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When reconstructing the three-dimensional (3D) object height profile using the fringe projection profi-
lometry (FPP) technique, the light intensity reflected from the object surface can yield abruptly changing
bias in the captured fringe image, which leads to severe reconstruction error. The traditional approach
tries to remove the bias by suppressing the zero spectrum of the fringe image. It is based on the assump-
tion that the aliasing between the frequency spectrum of the bias, which is around the zero frequency, and
the frequency spectrum of the fringe is negligible. This, however, is not the case in practice. In this paper,
we propose a novel (to our knowledge) technique to eliminate the bias in the fringe image using the dual-
tree complex wavelet transform (DT-CWT). The new approach successfully identifies the features of bias,
fringe, and noise in the DT-CWT domain, which allows the bias to be effectively extracted from a noisy
fringe image. Experimental results show that the proposed algorithm is superior to the traditional meth-
ods and facilitates accurate reconstruction of objects’ 3D models. © 2012 Optical Society of America
OCIS codes: 120.2650, 100.7410.

1. Introduction

Fringe projection profilometry (FPP) is a popular
technique for noncontact three-dimensional (3D) ob-
ject profile measurement [1–6]. In FPP, a fringe pat-
tern is first projected onto the target object. Due to
the variation of the object’s height profile, the fringe
pattern is deformed as seen on the object surface.
Such deformation provides sufficient information for
reconstructing the 3D shape of the object [1]. In prac-
tice, the deformed fringe pattern is captured by a
digital camera and can be formulated as follows:

I�x; y� � a�x; y� � b�x; y� cos�2πf ox� φ�x; y�� � n�x; y�;
(1)

where I is the captured fringe image, f o is the
fundamental frequency of the sinusoidal fringe

pattern in the x direction, a is the bias, b is the
fringe amplitude, φ is the phase shift of the sinusoi-
dal fringe pattern in the x and y directions, and
n∼ N�0; σ2� is the additive noise with a normal dis-
tribution. If φ is known, the height profile of the ob-
ject can be readily estimated [1]. However, the
estimation of φ is not trivial, particularly when the
captured fringe image I has a strong bias and is con-
taminated by noise. Recently, our team proposed a
new (to our knowledge) fringe image enhancement
algorithm that effectively recovers the fringe pattern
from a noisy image [2]. It makes use of the dual-tree
complex wavelet transform (DT-CWT) [7], which con-
verts the fringe pattern in the image to a piecewise
smooth function in the transform domain. In this
case, the edge preserving smoothing algorithm can
be performed to remove the noise in the transform
coefficients. The algorithm adopted the phase shift
profilometry (PSP) technique [3] such that the bias is
removed before the enhancement process. However,
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the PSP approach requires two or more fringe images
captured in sequence, which is not suitable for fast
moving objects. A bias removal algorithm that uses
a single fringe image is more desirable.

In fact, the bias a�x; y� in Eq. (1) is introduced by
the light intensity reflected from the object surface. It
can have abrupt changes in magnitude due to, for
instance, the abrupt changes of the color pattern of
the object. It should be removed or severe distortion
will occur in the reconstructed 3D height profile. As
the bias appears to be at zero spectrum (ZS) in the
frequency domain, one traditional approach tries
to remove the ZS by applying a high pass filter in
the Fourier domain [1]. However, such an approach
assumes that the aliasing between the ZS and higher
order harmonics of the image is negligible, which is
not true in general. In [8], the continuous wavelet
transform was used to filter out the bias. It exploits
the correlation of the image among adjacent rows.
Another recent attempt for eliminating the bias used
empirical mode decomposition (EMD) [9]. The EMD
is designed to adaptively shape the data into intrin-
sic mode functions (IMFs) through sifting iterations.
The resulting IMFs are made to be as symmetric as
possible around zero, which implies they are un-
biased. However, both approaches fail to eliminate
local bias with sharp changes in magnitude, which
are often found in real fringe images.

In this paper, a novel (to our knowledge) bias
removal algorithm is proposed. The new approach
works in the DT-CWT domain such that it can be ea-
sily integrated into [2] to allow effective bias removal
and denoising at the same time. The proposed ap-
proach successfully identifies the features of bias,
fringe, and noise in the DT-CWT domain such that
the bias can be effectively extracted out from a noisy
fringe image. Experimental results show that the
proposed method is superior to the existing methods
such as FT and EMD, particularly when the fringe
image has sharp changes in bias magnitude or the
noise level is high. It has a performance comparable
with using the traditional PSP approach when the
object is static, and it improves significantly when
the object is moving.

2. Proposed Method

In [2], an efficient algorithm using the oriented two-
dimensional (2D) DT-CWT is proposed for enhancing
noisy fringe images. To explain the algorithm, let us
first rewrite Eq. (1) as follows:

I � g� n � W�Iw � W��gw � nw�; (2)

where W� is the inverse oriented 2D DT-CWT, I and
g are the observed fringe image and the clean fringe
image with bias, respectively, n is defined as in
Eq. (1), and Iw, gw, and nw are the wavelet coefficients
of I, g, and n, respectively. It is shown in [2] that due
to the special features of DT-CWT, the magnitude of
gw exhibits a piecewise smooth response such that an
edge preserving smoothing operator can be applied

to Iw to reduce the noise. However, if g contains
strong bias, the denoising procedure in [2] is not
sufficient to handle the resulting irregularity intro-
duced to gw. Severe distortion may result in the re-
constructed 3D height profile. As mentioned above,
we propose in this paper a new algorithm to reduce
the bias in the fringe image. The new algorithm
operates in the DT-CWT domain to facilitate easy
integration into [2]. Let the edge preserving smooth-
ing operator in [2] be denoted as Ψ. Then assume
there is another operator ϑ in the DT-CWT domain
that can detect the bias in the fringe image. The
whole fringe image enhancement algorithm can be
described as follows:

͡
I � W��Ψ�WIf �� � W��Ψ�W�I −W�ϑ�WI����
� W��Ψ�gw � nw − ϑ�gw � nw���; (3)

where If refers to a bias free fringe image.
Equation (3) shows that due to the orthogonality of
the DT-CWT, the proposed bias removal algorithm
can be implemented within [2] without extra forward
or inverse transformations. To explain the proposed
bias removal operator ϑ, let us provide further
definition:

Ilw � al
w � f lw � nl

w; (4)

where Ilw, al
w, f lw, and nl

w are the respective level l
wavelet coefficients; l � 1; 2;…L. Note that they
are complex numbers defined in the context of the
DT-CWT. Our task is to extract al

w from Ilw by remov-
ing f lw and nl

w as much as possible. Similar to the
traditional DT-CWT based denoising techniques, we
work on the magnitude response of Ilw defined as
follows:

jIlwj2 � jal
w � f lw � nl

wj2 � jal
wj2 � jf lwj2 � jnl

wj2
� 2 � real�al

wf l�w � al
wnl�

w � f lwnl�
w �; (5)

where x� is the complex conjugate of x. It is known
that the fringe f is a narrowband signal with energy
that can only be found in some of the subbands. In
fact, the number of subbands that contain fringe
energy has a close relationship with the rate of
change of the object’s height profile. It is shown in
Appendix A that if h�x; y� is the height profile of
the object, d is the distance between the camera
and the projector, and s is the distance between
the projector and the object, the energy of the fringe
can only be found in subbands from lmin to lmax such
that

lmin �
�
log2

�
1

�f o ∕ f s��1 − d ∕ s��Δh�max

��
; (6)

lmax �
�
log2

�
1

2�f o ∕ f s��1 − d ∕ s��Δh�min

��
; (7)
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where Δh � ∂h�x; y� ∕ ∂x and f s is the sampling fre-
quency. Equations (6) and (7) show that the number
of subbands that contain fringe energy can be easily
determined if we have a rough knowledge of the max-
imum and minimum rate of change (in x-direction) of
the object’s height profile. We do not need to have an
exact knowledge of them, since a slight error in their
estimation would only lead to a slight error in the
estimation of the maximum and minimum frequency
components of the fringe signal. Therefore, as long as
the estimated ones and the true ones are in the same
frequency subband, the same conclusion will be
made regarding the subbands that contain fringe en-
ergy. Even in the boundary case that the estimated
ones are in the next subbands from the true ones,
only a small amount of fringe frequency components
will be missed. In general it would not significantly
affect the final reconstructed image. Note that in the-
ory, Eqs. (6) and (7) apply only to vertical subbands,
as indicated in Appendix A. For simplicity, we also
apply the results of Eqs. (6) and (7) to the computa-
tion of horizontal and diagonal subbands. Our experi-
mental results show that in general they doe not
introduce adverse effects to the final results.

For subbands that do not have significant f lw, it is
known from Eq. (5) that

EfjIlwj2g � Efjal
wj2g � Efjnl

wj2g; (8)

where Ef·g is the expectation function. Equation (8)
shows that the estimation of al

w is a typical denoising
problem of the DT-CWT. Since the bias a�x; y� is the
light intensity reflected from the object surface, its
magnitude can be represented by some step func-
tions connected by smooth functions in the spatial
domain. Due to the vanishing moments of the dual-
tree complex wavelets [7], the response of the smooth
functions will vanish while the step functions will
incur impulses in the DT-CWT domain. On the other
hand, the wavelet coefficients of noise will scatter
with small magnitude in the transform domain.
Hence, the bias wavelet coefficients al

w can be ex-
tracted from Ilw by using a soft-thresholding scheme
as follows:

jÎlwj ≅ max�jIlwj − λ; 0� for lwith negligible f lw: (9)

The threshold λ needs to be carefully selected. Since
n∼ N�0; σ2�, it can be shown that its magnitude
response in the DT-CWT domain becomes Rayleigh
distributed with std �

���������������������������������
�4 − π� � 2σ2 ∕ 2

p
and μ �����������������

2σ2π ∕ 2
p

. The following threshold λ is thus selected
to ensure the noise wavelet coefficients are suffi-
ciently suppressed:

λ � μ� 3 � std: (10)

A different procedure is used for the other sub-
bands that contain significant f lw. Referring to
Eq. (5), jIlwj2 in these subbands is composed of
jal

wj2, jf lwj2, and jnl
wj2 and some cross terms that have

relatively smaller magnitude. As shown in [2], jf lwj2

is the only piecewise smooth function in jIlwj2, while
the others are either spurious or random. Hence we
can make a rough estimation of jf lwj2 by applying a
median filter to jIlwj as follows:

�medfjIlwjg�2 ≅ jf lwj2 � E�jnl
wj2� � jf lwj2 � 4σ2. (11)

Therefore,

jIlwj2 − �medfjIlwjg�2 � 4σ2 ≅ j ~al
wj2 � jnl

wj2 � 2

× real �f lwnl�
w �; (12)

where j ~al
wj2 � jal

wj2 � 2 × real�al
wf l�w � al

wnl�
w �. Again,

the estimation of j ~al
wj in these subbands becomes a

typical denoising problem of the DT-CWT and can
be achieved by applying Eq. (9). Note that, similar to
jal

wj2, the term 2 × real�al
wf l�w � al

wnl�
w � is highly loca-

lized, that is, nonzero, only around the rising or fall-
ing edges of the bias a�x; y�. However, it has a much
smaller magnitude than jal

wj2. So j ~al
wj can be consid-

ered as jal
wj with slight distortion, which can be

handled in the subsequent denoising process [2].
After the magnitude response of the DT-CWT

coefficients is processed, it can be combined with the
original phase response to form the complex coeffi-
cients as follows:

Îlw � ϑ�WI� � jÎlwj exp�−j∠Ilw�: (13)

They can then be applied back to Eq. (3) for further
3D model reconstruction.

3. Results and Discussion

Simulations were conducted to compare the perfor-
mance of the proposal bias removal algorithm with
the traditional approaches. In these simulations, the
fringe pattern of a testing object (Fig. 1) is generated
as shown in Fig. 2. A bias pattern is arbitrarily de-
signed and added to the fringe pattern as shown
in Fig. 3. In the figure, the magnitude of the bias is
indicated by its brightness. We scale the bias pattern
such that the ratio between the maximum change
of the bias magnitude and the fringe magnitude

Fig. 1. (Color online) Testing object.
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(denoted as β � j∂a ∕ ∂xjmax
b ) is from 5 to 15. White

Gaussian noises of different noise variance (σ2 �
0.5 to 2.0) are then added to the biased fringe images.
Figure 4 shows one slice (row #256) of the biased
(β � 10) and noisy fringe (σ2 � 1). Different algo-
rithms (FT [1], EMD [9], and the proposed) are used
to remove the bias in the image. Figure 5 shows the
bias in the same slice (row #256) as in Fig. 4 esti-
mated using the proposed algorithm. It can be seen
that the bias is accurately estimated. The resulting
fringe images are then further denoised using the
approach in [2]. The enhanced images are processed

with Goldstein’s phase unwrapping technique [10]
to estimate the phase. Finally, the 3D model of the
target object is reconstructed. Figures 6–8 show the
end results. Compared with the traditional ap-
proaches, the reconstructed 3D model using the pro-
posed bias removal algorithm contains much less
defect. Table 1 shows a comparison between the
three approaches at different β and σ2. It can be seen
that the proposed algorithm consistently outper-
forms the traditional approaches. The difference is
particularly significant at high σ2 and large β.

Fig. 6. (Color online) Reconstructed 3Dmodel using the proposed
algorithm.

Fig. 7. (Color online) Reconstructed 3D model using the FT
approach.

Fig. 5. (Color online) Bias extracted using the proposed
algorithm.

Fig. 4. (Color online) Row #256 of Fig. 3.
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Fig. 3. Biased and noisy fringe (β � 10, σ2 � 1).

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Fig. 2. Computed fringe of the testing object.
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We further test the proposed algorithm with a real
object and compare this with different approaches.
We first project a fringe pattern onto a paper air-
plane as shown in Fig. 9. Then the deformed fringe
image is captured using a digital single lens reflex
(SLR) camera. As can be seen in Fig. 10, the color
patterns on the object induce bias on the captured
fringe images, which should be removed as much as
possible before reconstruction. Figures 11–13 show
the reconstructed 3D model after using different bias

removal approaches: FT, EMD, and the proposed ap-
proach, respectively. Apparently, the proposed ap-
proach gives a much better result. Finally, we also
show in Figs. 14 and 15 the results of using the
PSP technique for static and moving objects, respec-
tively. It can be seen in Fig. 14 that the proposed al-
gorithm can yield an output comparable to using PSP
if the object is static. However, when the object
is slightly moved between the instants that the

Fig. 9. (Color online) Testing the real object with the fringe
projected.

Fig. 10. (Color online) Row #200 of the fringe image.

Fig. 11. (Color online) Reconstructed 3D model using the FT
approach.

Fig. 12. (Color online) Reconstructed 3D model using the EMD
approach.

Table 1. Comparison of the Reconstructed 3D Models in Terms of
Mean Square Error (mse) after Using Different Bias Removal
Algorithms at Different Noise Levels and Bias Magnitudes

Noise Level σ2

β 0.5 1 1.5 2

Proposed 5 9.80 9.86 9.93 10.26
10 9.84 9.88 10.02 10.44
15 9.88 9.96 10.10 10.82

FT [1] 5 9.85 9.90 9.95 10.19
10 16.02 17.73 15.23 17.46
15 45.09 32.88 34.42 39.05

EMD [9] 5 9.83 11.93 34.55 68.07
10 15.36 29.40 52.83 71.55
15 32.95 46.52 66.26 89.11

Fig. 8. (Color online) Reconstructed 3D model using the EMD
approach.
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two images are captured, the second fringe image
does not align well with the first one, which leads
to severe reconstruction error, as can be seen in
the experimental result in Fig. 15. Another real ob-
ject example is shown in Fig. 16. Figures 17–19 show

the reconstructed 3D models of the object in Fig. 16
after using different bias removal approaches: FT,
EMD, and the proposed approach, respectively.
Significant improvement is also noted as compared
with the traditional approaches. The result shows
the generality of the proposed algorithm.

Fig. 15. (Color online) Reconstructed 3D model using the PSP
approach. The object is slightly moved when capturing the two
fringe images.

Fig. 16. (Color online) Ball object with fringe projected.

Fig. 17. (Color online) Reconstructed 3D model using the FT
approach.

Fig. 18. (Color online) Reconstructed 3D model using the EMD
approach.

Fig. 14. (Color online) Reconstructed 3Dmodel using the PSP ap-
proach. The object is static when capturing the two fringe images.

Fig. 13. (Color online) Reconstructed 3D model using the
proposed algorithm.
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4. Conclusion

In this paper, an effective bias removal algorithm is
proposed for FPP. The new algorithm works in the
DT-CWT domain, which allows easy integration into
the previous approach to enable bias removal and
denoising to be carried out at the same time. In
the DT-CWT domain, the bias can be described by
some impulses, which are very different from the
wavelet coefficients of fringe and noise. To allow
effective extraction of those impulses, we first iden-
tify the subbands that do not contain fringe energy so
that simple soft thresholding can be applied. For
those subbands that contain fringe energy, a median
filter is used, followed by a soft- thresholding proce-
dure, to remove the fringe energy and noise, respec-
tively. Although some distortion may be introduced
to the resulting bias coefficients, they can be handled
by the subsequent denoising process. A series of si-
mulations and experiments were conducted to verify
the proposed algorithm. Significant improvement is
noted compared with the traditional FT and EMD
approaches, particularly when the fringe image
has sharp changes in bias magnitude or the noise le-
vel is high. It has a performance comparable with
using the traditional PSP approach when the object
is static, but it improves significantly when the object
is moving.

Appendix A

In fringe projection profilometry, the phase φ�x; y� is
related to the height h�x; y� of an object by
φ�x; y� � −2πf 0h�x; y�d ∕ s, where s is the distance be-
tween the camera and the projector; d is the distance
between the projector and the object; and f 0 is the
fundamental frequency. For each slice of the fringe
image gy, it is known [1] that its energy concentrates
at the first harmonic with spectral boundaries as
follows:

BW�gy�≈
�
f 0�

1
2π

�
∂φ�x;y�

∂x

�
min

;f 0�
1
2π

�
∂φ�x;y�

∂x

�
max

	
;

(A1)

where BW�gy� denotes the bandwidth of gy, and

∂φ�x;y�

∂x

�
min

and


∂φ�x;y�

∂x

�
max

are theminimum andmax-

imum rate of change, respectively, of the phase φ�x; y�
in the x direction. Note that



∂φ�x;y�

∂x

�
min

is a negative

number. Now assume that the fringe image is trans-
formed using the DT-CWT. Let us first consider the
wavelet coefficients in the vertical subbands, which
capture mainly the change of the signal in the x
direction. Since the DT-CWT is constructed by half-
band filters, the bandwidth of each slice of transform
coefficients in vertical subbands wV

l can be roughly
defined as follows:

BW�wV
l � �

�
f s
2l�1

;
f s
2l

	
; (A2)

where f s is the sampling frequency and l � 1; 2;…; L.
As shown in Eq. (A1), the energy of each slice of
the fringe image will not go beyond its upper and
lower spectral boundaries. Hence, after applying
the DT-CWT, it will concentrate in only some of the
vertical subbands from level lmin to lmax, which can
be determined by

f s
2lmin

≥ f 0 �
1
2π

�
∂ϕ

∂x

�
max

;

1

2lmin
≥
1
f s

�
f 0 �

1
2π

�
∂

∂x

�
−2πf 0d · h�x; y�

s

��
max

�
;

lmin �

6666664log2

0
BBB@

1

�f o ∕ f s��1 − d ∕ s�
��

∂h�x;y�
∂x

��
max

1
CCCA

7777775: (A3)

Similarly, lmax can be determined as follows:

f s
2lmax�1

≤ f 0 �
1
2π

�
∂ϕ

∂x

�
min

;

lmax �

2
666666
log2

0
BBB@

1

2�f o ∕ f s��1 − d ∕ s�
�
∂h�x;y�

∂x

�
min

1
CCCA

3
777777
: (A4)

Note that in theory, Eqs. (A3) and (A4) apply only to
the vertical subbands. For simplicity, we assume the
horizontal and diagonal subbands also have the
same lmin and lmax. In general this does not signifi-
cantly affect the final result. This is because the hor-
izontal and diagonal subbands usually have much
less fringe energy than the vertical subbands, such
that lVmax ≥ lDmax; lHmax and lVmin ≤ lDmin; l

H
min, where V,

D, and H refer to vertical, diagonal, and horizontal
subbands. Hence, when using the same lmin and
lmax for the horizontal and diagonal subbands, it is
possible that we may also apply the proposed bias
removal and denoising algorithm to diagonal or

Fig. 19. (Color online) Reconstructed 3D model using the
proposed algorithm.
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horizontal subbands that contain no fringe energy.
This, however, does not significantly affect the over-
all performance, although the computational com-
plexity can be slightly increased.

This work is supported by theHong Kong Polytech-
nic University under research grant G-U862.
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