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Automatic tongue area segmentation is crucial for computer aided tongue diagnosis, but traditional
intensity-based segmentation methods that make use of monochromatic images cannot provide accurate
and robust results. We propose a novel tongue segmentation method that uses hyperspectral images and
the support vector machine. This method combines spatial and spectral information to analyze the
medical tongue image and can provide much better tongue segmentation results. The promising exper-
imental results and quantitative evaluations demonstrate that our method can provide much better
performance than the traditional method. © 2007 Optical Society of America

OCIS codes: 100.5010, 100.2960, 170.4580, 170.6510.

1. Introduction

Techniques such as magnetic resonance imaging
(MRI), computer tomography (CT), and ultrasound
have dramatically promoted the development of mod-
ern biomedical engineering [1]. Among many re-
search problems in biomedical engineering, image
segmentation is still a challenging field for research-
ers, mainly because of the ambiguity between the
organ and its ambient tissues. This difficulty becomes
especially harder under the living dynamic situation,
since the squirm of the organ will deteriorate the
detection. A typical example is the human tongue.

The human tongue is a unique organ that can be
stuck out of the body for inspection. So it plays an
important role not only in the diagnosis of tongue
cancer [2] and glossitis [3], but also in tongue diag-
nosis of traditional Chinese medicine (TCM) [4].
However, tongue segmentation for computer-aided
diagnosis is hard work resulting from the human
tongue’s physiological properties. First, there are
some ravines and patches on the surface of the tongue
that have a significant influence on edge detection.

Second, people can stick out only a part of the tongue,
and there are no criteria on the quantity of the part.
In other words, the part of the tongue that we can
inspect is random. Third, according to TCM, [5] the
color, plumpness, and slenderness of the tongue can
vary because of disease. In recent years, some re-
searchers were attracted to this work [4,6]. However,
these methods are not always effective [4], especially
when the surface color of the tongue is similar to its
ambient tissue. The reason for this limitation is
mainly that all methods are based on the analysis of
intensity difference in monochromatic images, which
inspires us to exploit other more effective methods.

A. Hyperspectral Imaging and Its Advantages

The increasing requirement for accurate noninvasive
diagnosis and treatment promotes the application of
optical technologies in this field. Optical techniques
have the ability to perform a diagnosis on tissues
without the need for sample excision. Another advan-
tage of optical diagnosis is that the resulting infor-
mation can be available visually. Current optical
diagnostic technologies can be categorized into three
broad categories. The first, which records a two-
dimensional (2D) image of an area of the sample of
interest at one specific wavelength, can be called an
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optical image (OI). The second, which obtains an en-
tire spectrum of a single tissue within a wavelength
region of interest, can be called a spectral image (SI).
The third is relatively new, combines the two modal-
ities mentioned above, and is often referred to as
hyperspectral imaging (HSI) [7].

Use of HSI for biomedical applications is attractive,
since it records the entire emission for every pixel on
the entire image in the field of view [8]. It is well
known that the interaction of light with human tissue
varies, which has been studied extensively by re-
searchers [9,10]. Small changes in the distribution of
pigments such as melanin, hemoglobin, bilirubin,
and �-carotene in the epidermal and dermal layers of
the human skin can produce significant changes in
the skin’s spectral reflectance [11]. Some researchers
[12,13] measured skin reflectance spectra over the
visible wavelengths and modeled them. For instance,
Angelopoulou et al. [12] used a skin reflectance model
to propose a method for skin detection under varying
lighting conditions.

The automatic segmentation of anatomical struc-
tures in traditional monochromatic images is often
performed using model-based nonrigid registration
methods. That is to say, an automatic segmentation
of a certain structure can be obtained by registering
a labeled model, typically generated in a manual seg-
mentation process, to another data set containing the
structure of interest. This registration is difficult and
laborious [14]. This is a problem that might be solved
if the variability in the spectra of different tissue
types could be used to distinguish between the hu-
man tongue and the nontongue biological substances
in hyperspectral image space.

B. Support Vector Machines for Hyperspectral Image
Analysis

Many supervised methods have been developed to
classify both multispectral data. Some of the success-
ful approaches to multispectral data classification
have used artificial neural networks, such as multi-
layer perceptrons (MLPs) [16] and radial basis func-
tion neural networks (RBFNNs) [17]. However, these
approaches are not effective when dealing with a
large number of spectral bands since they are highly
sensitive to the Hughes phenomenon [18] known as
the curse of dimensionality. That is, for a fixed and
finite number of training samples, with the number of
features increasing, the classification accuracy first
improves to a peak value and then declines. The de-
cline is due to limitations on the precision of class
statistics estimation resulting from limited training
data. Fortunately, support vector machines (SVM)
[18] can conquer the curse of dimensionality. In re-
cent years, SVM has been successfully used for the
classification of hyperspectral data [15]. It has three
advantages: (1) large input spaces are available for
SVM; (2) SVM is robust against noise; and (3) SVM
generates sparse solutions, which are subsets of
training samples.

We provide a novel framework for tongue area seg-
mentation that uses the hyperspectral images ac-

quired with our special device and the supervised
SVM classifier. This approach combines the spectral
and spacial information of the tongue surface and
presents promising results for further analysis.

C. Organization of this Paper

The remainder of the paper is organized as follows.
In Section 2 we describe the setup of the device. In
Section 3 briefly introduce SVMs. We describe the
segmentation framework in Section 4 and the exper-
imental results and quantitative evaluations in Sec-
tion 5. Our conclusions are presented in Section 6.

2. Setup of the Device

To obtain the hyperspectral image data, the de-
vice based on the theory of the pushbroom hyper-
spectral imager (PHI) [19,20] is used, whose main
modules are illustrated in Fig. 1. It consists of a spec-
trometer, a matrix CCD, an instrument translation
module, and a data collection module. This device has
the ability to acquire a complete spatial-spectral im-
age cube in 180 ms from 400 to 1000 nm, which ba-
sically eliminates motion artifacts. We built a studio
with two constant light sources for this capture de-
vice so that the illumination is constant. Each of the
light sources is a 100 W halogen lamp with a white
diffuser screen. The two sources provide approxi-
mately uniform illumination on the subject. Also, the
camera has been calibrated and fixed on the frame.
The distance between the lens and the tongue is con-
stant, and the head of the patient can be constrained
by a framework (shown in Fig. 6). Therefore, the
illumination can be considered to be constant in our
study.

This device provides a sequence of images in dif-
ferent spectral bands. In other words, the HSI ap-
proach provides a “data cube” of spectral information,
that consists of a series of optical images recorded at
various wavelengths of interest. An example of the
image cube is illustrated in Fig. 2. Each pixel of the
image has two properties; the spectrum property and
the intensity property. Based on analyzing the “im-
age cube,” we can see that different object surfaces
can be represented by different band curves. Thus,
using these special tongue images, we can do tongue
area segmentation according to the difference in spec-
tral curves between the tongue and its ambient or-
gans.

Fig. 1. Schematic of hyperspectral imaging sensor system.
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3. Description of Support Vector Machines

The SVM is a popular classifier based on statistical
learning theory as proposed by Vapnik [22]. The
training phase of SVMs is to find a linear optimal
separating hyperplane as a maximum margin classi-
fier with respect to the training data. In SVMs, sup-
port vectors, which are critical for classification, are
obtained in a learning phase that uses training sam-
ples. In the test phase for classification, class labels
are found for the new (i.e., unknown) feature vectors
using support vectors. When the training data are not
linearly separable, the kernel methods [23] are used
in SVMs. These kernel methods map data from the
original input space to a kernel feature space of
higher dimensionality. The parameters of the kernels
are important for the classification results. In con-
trast to the traditional learning methods, a SVM does
not depend explicitly on the dimensionality of input
spaces so it is a good candidate for a supervised clas-
sification of hyperspectral images. Some references
[18,22,23] detailed the information about SVM.

4. Segmentation Framework

As hyperspectral images can provide both spectral
and spatial information to identify and distinguish
specific materials, our method integrates HSI with
SVM for tongue area segmentation. The process be-
gins with the calibration for hyperspectral images,
then, the region of interest is determined. After the
input data are normalized, the SVM is used for clas-
sification. At last, according to the results of classifi-
cation, we obtain the contour of the tongue. The
pipeline of the procedure is illustrated in Fig. 3, and
its main modules are described in the following.

A. Hyperspectral Image Calibration

To obtain the unified representation of the ref-
lectance values for computing, it is necessary to
calibrate the raw hyperspectral images first. An
effective method for calibration has been presented
by Pan and Healey [13], which we describe briefly
as follows.

This method acquires two additional images in
black and white. The black image, which has near 0%
reflectance, can be obtained by covering the lens. The
white image refers to near totally reflected image and
is acquired with a white panel in front of the camera
at the same distance for human tongue acquisition.

The calibration is traceable to the U.S. National In-
stitute of Standards and Technology (NIST) [13].

The image intensity at the spatial coordinate �x, y�
for wavelength �i can be modeled as

I�x, y, �i� � L�x, y, �i�S�x, y, �i�R�x, y, �i�
� O�x, y, �i�, (1)

where L�x, y, �i� refers to the illumination, S�x, y, �i�
refers to the system spectral response, R�x, y, �i� re-
fers to the reflectance of the viewed surface, and
O�x, y, �i� refers to the offset, which includes dark
current and stray light. i � �1, 2, . . . , b�, b is the
number of spectral bands (in our study, b � 120).

For the white image, the intensity of coordinate
�x, y� for wavelength �i can be modeled as

IW�x, y, �i� � L�x, y, �i�S�x, y, �i�RW�x, y, �i�
� O�x, y, �i�, (2)

and for the black image, the intensity of coordinate
�x, y� for wavelength �i can be modeled as

IB�x, y, �i� � L�x, y, �i�S�x, y, �i�RB�x, y, �i�
� O�x, y, �i�, (3)

where RW�x, y, �i� and RB�x, y, �i� are reflectance func-
tions of the white image and the black image, respec-
tively. Since the viewed surfaces have the same
reflectance property for all image pixels, RW�x, y, �i�
and RB�x, y, �i� are theoretically independent of �x, y�
and can be denoted as RW��i� and RB��i�.

Combining Eqs. (2) and (3), we can estimate
L�x, y, �i�S�x, y, �i� as

L�x, y, �i�S�x, y, �i� �
IW�x, y, �i� � IB�x, y, �i�

RW��i� � RB��i�
.

(4)

When Eq. (4) is substituted into Eq. (3), O�x, y, �i� can
be estimated as

Fig. 2. (Color online) (a) HSI cube and (b) spectrum corresponding
to the point in (a).

Fig. 3. Flow chart of hyperspectral tongue image segmentation
procedure.
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O�x, y, �i� � IB�x, y, �i� �
IW�x, y, �i� � IB�x, y, �i�

RW��i� � RB��i�
� RB��i�. (5)

With Eqs. (4) and (5), we obtain the calibration equa-
tion provided below:

R�x, y, �i� �
I�x, y, �i� � IB�x, y, �i�

IW�x, y, �i� � IB�x, y, �i�
RW��i�

�
IW�x, y, �i� � I�x, y, �i�
IW�x, y, �i� � IB�x, y, �i�

RB��i�. (6)

B. Segmentation

The process of segmentation is begun by selecting the
region of interest (ROI), which eliminates the back-
ground from the original images (shown in Fig. 4).
Thus, the primary sources of variance in the input
data, which are the intensity and spectral curve
shape, are limited to five classes; i.e., the tongue, the
face, the lip, the teeth, and the tissues of the inner
mouth. We represent each tongue image using the
feature vectors that are extracted from the ROI. The
feature vector at coordinate �x, y� can be denoted
as R � �r�x, y, �1�, r�x, y, �2, . . . , r�x, y, �b��T, where
r�x, y, �i� denotes the reflectance at �i, and b is the
number of spectral bands (in our study, b � 120).
Then, the normalized spectral reflectance vector R̃ is
defined by

R̃ � R��R�, (7)

where �·� means the L2 norm.
Here we should note that in this study the feature

vectors are composed of the reflectance values at all
wavelength bands. This is because the SVM that we
used for classification is different from the traditional
classifiers that suffer from the curse of dimensional-
ity [18], such as MLP [16], and RBFNN [17]. As a
superior classification algorithm, SVM works well on
hyperspectral data and does not require preprocess-
ing to reduce data dimensionality for conquering the
curse of dimensionality [15]. In fact, we have found
that the accuracy of SVM deteriorates with the ap-
plication of feature extraction techniques [21]. This
demonstrates that for SVM classification, the possi-
bility of finding an optimum hyperplane for separat-
ing the classes is higher in the high dimensional data
set than in the reduced dimensionality data set.

Therefore, unlike other classifiers, SVM classifiers
may be adopted when the entire data set is required
to be used, and so, in our study we have selected all
the wave bands as the input features for classifica-
tion.

The next step is to use the SVM to classify the
tongue and nontongue areas. To do this, the input
feature space is first mapped by a kernel transforma-
tion into a higher dimensional space, where it is ex-
pected to find a linear separation that maximizes the
margin between the two classes. In the hyperspectral
space, a normally distributed model is a reasonable
assumption for optical human organ detection data.
A number of kernels have been discussed for the
SVM, but it is not clear how to choose one that gives
the best generalization for a particular problem. The
type of kernel that is chosen and the values of the
parameters associated with the kernel both affect
the classification accuracy. In our study, the popular
Gaussian kernel is exploited for the SVM, and the
multiclass strategy for the SVM [14] is used to clas-
sify the various tissues. SVM labels the separated
parts as tongue, face, lip, teeth, and the inner tissue
of the mouth. Then the pixel of the tongue area is
represented by “1” and that of the nontongue area is
represented by “0” in a corresponding binary image of
the same size (Fig. 4) extracting the contour of the
tongue. Finally, we map the results into the color
tongue images (see Fig. 5). Note these color images
are in red-green-blue (RGB) color space and can be
integrated using three frames from a hyperspectral
image cube corresponding to 650 nm (red), 510 nm
(green), and 475 nm (blue).

5. Experiments and Comparisons

We used our hyperspectral image capture device to
obtain a series of tongue images with the efficient

Fig. 4. ROI in the captured image (the left) and the binary image
representing the detected tongue area (the right).

Fig. 5. (Color online) (a) Spectrum of the visible light. (b) Top row:
RGB tongue image synthesized by three spectral images. Bottom
row: segmentation results in hyperspectral images and mapping
them directly into the RGB tongue image.
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pixels of 652 � 488. The device was operated in a
spectral wavelength range of 400–1000 nm with two
distinct spectra regimes, visible (400 and 720 nm)
and near infrared (720 and 1000 nm). One hundred
and fifty-two volunteers were sampled for this exper-
iment. Figure 6 shows some examples of the captured
images from the visible wavelength range at different
bands, and Fig. 7 illustrates the differences in the
spectral curves of different tissues. Eighty samples
were randomly chosen from 152 volunteers and were
used to train SVMs, and the remainders were used
for testing. In this experiment, for training, we man-
ually extracted from the training sample set samples
of the tongue, face, teeth, lip, and tissue of inner
mouth. We used a “one-against-all” multiclass strat-
egy [15]. This very common approach is based on a
parallel architecture made up of T (T � 5 in our
study) SVMs. Each SVM solves a two-class problem
defined by one class against all the others. The
“winner-takes-all” rule is used for the final decision.
That is, the winning class is the one corresponding to
the SVM with the highest output (discriminant func-
tion value). The architecture of this strategy can be
seen in Fig. 8.

In the following subsections, we propose the crite-
ria of evaluation and compare our approach with the
popular method called bi-elliptical deformable con-
tour (BEDC).

A. Criteria of Evaluation

It is necessary to evaluate the performance of the
segmentation quantitatively. Chalana and Kim [24]
suggested the use of boundary error metrics to eval-
uate segmentation performance. Let A � �a1, a2, . . . ,
am� and B � �b1, b2, . . . , bn� denote the automatic
segmentation result and manual segmentation
result, respectively, where a1, a2, . . . , am and b1,
b2, . . . , bn are points on the corresponding boundary
curve. Define the distance to the closest point (DCP)
for ai to curve B as

d�ai, B� � min
j

�bj � ai�. (8)

Then, the Hausdorff distance (HD) between the two
curves is defined as the maximum of the DCP be-
tween the two curves. This can be formularized as

HD�A, B� � max�max
i

�d�ai, B��, max
j

�d�bj, A���.
(9)

The mean DCP distance (MD) of two curves A and B
can be defined as

MD�A, B� �
1

m � n��i
d�ai, B� � �

j
d�bj, A��. (10)

B. Comparison with BEDC

To our best knowledge, BEDC proposed by Pang et al.
[4] is currently the most effective method for use in
tongue segmentation applications. BEDC combines a
bi-elliptical deformable template (BEDT) and an ac-
tive contour model. The BEDT captures gross shape
features by using the steepest descent method on its
energy function in the parameter space. The BEDC is
derived from the BEDT by substituting template
forces for classical internal forces and can deform to
fit local details. However, this method is based on the
intensity of images and cannot get satisfactory re-
sults when the intensity values of the tongue and
its ambient tissues are close [4]. Our HSI�SVM
method combines the hyperspectral image spectral
features and the effective classifier, SVM, to segment

Fig. 6. Series of visible spectral tongue images from a hyperspec-
tral image cube.

Fig. 7. Spectral curves of the tongue and the skin of the face from
two subjects.

Fig. 8. Block diagram of the architecture for solving multiclass
problems with SVMs.
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the tongue area, which is immune to the factors that
affect the performance of BEDC. Figure 9 shows some
results of segmentation using our method and BEDC.
The results of HSI�SVM are shown in Figs. 9(b),
9(d), and 9(f). We implement the BEDC algorithm
with the images at the spectral band whose central
wavelength is 492.5 nm. The results of BEDC can be
seen in Figs. 9(a), 9(c), and 9(e).

We evaluated the segmentation performance of
HSI�SVM and BEDC using the distance measure-
ment mentioned in Subsection 5.A. To calculate the
distance, we manually extracted the ground truths
(i.e., the accurate boundaries of the tongue) from the
images. We then calculated the distance between
the ground truth and the results using HSI�SVM
and BEDC, respectively. For the distance measure,
we use HD and MD defined by Eqs. (9) and (10). HD
and MD as shown in Table 1 are both the average of
the testing results, which can be formularized as

HD � �
i�1

N

HD�N MD � �
i�1

N

MD�N, (11)

where N is the number of the testing examples (in our
study, N � 152 � 80 � 72). Furthermore, we show
the standard error �SE� of HD and MD that we used

in comparing our method and BEDC. The standard
error can be computed as

SE �
s

	N
, s � 	 1

N � 1�
i�1

N

�xi � x��2, (12)

where s is the sample standard deviation.
Table 1 and Fig. 10 show the results of the com-

parison of our method and BEDC. We can see that the
values of HD and MD with our method are 11 and
6.23, respectively. In contrast, the two values of
BEDC are 27 and 10.14, respectively. It is obvious
that our method produces more accurate results than
BEDC. Furthermore, the standard errors of HD and
MD when we use our method are both much smaller
than those of BEDC. This shows that our method can
obtain more stable segmentation results than BEDC.

6. Conclusion

In the field of human tongue segmentation, tradi-
tional deformable template methods are popular.
However, these intensity-based algorithms are not
always robust, as in a monochromatic image, the in-
tensity of the surface of the tongue may be similar to
that of surrounding tissue. We have presented what
we believe to be a new method for segmenting med-
ical images of the tongue. The method (HSI�SVM)
uses hyperspectral images to differentiate between
the tongue and the surrounding tissue by exploiting
the spectral variability of different tissue types and
combines it with support vector machines, a popular
classifier that does not depend explicitly on the di-
mensionality of input spaces and has a good gener-
alization performance. The experimental result and
the corresponding quantitative evaluation demon-
strate that the proposed hybrid HSI�SVM approach
can provide more effective and robust performance
than the traditional method.
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Fig. 9. Comparison of tongue segmentation results (a). (c) and (e)
are the results of the BEDC method [4]. (b), (d), and (f) are the
results of our proposed HSI�SVM method.

Fig. 10. (Color online) Histogram of the comparison of our method
and BEDC: (a) HD and MD and (b) SE�HD� and SE�MD�.

Table 1. Comparison of HSI�SVM Method and the BEDC Method [4]
Tongue Segmentation Results in Terms of Boundary Metrics

HD
(in pixels) SE(HD)

MD
(in pixels) SE(MD)

HSI�SVM 11 0.278 6.23 0.233
BEDC [4] 27 0.567 10.14 0.481
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