, these three tension-softening models lead to very similar predictions for the overall 
behavior of the test specimen. As a result, the exponential curve was employed in the 
subsequent FE analyses. 
 

4.3 Shear retention factor 

Having chosen the appropriate mesh and the tension-softening model, the next important step 
was to examine the shear retention factor models. The load-displacement curves from the test 
was not directly given by Li et al. [6], but the strain distributions in the CFRP strip of specimen 
CS-150 were provided. The displacement at the loaded end was calculated by integrating the 
axial strains in the FRP from the free end to the loaded end with the slip at the free end assumed 
to be zero. Accordingly, for comparison purpose, the displacement used for plotting the 
load-displacement curve obtained from the FE analysis was calculated by subtracting the 
displacement at the loaded end by that at the free end.  
 
The FE load-displacement curves for the six shear retention factor models are compared in Fig. 
10 with that from the integration of strains in the FRP strip from the test. The predicted ultimate 
loads and the corresponding displacements are listed in Table 2. As can be seen from Fig. 10, 
all the curves from the FE model have slightly larger slopes than that from the test. This is 
probably because there were too few strain measurement points on the FRP strip so the 
integration of strains using the trapezoidal rule overestimates the displacement. By examining 
the load-displacement curves, it can be found that Bazant and Gambarova’s model [34] leads to 
a load-displacement curve similar to the test in shape but overestimates the ultimate load and 
the corresponding displacement. The load-displacement curve predicted with Walraven and 
Reinhardt’s model [35] deviates significantly from the test curve in shape; large errors are seen 
for the ultimate load and the corresponding displacement. Yamada and Aoyagi’s model [36] 
and Vecchio and Lai’s model [39] lead to load-displacement curves similar in shape to the test 
curve but both substantially underestimate the ultimate load. Kang’s model [38] leads to 
acceptable results and performs better than all the above models, with the ultimate load and the 
corresponding displacement being underestimated. Okamura and Maekawa’s model [37] leads 
to the closest predictions of the test results among the six models examined here, although it 
also slightly overestimates the ultimate load and corresponding displacement. Based on these 
comparisons, the model by Okamura and Maekawa [37] was employed in the subsequent FE 
analyses. 
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5 Additional comparisons and failure mechanics 

In this section, FE predictions of the ultimate loads of the five specimens tested by Li et al. [6] 
are compared with the test results. Results for Specimen CS-150 are examined in detail to 
understand the failure process, the strain distribution in FRP and local bond-slip relationship.  
 

5.1 Ultimate loads  

The ultimate loads are compared with the test results for all the five specimens in Fig. 11 and 
Table 3. Clearly, the FE predictions are in excellent agreement with the test results, with the 
average, standard deviation (STD) and coefficient of variation (CoV) of the FE-to-test ultimate 
load ratios being 1.042, 0.100 and 0.096 respectively. This comparison further demonstrates 
the accuracy of the proposed FE model in predicting the test ultimate loads. 

5.2 Failure mechanism and process 

A careful examination of the cracking strain (i.e. the total strain minus the elastic tensile strain) 
distribution from the FE model revealed that there was little if any cracking in the adhesive in 
the bonded joint. This is mainly because: (a) the adhesive has a much higher tensile strength 
than the concrete (about 23 times) and a smaller elastic modulus (about one tenth), so under the 
same deformation, concrete cracking occurs first; and (b) the surface of the CFRP strip is taken 
as a smooth surface, leading to smaller lateral forces than can be expected from a ribbed FRP 
bar. As a result, the failure process of the bonded joint can be expected to depend strongly on 
the initialization and propagation of cracking in the concrete. 
 
The deformation and cracking behavior of concrete in an NSM FRP bonded joint as predicted 
by the meso-scale FE model is illustrated in Fig. 12, in which the values of the maximum 
principal cracking strain in the global coordinate system in the concrete are shown. Before 
cracking, the stress state in the concrete and that in the adhesive are dominated by shear 
stresses with very small tensile normal stresses (Fig. 12b). The dashed lines in Fig. 12b show 
the idealized deformation patterns in the concrete and the adhesive. As the applied load 
increases, the shear stress and the maximum principal stress (at approximately 45 degrees to 
the load direction) in the concrete also increase. When this principal tensile stress reaches the 
tensile strength of concrete, micro-cracking occurs with the direction of micro-cracking being 
perpendicular to the maximum principal stress. A possible crack pattern is shown in Fig. 12c. 
Between the concrete cracks, fish-spine-like columns form. The normal stress on the groove 
lateral edges is compressive as a result of the restraint from the outer concrete. On the crack 
surfaces, the behavior is governed by tension-softening and aggregate shear locking. Fig. 12a 
shows the cracking strain distribution on the top surface in a segment of the bonded joint from 
FE analysis.  
 
Fig. 13 shows the distributions of cracks (represented by values of the maximum principal 
cracking strain) in the concrete at different load levels as marked on the load-displacement 
curves in Fig. 10; these distributions demonstrate the initiation and propagation of cracks. 
When the load is only 6.5% of the ultimate load (Point A in Fig. 10), most of the concrete is in 
the elastic range except for only a very small region near the loaded end where a few 
micro-cracks exist. When the load increases to 20% (Point B in Fig. 10), large cracking strains 
are experienced near the loaded end and the cracking region becomes larger. The cracking 
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region grows continuously with increases of the applied load (Points C and D in Fig. 10). As 
the load continues to increase to higher levels (Points E and F in Fig. 10), the cracking region 
continues to propagate along the bondline. Apparent cracks on the top surface at an angle of 
about 45 degrees to the axis of the CFRP strip are observed. As the applied load increases to 
84% of the predicted ultimate load (Points G, H and I in Fig. 10), the cracking region spreads 
over the whole bond length, and a large transverse crack appears near the free end of the 
bonded region. At the same time, the inclined cracks mentioned above become more 
pronounced. Comparing Fig. 13i with Fig. 13j clearly shows that these inclined cracks and the 
large transverse crack exhibit excellent agreement with those observed in the test. 
 

5.3 Strain distributions in the CFRP strip 

The predicted distributions of axial strain at the centroid of the CFRP strip cross-section along 
the bond length are compared with the test results in Fig. 14 for specimen CS-150. It should be 
noted that the ultimate load obtained from the FE analysis is slightly larger than that from the 
test, so the strain distributions from the FE analysis were adjusted for each load level for more 
reliable comparison, according to the ultimate load ratio between test and FE analysis (i.e. the 
strain values from the FE analysis at each load level were multiplied by the ultimate load ratio 
of 0.96). When the load is less than 72% of the ultimate load, the FE strain distributions are in 
very close agreement with the test results. Small discrepancies exist between the two sets of 
results when the load level is close to the ultimate load.  
 

5.4 Local bond-slip relationship 

Once the strain distributions in the CFRP strip at different load levels are available, the local 
bond stresses and slips can be calculated using the following central difference approach: 
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where n  is the number of divisions along the bond length of the FRP strip ( n  is equal  to 119 in 
the FE analysis and 5 in the test); x  is the coordinate along the bond length originating from 
the free end; ε  is the axial strain in the FRP strip; 0τ , 1+nτ and iτ are the bond shear stresses at 
the free end, at the loaded end and at xi in the bonded region of FRP strip respectively; 0s  

1+ns and is are the slip values at the free end, at the loaded end and at xi in the bonded region 
respectively; fh , ft and fE are the height, thickness and elastic modulus of the FRP strip 
respectively; and failureC  is the perimeter of the failure surface at xi which was taken to be the 
perimeter of the groove in the present study.  
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The local bond stress distributions from the FE analysis and from the test along the bond length 
at different load levels are shown in Fig. 15 and Fig. 16 respectively. The predicted local bond 
stress distribution is somewhat different from that deduced from strain measurements because 
of the limited number of strain gauges in the bonded region. As shown in Fig. 15, the peak bond 
stress increases with the applied load but its location remains unchanged at about 5 mm from 
the loaded end in the initial stage of loading. When the load increases to 58.7% of the ultimate 
load, the peak bond stress reaches about 8 MPa. As the load further increases, the location of 
the peak bond stress moves progressively towards the free end. At the same time, the value of 
the peak bond stress increases slightly further and reaches a stable value of about 9 MPa. The 
maximum local bond stress obtained from the FE analysis is about 9 MPa, larger than that from 
the test which is about 7 MPa. This is reasonable because the latter is an average bond stress in 
a region between two strain gages and only seven strain gauges were installed along the FRP 
strip, while the former is a local value. The large fluctuations in the FE bond stress distribution 
observed for externally bonded FRP-to-concrete joints [12] do not appear in the present results 
for an NSM FRP-to-concrete bonded joint, indicating that the effect of concrete cracking on the 
bond stress distribution on the surface of the FRP strip is largely eliminated by the adhesive 
layer which experiences nearly no cracking. 

 
Fig. 17 shows the FE predicted local bond-slip curves at 2.5 mm, 5 mm, 10 mm, 15 mm, 20 mm, 
30 mm, and 40 mm from the loaded end. The local bond-slip relationship becomes stable at and 
beyond about 20 mm from the loaded end. Of the deduced bond-slip curves for different 
locations along the bond length, the one nearest the loaded end has the smallest peak bond 
stress value; the value of the peak bond stress increases with the distance from the loaded end. 
This is because a short distance from the loaded end is necessary for the confining pressure 
from the surrounding concrete and the adhesive to the FRP strip to develop fully. This 
observation also indicates that a reasonably long bond length is needed in a pull-out test to 
obtain a reliable local bond stress-slip relationship for NSM FRP strips.  
 

6 Conclusions 

This paper has presented a 3-D meso-scale FE model for near-surface mounted (NSM) 
FRP-to-concrete bonded joints. The FE model employed elements whose size is of the order of 
1 mm to capture the complex fracturing process of concrete and was implemented using the 
general-purpose FE program MSC.MARC. Based on the results presented in this paper, the 
following conclusions can be drawn: 
 
1) When the crack band model based on the fracture energy concept is employed, the mesh 

sensitivity issue is avoided.  
2) The shear retention factor representing the aggregate interlocking effect of concrete has a 

significant effect on the predicted behavior of NSM FRP-to-concrete bonded joints. Six 
shear retention factor models were assessed in this study. Okamura and Maekawa’s model 
[37] was found to lead to accurate results and was adopted in the proposed FE model. 

3) In the present study, the FE model predicted no cracks in the adhesive; this is because the 
adhesive had a much higher tensile strength and a much lower elastic modulus than the 
concrete. This result is in agreement with the experimental observation that in most tests, 
failure occurred in the concrete provided the adherend surfaces were appropriately 
prepared and the adhesive was sufficiently strong. 

4) The load-displacement curves and the strain distributions in the NSM FRP strip from FE 
analysis are in close agreement with the test results. The FE local bond stress distribution is 
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significantly different from the test distribution and this discrepancy is due to the limited 
number of strain gauges installed along the bond length of the FRP strip in the test.  

5) The present study has been focused on NSM FRP strips. The proposed modeling approach 
has the potential for application to NSM FRP bars of other cross-sectional shapes. 

6) The proposed FE model provides a powerful and economical alternative to laboratory 
testing to gain a full understanding of the behavior of NSM FRP-to-concrete bonded joints 
and to generate numerical results for the development of a bond-slip model. 
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Table 1. Bond test specimen details 

Specimen name CS-30 CS-100 CS-150 CS-200 CS-250
Bond length (mm) 30 100 150 200 250 
Groove width (mm) 9 
Groove depth (mm) 22 
CFRP strip thickness (mm)* 5 
CFRP strip width (mm) 16 
CFRP elastic modulus (GPa) 120.8 
CFRP Poisson’s ratio (GPa)* 0.2 
Concrete compressive strength (MPa) 23.2 
Concrete tensile strength (MPa) 1.85 
Adhesive tensile strength (MPa) 42.6 
Adhesive elastic modulus (GPa) 2.62 
Adhesive Poisson’s ratio (GPa) 0.35 
Ultimate load (kN) 14.82 36.28 46.07 54.47 64.02 

 *Assumed value 
 
 

Table 2. Predicted ultimate loads and corresponding displacements for specimen CS-150 
Shear retention model Ultimate Load

(kN) Error Corresponding 
displacement (mm) Error 

Test 46.1 NA 0.41 NA 
Bazant and Gambarova’s model [34] 50.3 9.1% 0.64 56% 
Walraven and Reinhardt’s model [35] 42.2 -8.5% 0.60 46% 
Yamada and Aoyagi’s model [36] 39.5 -14 % 0.45 9.8% 
Okamura and Maekawa’s model [37] 48.0 4.1% 0.43 4.9% 
Kang’s model [38] 42.3 -8.2% 0.37 -9.8% 
Vecchio and Lai’s model [39] 39.0 -15% 0.33 -20% 

 
 

Table 3. Predicted and test ultimate loads for Li et al.’s tests [6] 
Specimen 

Name 
Test 
(kN) 

FE Prediction 
(kN) Test

Prediction  

CS-30 14.8 17.7 1.20 
CS-100 36.3 38.9 1.07 
CS-150 46.1 48.0 1.04 
CS-200 54.5 52.8 0.970 
CS-250 64.0 59.8 0.934 

Average =   1.04 
STD =   0.100 
COV =   0.0962 
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Fig. 1. Test setup of Li et al. [6] 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Boundary conditions of the FE model 
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(a) Overall view 

 

 
 

(b) Detailed view near the loaded end 
 

 
 

(c) Detailed view of the upper corner 
 

Fig. 3. Mesh of specimen CS-150 
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Fig. 4. Uniaxial compressive stress-strain curve for concrete 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(a) Linear softening curve        (b) Bilinear softening curve       (c) Exponential softening curve 
 

Fig. 5. Tension-softening curves 
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Fig. 6. Typical shear stress-slip curves of the six models studied (for crack width = 0.5mm) 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

(a) FRP strip                                                        (b) adhesive 
 

 
Fig. 7. Stress-strain curves for CFRP strip and adhesive 

 
 
 
 
 
 
 
 
 
 

σ

ε

maxσ

maxσ−

σ

ε

maxσ

maxσ−



22 
 

 

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8

Lo
ad

 (k
N

)

Displacement at the loaded end (mm)

Mesh 1 (5mm)
Mesh 2 (2.5mm)
Mesh 3 (1.25mm)

 
Fig. 8. Load-displacement curves obtained with three different FE meshes 
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Fig. 9. Load-displacement curves obtained with three different tension-softening models  
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Fig. 10. Load-displacement curves obtained with six different shear retention models 
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(a) Cracking strain pattern from the FE analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) Idealized pre-cracking deformation                                                    (c) Idealized cracking pattern 

 
Fig. 12. Deformation and cracking in concrete 
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(a) P=0.06Pu (Point A)      (b) P=0.20Pu (Point B) 

    
(c) P=0.33Pu (Point C)       (d) P=0.46Pu (Point D) 

    
(e) P=0.59Pu (Point E)      (f) P=0.72Pu (Point F) 

    
(g) P=0.85Pu (Point G)      (h) P=0.96Pu (Point H) 

      
(i) P=Pu (Point I)      (j) Failure mode of the specimen 

Fig. 13. Failure process of NSM CFRP strip-to-concrete bonded joint 
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Fig. 14. Comparison of strain distributions in the FRP between test and FE analysis 
(Note: The strain distributions from FE analysis were adjusted for clearer comparisons in 

accordance with the ultimate load ratio between test and FE analysis, which is 0.96) 
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Fig. 15. Bond shear stress distributions from FE analysis  
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Fig. 16. Bond shear stress distributions deduced from strain measurements 
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Fig. 17. Local bond-slip curves from FE analysis 
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