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Thiswork explores the possibility of clustering spectral wavelengths based on themaximumdissimilarity
of iris textures. The eventual goal is to determine howmany bands of spectral wavelengths will be enough
for iris multispectral fusion and to find these bands that will provide higher performance of iris multi-
spectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow
spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the
right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3
clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative
clustering based on two-dimensional principal component analysis. The experimental results suggest
(1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance
of iris multispectral recognition based on a three wavelengths–bands fusion. © 2012 Optical Society of
America
OCIS codes: 100.2000, 100.3005, 170.2945, 230.7408.

1. Introduction

Traditionally, only a narrow band of the near-
infrared (NIR) spectrum (750 to 850 nm) has been
utilized for iris recognition systems since this allevi-
ates any physical discomfort from illumination,
reduces specular reflections, and increases the
amount of iris texture information captured for some
of the iris colors. Commercial iris recognition sys-
tems predominately operate in the NIR range of
the electromagnetic spectrum. The spectrums indi-
cate that current systems are using wavelengths that
peak around 850 nm (Panasonic and Oki) with a nar-
row band pass. However, some systems traverse into
the range of 750 nm (LG) and use multiple wave-
length illumination to image the iris. The IR light
is invisible to the human eye, and the intricate tex-
tural pattern represented in different colored irides

is revealed under an NIR range of illumination. The
texture of the iris in IR illumination has been tradi-
tionally used as a biometric indicator [1].

However, the textural content of the iris has com-
plex components, including numerous structures
and various pigments, both fibrous and cellular, that
are contained on the anterior surface, including liga-
ments, crypts, furrows, collarettes, moles, freckles,
etc. The NIR wavelengths can penetrate melanin,
showing a texture that cannot be easily observed
in the visible spectrum, but the cost is substantially
high. Most of the texture presented in the NIR spec-
trum is only generated by the iris structures, not by
the pigments. The effect of melanin, the major color-
inducing compound, is negligible on the NIR wave-
lengths in iris recognition. But melanin is always
imaged in certain wavelength for extraction and clas-
sification, such as in tongue image processing [2].

The above study of melanin has inspired us to con-
sider that the iris textures generated outside the NIR
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spectrummay havemore information over those that
are only generated in the NIR spectrum because mel-
anin can be present in the shorter wavelengths and
becomes another major source of iris texture.

Previous research has shown that matching
performance is not invariant to iris color and can be
improved by imaging outside the NIR spectrum and
that the physiological properties of the iris (e.g., the
amount and distribution of melanin) impact the
transmission, absorbance, and reflectance of differ-
ent portions of the electromagnetic spectrum and
the ability to image well-defined iris textures [3].
Performing multispectral fusion at the score level
has been proven to be feasible [4], and the multispec-
tral information is used to determine the authenti-
city of the imaged iris [5–7].

However, one underlying key issue needs to be
addressed well before wide application of multispec-
tral iris recognition: how many spectra are enough
for discriminating different irides? Usually, more
wavelength bands provide more information; thus,
higher accuracy could be expected. On the other
hand, more wavelength bands require a high cost on
feature extraction and matching. Furthermore, be-
cause of redundancy between different spectra, more
information may fail to increase the accuracy some-
time. Therefore, it is necessary to determine an
optimal number of wavelength bands in a multispec-
tral iris system design. If we can cluster the
spectral wavelengths based on the maximum dissim-
ilarity of the corresponding iris texture and choose
an iris image from each classification of spectral
wavelength for fusion, the two conditions of fusion
strategy (completeness and no redundancy) will be
simultaneously met, so the best fusion result and
matching performance will most likely be achieved.

In our work, we used the agglomerative clustering
based on two-dimensional principal component
analysis [�2D�2PCA], determined that 3 clusters
are enough to represent the 10 feature bands of
spectral wavelengths, and used the iris score-level
fusion to further investigate the effectiveness of the
proposed optimal number of wavelength bands by
the one-dimensional (1D) Log-Gabor wavelet filter
approach proposed by Masek and Kovesi. Up until
now, there have been no public reports on this topic
for biometric research.

The remainder of this paper is organized as
follows. An image acquisition system is presented
in Section 2. The method for clustering wavelength
bands is discussed in Section 3. The clustering re-
sults are analyzed in Section 4. A recognition perfor-
mance analysis based on iris score-level fusion is
presented in Section 5. The conclusions are pre-
sented in Section 6.

2. Multispectral Iris Image Acquisition System

A. Overall Design

In this work, we have analyzed the feasibility of
a conventional multispectral system based on a

charge-coupled device (CCD) monochrome camera
to capture iris images. One of the most challenging
aspects of this research was the design of a multi-
spectral image acquisition system.

The multispectral system developed consists of a
CCD camera with a Sony ICX205 HAD CCD sensor
(spectral response ranges between 400 and 1000 nm
with a peak at 550 nm, 1.4 megapixels 1360 × 1024),
macro manual focus (MF) lens, illumination system,
and Meadowlark selectable bandwidth tunable
optical filter TOF-SB-VIS (see Fig. 1).

The optical path is as follows: First, the broadband
light from the illumination system is delivered to the
eye, and then the reflected light from the subject’s
eye is collected through the center of the ring illumi-
nator, through the band-pass filter, TOF-SB-VIS, and
imaged by the ICX205 camera using a macro lens.

The camera with the Sony ICX205 HAD CCD
sensor has exceptional features, including high reso-
lution, high sensitivity, and low dark current, which
are all important to multispectral imaging. The spec-
tral response from the 400 to 1000 nm wavelength
(the short wavelength IR band) is not very uniform,
but we verified that the CCD response does not intro-
duce significant errors into the experimental values
after the optimization of the multispectral system.

TOF-SB-VIS is a new tunable optical filter with
user-selectable bandwidths and a variable full width
at half maximum available through Meadowlark
Optics. By utilizing multiple liquid crystal variable
retarders and polarizers, this tunable filter allows
the user to switch between any wavelengths from
420 to 1100 nm. In this research, the band-pass

Fig. 1. (Color online) Structure of the multispectral iris acquisi-
tion system.
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wavelengths of the TOF-SB-VIS were switched at
420, 490, 545, 590, 635, 665, 700, 730, 780, 810,
850 and 940 nm, which correspond to 12 kinds of
narrow-band LEDs that are used in sequence to im-
age a subject’s eye across the visible and NIR bands.

The multispectral light source is a ring illuminator
with six narrow wavelength-band LED lamps, is
located in front of the TOF-SB-VIS (between the
imaging device and the subject), and can bemanually
switched, allowing illumination of the captured iris
with a 90 deg angle. In accordance with the spectral
range of interest, narrow-band LEDs were selected
at 12 wavelengths so that the corresponding band-
pass wavelength outputs were delivered to the eye.

B. Data Collection

A set of 60 human irides that correspond to the right
and left eyes of 30 different subjects was captured by
a multispectral acquisition system. The 60 samples
covered a wide range iris colorations and structures,
such as rich and sparse textures.

Twenty images were taken at a specific interval of
time (200 ms apart) from each the left and the right
eye of a subject under 420, 490, 545, 590, 635, 665,
700, 730, 780, 810, 850 and 940 nm wavelengths,
respectively. During the image capture, the subject
watched the center of a ring illumination. Sample
multispectral iris images that pertain to a single
eye are shown in Fig. 2. We deliberately selected
images whose pupil radius has a relatively consistent
and small size to observe the differences in iris tex-
ture across all spectral wavelengths.

3. Clustering Method of the Spectral Wavelengths

A. Data Organization of Dissimilarity Matrix

Suppose we have B bands of spectral wavelengths
and S iris images from the same eye of the same
subject captured under each band of spectral wave-
lengths, so the total number of iris images is S × B.
Based on the definition of the distance, we can
compute the distance between any pair of images,
Ti and Tj, (whether from the same or different
spectral wavelengths) as the generic dissimilarity
measure. We can embed the resulting dissimilarity
data in matrix A (N ×N), and the elements of A
are defined as

A�i; j� � d�Ti; Tj�; i; j � 1;…; N; N � S × B: (1)

The image axis runs on the horizontal (left to right)
and vertical (top to bottom) axes of A and along its
main diagonal, where self-similarity is maximal.
According to the order of time stamp and increasing
wavelength, N iris images of the same eye can be
arranged as a sequence along the axis. The iris
images of the same spectral wavelength are all
continuously captured, so these images will be
adjacent in the axis (see Fig. 3).

The image-indexed dissimilarity matrix A can
be visualized as a square image. Each pixel i, j is
colored with a gray scale value proportional to the
dissimilarity measure d�Ti; Tj�. These visualizations
allowed us to clearly see the structure of a multispec-
tral iris image sequence. Regions of the highest
similarity, generated from a similar iris texture
within the same spectral wavelength, appear as
the brightest squares on the diagonal. The relatively
brighter rectangular regions off the main diagonal
indicate the similarity between the different spectral
wavelengths (see Fig. 3).

B. �2D�2PCA
We then determined the specific definition of the dis-
tance measure, and discovered that the �2D�2PCA

Fig. 2. Sample images obtained at wavelengths of a. 420 nm,
b. 490 nm, c. 545 nm, d. 590 nm, e. 635 nm, f. 665 nm,
g. 700 nm, h. 730 nm, i. 780 nm, j. 810 nm, k. 850 nm, and l. 940 nm.

Fig. 3. (Color online) Structure of the image-indexed dissimilar-
ity matrix A.
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method [8] is a good choice for iris images. The
�2D�2PCA method can alleviate the small sample
size problem in a subspace analysis and preserve
the image local structural information.

In this work, the �2D�2PCA analysis was simulta-
neously done for different bands of spectral wave-
lengths and yielded a joint eigenstructure across
two bands of spectral wavelengths, which was used
in the distance measurement between two iris
images captured under different spectral wave-
lengths.

We denote by Xb
s, the sth iris image of the band bth,

and by Xb�b0
s , the sth iris image of the union including

bands bth and b0th (this union includes 2 S iris
images, Xb�b0

s ∈ band bth∪ band b0th). Xb�b0
s is an Ir ×

Ic matrix, where Ir and Ic represent the numbers of
columns and rows of the normalized image. We used
the homogenous rubber sheet model proposed by
Daugman to normalize the iris image by remapping
each pixel within the iris region to a pair of polar
coordinates �r; θ�, where r is on the interval [0,1]
and θ is angle [0,2π]. For each normalized image,
Ir � 360 and Ic � 60. The covariance matrices along
the row and column directions of the bands bth and
b0th are computed as

Gb�b0
1 � 1

2S

X2S
s�1

�
Xb�b0

s − Xb�b0
�
T
�
Xb�b0

s − Xb�b0
�
;

Gb�b0
2 � 1

2S

X2S
s�1

�
Xb�b0

s − Xb�b0
��

Xb�b0
s − Xb�b0

�
T
; (2)

where the mean vector is defined as

Xb�b0 � 1
2S

X2S
s�1

Xb�b0
s :

The project matrix Vb�b0
1 �

h
Vb�b0

11 ;Vb�b0
12 ;…;Vb�b0

1kb�b0
1

i

is composed of the orthogonal eigenvectors of

Gb�b0
1 , which correspond to kb�b0

1 the largest eigen-

values, and the projection matrix Vb�b0
2 �

h
Vb�b0

21 ;

Vb�b0
22 ;…; Vb�b0

2kb�b0
2

i
consists of the orthogonal eigenvec-

tors of Gb�b0
2 , which correspond to the kb�b0

2 largest
eigenvalues. kb�b0

1 and kb�b0
2 can be determined by

a threshold:

Xkb�b0
1

jc�1

λb�b0
1jc ∕X

Ic

jc�1

λb�b0
1jc

≥ Cu; (3)

Xkb�b0
2

jr�1

λb�b0
2jr ∕X

Ir

jr�1

λb�b0
2jr

≥ Cu; (4)

where λb�b0
11 , λb�b0

12 ;…; λb�b0
1Ic

are the Ic eigenvalues of
Gb�b0

1 , λb�b0
21 , λb�b0

22 ;…; λb�b0
2Ir

are the Ir eigenvalues of
Gb�b0

2 , and Cu is a preset threshold, Cu � 0.5, which
determines how many of the principle eigenvalues
are employed in the distance calculation.

Next, we yield the joint eigenstructure Vb�b0
1 and

Vb�b0
2 across two bands of spectral wavelengths bth

and b0th, and the space spanned by these eigenvec-
tors is specified for the distance measurement of
iris images from these two corresponding bands
(see Fig. 4).

An image Tb of the band bth will be matched with
another image Tb0 of the band b0th, and the two
images Tb and Tb0 are all captured from the same
eye of the same subject. These two images should
be projected to T̂b and T̂b0 by Vb�b0

1 and Vb�b0
2 , and

the distance of Tb and Tb0 is defined as

db�b0 � ‖T̂b
− T̂b0

‖

� ‖Vb�b0T
2 TbVb�b0

1 − Vb�b0T
2 Tb0Vb�b0

1 ‖. (5)

Fig. 4. (Color online) Two types of principle components generated from specified and joint eigenstructures and the correspondence with
the dissimilarity data of matrix A.
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In terms of the distance of the two images within
band bth, the above algorithm will be slightly
simplified. The covariance matrices along the
row and column directions of band bth are com-
puted as

Gb
1 � 1

S

XS
s�1

�
Xb

s − Xb
�
T
�
Xb

s − Xb
�
;

Gb
2 � 1

S

XS
s�1

�
Xb

s − Xb
��

Xb
s − Xb

�
T
; (6)

where Xb � 1
S

PS
s�1X

b
s , and other calculations are si-

milar to the above algorithm. Finally, we get the ei-
genstructure Vb

1 and Vb
2, which corresponds to band

bth, and the space spanned by these eigenvectors is
specified for the distance measurement of iris images
from the same band (see Fig. 4).

C. Agglomerative Clustering

Suppose we have B bands of spectral wave-
lengths and K segments fp1;…; pKg of variable
lengths (K ≤ B). Here, we define a collection of
wavelengths as a “segment.” We can compute the
mean vector and covariance matrices of each image
based on Eq. (2) and then compute the distance of the
two images based on Eq. (5).

Intersegment dissimilarity is defined as the
Kullback–Leibler (KL) divergence [9] between two
discrete random probability distributions with the
distance statistics of the segments. For probability
distributions P and Q of a discrete random variable,
their K-L divergence is defined to be [10–13]

DKL�P‖Q� �
X
i

P�i� ln P�i�
Q�i� : (7)

The KL divergence is not symmetric, but a sym-
metric variation can be constructed from the sum
of the two KL divergence as [14]

DKL�P;Q� � 1
2

h
D

KL
�P‖Q� �DKL�Q‖P�

i
: (8)

So, the dissimilarity between segments pi and pj
can be defined as

dseg�pi;pj��exp�−DKL�pi;pj��; dseg�pi;pj�∈ �0;1�: (9)

We compute the intersegment dissimilarity be-
tween each pair of segments and embed them into
a segment-indexed dissimilarity matrix As�K × K�,
analogous to the image-indexed dissimilarity matrix
A�N ×N�, as

As�i; j� � dseg�pi; pj�; i; j � 1;…; K: (10)

The agglomerative algorithm [15] is used to cluster
the K segments fp1;…; pKg based on the segment-
indexed dissimilaritymatrixAs. The input of agglom-
erative algorithm is the matrix As�K ×K�, the initial
dissimilarity is the matrix A0

s � As. At each level t,
when two segments are merged into one, the size
of the dissimilarity matrix At

s becomes �K − t� ×
�K − t�. At

s follows At−1
s by (1) deleting the two rows

and columns that correspond to the merged clusters
and (2) adding a new row and column that contain
the distance between the newly formed cluster and
the old (unaffected at this level) cluster. The distance
between the newly formed cluster Cq (the result of
merging Ci and Cj) and an old cluster Cs is defined
as the KL distance (see Fig. 5).

The agglomerative clustering algorithm is as
follows:

1. Initialization:
1.1 The initial segments ψ0 for the agglomera-

tive algorithms consist of K segments:
ψ0 � ffPig; i � 1; 2;…;Kg.

1.2 The initial dissimilarity matrix A0
S � AS.

1.3 The level of agglomerative algorithm t � 0.
2. Repeat:

2.1 t � t� 1.
2.2 Find Ci and Cj such that dKL�Ci;Cj� �

minr;s�1;…;K;r≠sdKL�Cr;Cs�.
2.3 Merge Ci and Cj into a single cluster Cq and

form ψ t � �ψ t−1 − fCi;Cjg�∪fCqg.
2.4 Define the dissimilarity matrix At

S from
two matrices, At−1

S and A, as previously
explained in the text and shown in Fig. 5.

Fig. 5. Diagram of agglomerative clustering.
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3. Repeat until ψK−1 clustering is formed; that is,
all segments in the same cluster.

By applying the above process, we can get the
clustering hierarchy and then determine the number
of clusters by analyzing the lifetime of the hierarchy.
A diagram of the proposed method is shown in Fig. 6.

4. Experimental Results

A. Iris Database

A dataset that contained samples from 60 irides was
used to conduct the following study. Our iris data-
base, which uses the proposed multispectral iris ac-
quisition system, was created with 30 subjects. In
this database, 25 were male. Twenty images, which
were taken from each the left and right eye of a
subject, were selected under 12 spectral bands that
corresponded to 420, 490, 545, 590, 635 nm, 665,
700, 730, 780, 810, 850, and 940 nm, respectively.
In total, we collected 14,400 iris images for this
database. The image resolution was 640 × 480.

In this work, we used Daugman’s rubber sheet
model [16] to get the normalized iris images. After
normalization, only 10 spectral bands longer than
500 nm were used in the experiment, since in the
420 and 490 nm images, the gray scales of the pupil
and iris were too close to be correctly segmented
and the iris textural clarity was too low to benefit
this study.

2. Results of the Proposed Method

The distance based on �2D�2PCA is relatively sensi-
tive to pupil dilation, so we used six images with the
smallest pupil of each spectral band, and, in total,
3,600 iris images were used for this experiment.
The radius of the pupils in these images was very
small and changed only in a limited range of size.
In consideration of the degree of iris deformation,
we used the ratio of pupil radius to iris radius as T �
Rp∕Ri to measure the influence of pupillary constric-
tion. In this work, the T of all 3,600 images was in the
range of 0.23 to 0.35.

For each iris, the image-indexed dissimilarity
matrix A�60 × 60� is shown in Fig. 7. Regions of the
highest similarity, generated from similar iris tex-
ture within the same spectral wavelength, appeared

as the brightest squares on the diagonal. The rela-
tively brighter rectangular regions off the main diag-
onal indicated the similarity between the different
spectral wavelengths, as shown in Fig. 7.

We considered these 10 wavelengths as the input
of the clustering algorithm, computed the interseg-
ment dissimilarity (the KL distance) between each
pair of segments, embedded them into the first
segment-indexed dissimilarity matrix A0

s �10 × 10�,
and used an agglomerative clustering algorithm to
merge clusters for the first time. Then, we repeat
the above process, and got the dendrogram from
the clustering hierarchy (see Fig. 8).

As explained earlier, this algorithm determined a
whole hierarchy of spectral wavelength clustering,
rather than a single clustering. However, in this
work, we were only interested in the specific cluster-
ing that best fit the data. Thus, we had to decide
which clustering of the produced hierarchy was
most suitable for the data. Equivalently, we had
to determine the appropriate level to cut the
dendrogram that corresponded to the clustering
hierarchy.

Fig. 6. Diagram of the proposed method.

Fig. 7. (Color online) Image-indexed dissimilarity matrix A.
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First, the best clustering within a given hierarchy
generated by an agglomerative algorithm needed to
be determined. Clearly, this was equivalent to the
identification of the number of clusters that best
fit the data. An intuitive approach was to search in
the dendrogram for clusters that had a large lifetime,
which is generally used as the criteria for cluster va-
lidity of the proposed method. The lifetime of a clus-
ter was defined as the absolute value of the difference
between the level at which it is created and the level
at which it is absorbed into a large cluster [17,18]. As
shown in Fig. 8, Cluster 3 was created at level 3 and
absorbed into a large cluster at level 8, so the abso-
lute value of the difference between these two levels
was 5, which is the largest lifetime of all. According
to the lifetime principle, the dendrogram in Fig. 8
suggests that 3 major clusters best fits all 10 multi-
spectral bands. The clustering result of these three
clusters is listed in Table 1.

The distance map between different wavelengths
is plotted in Fig. 7. As can be seen from Fig. 7, there
are roughly three bright blocks. We can find the
physical explanation for the clustering result.
According to the spectrum definition, the spectral
wavelengths longer than 800 nm can be seen as the
typical NIR spectrum, and ones that are shorter than
700 nm are considered as visible light. The wave-
lengths from 700 to 800 nm are the transitional area
between visible light and NIR, which is near the
upper limit for response by a typical human eye.
The above division of wavelengths is consistent with
the clustering result.

Second, we found the cluster centers by using the
dissimilarity data in matrix A to calculate the center
of the corresponding cluster. Suppose we have B
bands of spectral wavelengths and S iris images from
same subject captured under each band of spectral
wavelengths. We denote by Xb

s, the sth iris image
under the bth band. The distance dcross�b; b0� between
bands bth and b0th is defined as

dcross�b; b0� �
XS
p�1
q�1

db�b0 �Xb
p; Xb0

q �; (11)

and db�b0 is defined in Section 3, whose value is the
elements of matrix A. For a given band bth, we can
calculate the average distance between bth and other
bands in the same cluster as

dave�b� �
1

N − 1

XN−1

n�1

dcross�b; n�. (12)

N is the number of spectral bands within this cluster,
so the center of cluster is

C � fij arg min dave�i�g; i � 1; 2;…; N: (13)

Using this method, we were able to determine the
three corresponding cluster centers.

Note that in each run of the proposed method, the
clustering results were based on the dataset that
contained 60 images captured from one specific iris,
so we repeated the proposed method on the image
dataset. The most frequent cluster number and cen-
ters were kept as the final result because there was
the possibility that the clustering results were influ-
enced by the images of a special iris and the different
choice of parameter values.

After testing all 3,600 images from 60 irides, the
final clustering hierarchy was the same as Table 1,
and the three corresponding cluster centers were
as follows: The Cluster 1 center was 635 nm, the
Cluster 2 center was 780 nm, and the Cluster 3
center was 850 nm.

5. Performance Analysis

To demonstrate whether there is the optimal number
of wavelength bands for multispectral fusion, the
verification experiment based on the performance
of iris recognition was implemented on our iris
image database. In the verification experiment, we
used Masek and Kovesi’s [19] 1-D Log-Gabor wavelet
method, which is the most popular comparison
method in the literature due to the accessibility of
their source code.

Fig. 8. (Color online) Dendrogram from the clustering hierarchy.

Table 1. Clustering Result of Three Clusters

Cluster Wavelengths

1 545 nm, 590 nm, 635 nm, 665 nm
2 700 nm, 730 nm, 780 nm
3 810 nm, 850 nm, 940 nm

1 July 2012 / Vol. 51, No. 19 / APPLIED OPTICS 4281



Ten spectral bands longer than 500 nm were used
in this experiment, since the textural clarity of the
images under 420 and 490 nm was too low to benefit
this study. So, we selected 10 images corresponding
to each eye under each spectral band, a total of 6,000
out of 14,400 iris images, for the recognition experi-
ment. There were two kinds of matching scores
used—intraspectral genuine scores and intraspec-
tral impostor scores. Intraspectral genuine scores
are calculated from two iris images of the same
eye under the same wavelength. Intraspectral im-
postor scores are calculated from two images—one
of a certain left eye and the other of a different left
eye (that is, both from the eye on the same side) and
captured under the same wavelength. A total of
27,000 intraspectral genuine scores and 870,000
intra-spectral impostor scores were generated.

To find the optimal combination for a given num-
ber of wavelength clusters, many algorithms could be
used, such as divergence [20], mutual information
[21], and entropy [22]. Here, an exhaustive search
was implemented as it decreased the possibility of
missing any optimal combinations. We computed
the equal error rate (EER, where the false rejection
rate is equal to the false acceptance rate) correspond-
ing to each combination for a given number of wave-
length clusters and selected the lowest one. For
example, the EER under one spectral wavelength
is shown in Fig. 9, which is the recognition perfor-
mance without any multispectral fusion, and the
lowest one is under 700 nm.

Generally, more texture information across differ-
ent wavelengths is used, and better recognition
performance can be achieved. However, since there
is some possible overlapping of the discriminating
information between different wavelengths, a simple
sum of the matching scores of all wavelengths may
not improve the final accuracy. The overlapping part
between the two iris code bit vectors under two
different wavelengths would be counted twice by
using the sum score–level fusion [23], which is the
most popular of the fusion techniques, on the
dataset. Such kind of overcomputing may make
the simple score-level fusion fail.

When a score-level fusion strategy can reduce the
overlapping effect, better verification results can be

expected. In combinatorics, the inclusion–exclusion
principle [24] (which is attributed to Abraham de
Moivre) is an equation relating the sizes of two sets
and their union. It states that if A and B are two
(finite) sets, let jAj denote the cardinality of set A,
and it then follows immediately that

jA∪Bj � jAj � jBj − jA∩Bj; (14)

where ∪ denotes union and ∩ denotes intersection.
The meaning of the statement is that the number
of elements in the union of the two sets is the sum
of the elements in each set, respectively, minus the
number of elements that are in both. More generally,
for finite sets A1;…; An, one has the identity as
follows:

���� ∪
n

i�1
Ai

���� �
Xn
i�1

jAij −
X

i;j:1≤i≤j≤n

jAi∩Ajj

�
X

i;j;k:1≤i≤j≤k≤n

jAi∩Aj∩Akj −…

� �−1�n−1jA1∩…∩Anj: (15)

Under wavelength i, based on two iris code bit
vectors are denoted as fcodeA;i; codeB;ig, and mask
bit vectors denoted as fmaskA;i;maskB;ig, we can
compute the raw Hamming distance as follows:

HDraw;t�A;B�

� ‖�codeA;i ⊗ codeB;i�∩maskA;i∩maskB;i‖

‖maskA;i∩maskB;i‖
: (16)

So, based on Eqs. (14) to (16), a score-level fusion rule
is defined that tends to minimize the overlapping
effect on the fused score as follows:

HDsum�1;2��A;B� � HDraw;1�A;B� �HDraw;2�A;B�

−
HDraw;1�A;B� �HDraw;2�A;B�

2
× P1;2�A;B�; (17)

where P1;2�A;B� is the overlapping percentage
between two iris code bit vectors exacted from the

Fig. 9. (Color online) Wavelength versus EER.
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same iris but captured under two different bands of
wavelength, defined as follows:

P1;2�A;B�

�1−

0
BBBBB@

‖�codeA;1⊗codeA;2�∩maskA;1∩maskA;2‖

‖maskA;1∩maskA;2‖
�

‖�codeB;1⊗codeB;2�∩maskB;1∩maskB;2‖

‖maskB;1∩maskB;2‖

1
CCCCCA
×
1
2
;

(18)

Similarly, we can extend the multispectral score
fusion scheme to fuse more bands of wavelength,
such as the three spectral bands as in Eq. (19):

HDsum�1;2;3��A;B�
� HDraw;1�A;B� �HDraw;2�A;B� �HDraw;3�A;B�

−
HDraw;1�A;B� �HDraw;2�A;B�

2
× P1;2�A;B�

−
HDraw;1�A;B� �HDraw;3�A;B�

2
× P1;3�A;B�

−
HDraw;2�A;B� �HDraw;3�A;B�

2
× P2;3�A;B�

−
HDraw;1�A;B� �HDraw;2�A;B� �HDraw;3�A;B�

2
× P1;2;3�A;B�. (19)

Using the proposed score-level fusion strategy, we
obtained the lowest EER for each combination, which
are listed in Table 2.

Table 2 shows more wavelength bands for fusion
and higher accuracy of recognition. For example,
the fusion of two bands could reduce the EER from
0.00292 to 0.00161, and the fusion of three bands
could reduce the EER from 0.00161 to 0.00119. How-
ever, the improvement from three bands to four
bands is very small at only 0.00001. Using statistical
analysis [25], the difference between the fusion of
four bands and three bands is not statistically
significant. All ten wavelength bands for fusion could
achieve the smallest EER, 0.00117, and there is very
little improvement from the fusion of three bands.
This finding is consistent with the finding in the
wavelength clustering—three clusters are enough
to represent the ten wavelengths, and score-level fu-
sion based on three clusters can obtain almost the
best performance in multispectral iris recognition.

6. Conclusions

This work explored the possibility of clustering spec-
tral wavelengths based on the maximum dissimilar-
ity of iris textures. The overall goal was to determine
how many bands of spectral wavelengths are enough
for iris multispectral fusion and to find these bands
that would provide higher performance of iris multi-
spectral recognition.

Such an analysis is required to understand the tex-
ture from the structure andmelanin of the iris that is
revealed across all wavelengths from 400 to 1000 nm.
So, an acquisition system has been designed to
acquire a small dataset of iris images in the 420 to
940 nm wavelength range. The agglomerative
clustering based on �2D�2PCA has been proposed
to cluster multispectral iris images. The clustering
result could be used to determine an optimal number
of wavelength bands for fusion.

The clustering result shows that three wavelength
bands may be enough to represent the iris features.
Based on score-level fusion and exhaustive searching
on all fusion candidates, three wavelength bands
could get much better results than two bands and
comparable results with four bands and all ten
bands. This finding validates the effectiveness of the
proposed clustering algorithm, and it is empirically
demonstrated that three feature bands is a good
option for real multispectral iris applications. The
finding will be applied to the design of our future
multispectral iris system. The multispectral iris
images database is currently limited by the inclusion
of only East Asians, so whether the finding is applic-
able to other groups needs further investigation.

In the future, a fusion at the image and feature le-
vels should be investigated based on the iris images
that are simultaneously acquired, and this has at-
tracted the attention of some researchers [26–31].
More effective enhancement techniques for image
quality may be explored to improve the performance
ofmultispectral iris recognition in large datasets [32].
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