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Probing the quantum behavior of a nanomechanical resonator coupled to a double quantum dot

Zeng-Zhao Li,1,2 Shi-Hua Ouyang,1,2 Chi-Hang Lam,2 and J. Q. You1,3,*

1Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
2Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

3Beijing Computational Science Research Center, Beijing 100084, China
(Received 7 January 2012; revised manuscript received 1 April 2012; published 7 June 2012)

We propose a current correlation spectrum approach to probe the quantum behaviors of a nanomechanical
resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer
and is further coupled to a quantum-point contact (QPC). By measuring the current correlation spectrum of the
QPC, shifts in the DQD energy levels, which depend on the phonon occupation in the NAMR, are determined.
Quantum behaviors of the NAMR could, thus, be observed. In particular, the cooling of the NAMR into the
quantum regime could be examined. In addition, the effects of the coupling strength between the DQD and the
NAMR on these energy shifts are studied. We also investigate the impacts on the current correlation spectrum of
the QPC due to the backaction from the charge detector on the DQD.
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I. INTRODUCTION

The observation of quantum-mechanical behaviors in na-
noelectromechanical systems, in particular, nanomechanical
resonators (NAMRs) for testing the basic principles of
quantum mechanics1–3 has become a topic of considerable
interest and activity. Besides their wide range of poten-
tial applications,1,2 e.g., serving as ultrasensitive sensors
in high-precision displacement measurements, and detection
of gravitational waves, quantized NAMRs are potentially
useful for quantum-information processing. For example,
NAMRs may serve as a unique intermediary for transferring
quantum information between microwave and optical domains
because they can be coupled to electromagnetic waves of any
frequency.4

At very low temperatures (in the milli-Kelvin range),
NAMRs of high-vibration frequencies (gigahertz range) have
recently been experimentally verified to approach the quantum
limit.5–11 However, low-frequency (�100-MHz) mechanical
oscillators have the distinct advantages of high-quality factors,
long phonon lifetimes, and large motional state displacements,
which are important for future testing of quantum theory12

and other applications. A formidable challenge (see, e.g.,
Refs. 5–10) in this field is to detect the quantum quivering
(zero-point motion) of an NAMR so as to quantitatively verify
whether it has been cooled into the quantum-mechanical
regime or not. To directly detect the extremely small dis-
placements of an NAMR vibrating at gigahertz frequencies
by using available displacement-detection techniques is very
difficult.8–11 The usual position-measurement method is also
severely limited by the “zero-point displacement” fluctuations
in the quantum regime,13 although near-Heisenberg-limited
measurements have been performed in recent experiments.14

In this paper, we propose a current spectroscopic approach
to study the behaviors of an NAMR. It is based on the detection
of the current correlation spectrum in a charge detector, e.g.,
a quantum-point contact (QPC), which is indirectly coupled
to an NAMR via a double quantum dot (DQD) acting as
a quantum-electro-mechanical transducer.15 Based on this
proposal, we show that one can observe the quantum behaviors
of the NAMR and can further verify whether it has been cooled

into the quantum regime. In contrast to a previous approach
based on the superconducting qubit coupled to a cavity, which
involves Rabi splitting,16 our proposed setup is expected to
provide better tunability via the gate voltages. Moreover, we
also study the effects of the backaction from the charge detector
on the DQD.

We consider a coupled NAMR-DQD system in the strong
dispersive regime where the coupling strength g is much
smaller than the frequency detuning δ between the DQD and
the NAMR. In this regime, energy quanta in the NAMR are
only virtually exchanged between the DQD and the NAMR.
Thus, the coupling of the DQD to the NAMR does not change
the occupation state of the electron in the DQD, but only results
in phonon-number-dependent frequency shifts in the DQD
energy levels. These shifts are analogous to Stark shifts and
can be further detected by measuring the current correlation
spectrum of the QPC.

This paper is organized as follows. In Sec. II, the coupled
system is explained. The effective dispersive Hamiltonian is
derived in Sec. III. The quantum dynamics of the coupled
NAMR-DQD system in the presence of the QPC are derived
in Sec. IV. In Sec. V, results related to the observation of
quantum behaviors, the verification of the ground-state cooling
of an NAMR, as well as the backaction from the QPC on the
DQD are analyzed. Conclusions are given in Sec. VI.

II. THE COUPLED NAMR-DQD-QPC SYSTEM

The device layout of an NAMR capacitively coupled to a
lateral DQD, which is further measured by a QPC, is presented
in Fig. 1(a). Here, we consider a Coulomb-blockade regime
with strong intradot and interdot Coulomb interactions so that
only one electron is allowed in the DQD. The states of the
DQD are denoted by occupation states |1〉 and |2〉, representing
one electron in the left and the right dots, respectively. The
stereographical diagram of this device is shown in Fig. 1(b).
The lateral DQD is formed by properly tuning the voltages
applied to the gates. Also, an electron can be injected from
the left reservoir to the DQD by changing the gate voltages.
A metallic NAMR is fabricated above the DQD, and the
displacement of the NAMR from its equilibrium position
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FIG. 1. (Color online) (a) Schematic of an NAMR capacitively
coupled to a DQD, which is under measurement by a nearby QPC. The
energy detuning between the two dot states in the DQD is zero, and the
interdot coupling strength between them is �. (b) A stereographical
diagram of the device where an electron is injected from the left reser-
voir to the DQD by changing the gate voltages, and the displacement
of the metallic NAMR from its equilibrium position modulates the
capacitance between the NAMR and the DQD. (c) Effective energy
levels for the DQD (horizontal solid lines in the left panel) in the
dispersive DQD-NAMR coupling regime: εe = � + (n + 1/2)χ and
εg = −� − (n + 1/2)χ with energy detuning δn = 2� + (2n + 1)χ ;
effective energy levels for the NAMR (horizontal solid lines in the
right panel) in the dispersive DQD-NAMR coupling regime: ωn + nχ

and ωn − nχ with ωn = nωm. The effective phonon level differences
are ωm + χ and ωm − χ .

modulates the mutual capacitance between the NAMR and
the DQD.17 The current IQPC through the QPC depends on the
electron occupation of the DQD.

The total Hamiltonian of the whole system is

H = Hsys + Hint + Hdet, (1)

with an unperturbed part,

Hsys = HNAMR + HDQD + HQPC, (2)

where (after setting h̄ = 1),

HNAMR = ωmb†b, (3)

HDQD = �

2
(a†

2a2 − a
†
1a1) + �(a†

2a1 + a
†
1a2), (4)

HQPC =
∑

k

ωSkc
†
SkcSk +

∑
q

ωDqc
†
DqcDq. (5)

The interaction parts are

Hint = −(g2a
†
2a2 + g1a

†
1a1)(b† + b), (6)

Hdet =
∑
kq

(T0 − ζ2a
†
2a2 − ζ1a

†
1a1)(c†SkcDq + c

†
DqcSk). (7)

Here, HNAMR, HDQD, and HQPC, respectively, are the free
Hamiltonians of the NAMR, the DQD, and the QPC with-

out the tunneling terms. The phonon operators b† and b,
respectively, create and annihilate an excitation of frequency
ωm in the NAMR. In Eq. (4), � is the energy detuning
between the two dots, and � is the interdot coupling. Below,
we consider, for simplicity, the degenerate-state case with
� = 0 [see Fig. 1(a)]. cSk (cDq) is the annihilation operator
for electrons in the source (drain) reservoir of the QPC
with momentum k (q). Here, we define pseudospin operators
σz ≡ a

†
2a2 − a

†
1a1 and σx ≡ a

†
2a1 + a

†
1a2 with a1 (a2) being

the annihilation operator for an electron staying at the left
(right) dot. Hint is the electromechanical coupling between
the NAMR and dots 1 and 2 with coupling strengths g1 and
g2. The relative coupling strength g ≡ (g2 − g1)/2 is about
0.1ωm ∼ 0.5ωm for typical electromechanical couplings (see,
e.g., Ref. 18). Hdet describes tunnelings in the QPC, which
depends on the electron occupation of the DQD, owing to
the electrostatic coupling between the DQD and the QPC. We
define T ≡ T0 − (ζ2 + ζ1)/2 and ζ ≡ (ζ2 − ζ1)/2 so that the
transition amplitude of the QPC when an extra electron stays
at the left and right dots equals T + ζ or T − ζ , respectively.

III. EFFECTIVE DISPERSIVE HAMILTONIAN

In the eigenstate basis, the DQD Hamiltonian can be written
as

HDQD = �
z, (8)

where 
z = a
†
eae − a

†
gag with the two eigenstates of the DQD

given by |g〉 = (|1〉 − |2〉)/√2 and |e〉 = (|1〉 + |2〉)/√2 and
the energy splitting between these two eigenstates is 2�. Then,
the total Hamiltonian becomes

H = ωmb†b + �
z + g
x(b† + b)

+HQPC +
∑
kq

[T + ζ
x](c†SkcDq + c
†
DqcSk), (9)

where 
x = a
†
eag + a

†
gae.

In the dispersive DQD-NAMR coupling regime with |η| <

1, where η = g/δ and δ = 2� − ωm, applying a canonical
transformation UHU † on the Hamiltonian (9), where U = es

with s = η(
+b − 
−b†), one obtains an effective dispersive
Hamiltonian. Under the rotating-wave approximation, this
dispersive Hamiltonian can be written, up to second order
in η, as H = H0 + HI, with

H0 = ωmb†b + �
z + χ

(
1

2
+ b†b

)

z + HQPC, (10)

HI =
∑
kq

(T + ζ
x)(c†SkcDq + c
†
DqcSk). (11)

Here, χ = g2/δ. The third term in Eq. (10) is a dispersive
interaction that can be viewed as either a DQD-state-dependent
frequency shift in the NAMR or a phonon-number-dependent
shift in the DQD transition frequency. This interaction implies
that, when the DQD state is excited (deexcited), an energy 2χ

is effectively added to (removed from) each NAMR phonon.
A similar frequency shift also appears in analogous systems in
quantum optics.19 The dispersive NAMR-DQD energy levels,
described by the first three terms in Eq. (10), are the quantum
version of the ac Stark effect. When there is no interaction
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(g = 0) between the NAMR and the DQD, energy differences
between adjacent levels of the NAMR or the DQD are simply
ωm or 2�, respectively. However, for g > 0, these eigenstates
are dressed by the dispersive interaction. The corresponding
phonon level differences become ωm − χ for the DQD state
|g〉 and ωm + χ for state |e〉, whereas the DQD energy split is

δn ≡ 2� + (2n + 1)χ (12)

for phonon number n in the NAMR. Figure 1(c) shows
these effective energy-level differences. The phonon-number-
dependent frequency shift in the DQD as well as the DQD-
state-dependent shift in the NAMR can be detected as will be
explained below.

IV. QUANTUM DYNAMICS OF THE COUPLED
NAMR-DQD SYSTEM

We now derive a master equation to describe the quantum
dynamics of the coupled system. In the interaction picture
with the dispersive Hamiltonian H0 in Eq. (10), the interaction
Hamiltonian HI [Eq. (11)] can be written as

HI(t) = S(t)Y (t), (13)

with

S(t) =
3∑

j=1

Pje
iω̂j t , (14)

Y (t) =
∑
kq

[F †
kq(t) + Fkq(t)], (15)

where P1 = χ
+, P2 = χ
−, P3 = T , ω̂1 = 2� + 2χ ( 1
2 +

b†b), ω̂2 = −ω̂1, ω̂3 = 0, F
†
kq(t) = c

†
SkcDq+ei(ωSk−ωDk ), and

Fkq(t) = c
†
DqcSke

−i(ωSk−ωDk). Applying the Born-Markov ap-
proximation and tracing over the degrees of freedom of the
QPC, quantum dynamics of the NAMR-DQD system are
governed by

ρ̇I (t) = TrS,D

{
− i[HI(t),ρtot(0)]

−
∫ ∞

0
[HI(t),[HI(t

′),ρtot(t)]]
}
. (16)

Here, ρtot(t) is the density operator of the whole system
including the QPC as well. Substituting HI from Eq. (13)
into Eq. (16) and converting the resulting equation into the
Schrödinger picture, we obtain the master equation,

ρ̇(t) = Lρ(t) = −i[HDQD,ρ(t)] + Ldρ(t) + γdD[
−]ρ(t),
(17)

with

Ldρ(t) =
⎧⎨
⎩

3∑
i=1

D[Pi]ρ(t) +
3∑

i=1

3∑
j=1 (j �=i)

D[Pi,Pj ]ρ(t)

⎫⎬
⎭

× 2πgSgDζ 2[�(eVQPC − ωi)

+�(−eVQPC − ωi)], (18)

where �(x) = (|x| + x)/2 and gS,D denotes the density of
states in the source and drain reservoirs of the QPC, which
has a bias voltage VQPC. ωi is the eigenvalue of the operator
ω̂i with the NAMR in the |n〉 state. Here, for simplicity,

the temperatures of the reservoirs in the DQD-QPC system
(instead of the temperature Tm of the NAMR) are chosen
to be T = 0 K because related quantum-dot experiments are
performed at extremely low temperatures (see, e.g., Ref. 20).
The superoperator D, acting on any single or double operator,
is defined as

D[A]ρ ≡ AρA† − 1
2A†Aρ − 1

2ρA†A, (19)

D[A,B]ρ ≡ 1
2 (AρB† + BρA† − B†Aρ − ρA†B). (20)

To account for the coupling of the DQD to other degrees
of freedom, such as hyperfine interactions and electron-
phonon couplings, we have phenomenologically included an
additional relaxation term [the third term on the right-hand
side of Eq. (17)] describing transitions from excited state |e〉
to ground state |g〉.21 In the strong dispersive regime, as we
have mentioned before, the phonon in the NAMR neither
is absorbed nor induces any transitions in the DQD and,
hence, does not change the occupation probability of the DQD.
Instead, the occupation state of the DQD is only affected by the
backaction of the QPC and the phenomenological relaxation
term.

In the basis {|e,n〉,|g,n〉} of the coupled NAMR-DQD
system, we obtain the following evolution equations for the
reduced density matrix elements:

ρ̇en,en = γ+ρgn,gn − (γ− + γd )ρen,en, (21)

ρ̇gn,gn = −γ+ρgn,gn + (γ− + γd )ρen,en, (22)

ρ̇en,gn = −iδnρen,gn − γ1(ρen,gn − ρgn,en) − 1
2γdρen,gn, (23)

ρ̇gn,en = iδnρgn,en + γ1(ρen,gn − ρgn,en) − 1
2γdρgn,en. (24)

Assuming eVQPC > δn > 0, the QPC-induced relaxation and
excitation rates between the ground state and the excited state
of the DQD are defined as γ+ = γ1(1 − λn), γ− = γ1(1 + λn),
where γ1 = 2πgSgDχ2eVQPC and λn = δn/eVQPC. Since the
decay rate of the NAMR is much smaller than that of the
DQD, dissipations of the NAMR are neglected (see further
discussions below). In Eqs. (21)–(24), the reduced density
matrix element ρin,in(i = g,e) gives the occupation probability
of state |i,n〉 of the coupled NAMR-DQD system, whereas
ρin,jn (i �= j ) describes the quantum coherence between states
|i,n〉 and |j,n〉. Equations of motion for other elements, e.g.,
ρin,jn′ (n �= n′), which are decoupled from those considered
here, are not shown. Using the normalization condition
pn = ρgn,gn + ρen,en, the solutions to the equations above are
obtained as

ρen,en(t) =
[
ρen,en(0) − γ+

2γ0
pn

]
e−2γ0t + γ+

2γ0
pn, (25)

ρgn,gn(t) =
[
ρgn,gn(0) − γ− + γd

2γ0
pn

]
e−2γ0t + γ− + γd

2γ0
pn,

(26)

ρen,gn(t) = e−γ0t

[
cos(νnt)ρen,gn(0) + sin(νnt)

× γ1ρgn,en(0) − iδnρen,gn(0)√
δ2
n − γ 2

1

]
, (27)
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ρgn,en(t) = e−γ0t

[
cos(νnt)ρgn,en(0) + sin(νnt)

× γ1ρen,gn(0) + iδnρgn,en(0)√
δ2
n − γ 2

1

]
, (28)

where

γ0 = γ1 + γd

2
, (29)

νn =
√

δ2
n − γ 2

1 , (30)

and pn is the probability that the NAMR is in state |n〉. In
the calculation, we have assumed 0 < γ1 < δn (see typical
parameters listed in Sec. V A).

V. CURRENT CORRELATION SPECTRUM OF THE QPC

The dc current through the QPC is given by22

I (t) = Ilρ11(t) + Irρ22(t), (31)

where Il = eD and Ir = eD′ are the currents through the QPC
when dots 1 and 2, respectively, are occupied.22 Here, D =
2πgSgD(T − ζ )2eVQPC and D′ = 2πgSgD(T + ζ )2eVQPC are
the corresponding rates of electron tunneling through the QPC,
which follows from Eq. (7). Using ρ11 + ρ22 = 1, one can
define the current operator as

Î (t) = I0 − I1σz, (32)

with I0 = e
2 (D + D′) and I1 = e

2 (D − D′) and 
x = −σz

in the degenerate-state case with � = 0. According to the
Wiener-Khintchine theorem, when the phonon in the NAMR is
in state |n〉, the QPC current correlation power spectrum Sn(ω)
is given in terms of the two-time correlation function as19

Sn(ω) = 2	
∫ +∞

0
dτ eiωτ [〈Î (t)Î (t + τ )〉n − 〈Î (t + τ )〉n〈Î (t)〉n].

(33)

Substituting Eqs. (25)–(28) and (32) into Eq. (33) and using
S(ω) = S0 + ∑

n pnSn(ω), we get

S(ω)

S0
= 1 + 2γ1γ2

γ1 + γ2

∑
n

p2
n

{
γ0

γ 2
0 + (νn − ω)2

×
[

1 + γ1

γ0

(
1 + ω

νn

)
+ γ+ − γ− − γd

2γ0

δn

νn

]

+ γ0

γ 2
0 + (νn + ω)2

[
1 + γ1

γ0

(
1 − ω

νn

)

+ γ+ − γ− − γd

2γ0

δn

νn

] }
. (34)

Here, S0 = 2eI0 is the current-noise background. From
Eq. (34), one sees that the current correlation spectrum of
the QPC consists of peaks at resonance frequencies ω = ±νn.
These peaks have width γ0 and heights increasing with the
probability pn. In particular, for small backaction from
the QPC, i.e., γ1 � δn, peaks are located at the resonance
point ω = δn = 2� + (2n + 1)χ , admitting a shift (2n + 1)χ
inherited from the phonon-number-dependent frequency shift
in the DQD as explained above. Thus, one can read out the

phonon-number state of the NAMR from these peak shifts in
the current correlation spectrum of the QPC.

A. Verification of ground-state cooling of the NAMR

The observation of quantum-mechanical phenomena re-
quires a high frequency and a low temperature for the NAMR
(see, e.g., Refs. 5–7) so that Nth ≡ kBTm/h̄ωm < 1 or 〈n〉 <

0.582, where Nth is the thermal occupation number and kB is
the Boltzmann constant. We now assume thermal equilibrium
of the NAMR with a probability19 pn ∝ e−〈n|HNAMR|n〉/kBT for
a state |n〉 so that pn = 〈n〉n/(1 + 〈n〉)n+1. In general, a state
with the average phonon number 〈n〉 � 1 (e.g., 〈n〉 = 0.01)
implying p0 ≈ 1 is considered as a quantum ground state.

By using typical parameters18,21,23–25 ωm = 2π ×
100, � = 2π × 200 MHz, g = 0.3ωm, ζ/T = 0.044, γ2 =
0.01ωm, γ1 = 0.2γ2, and γd = 2γ2, the current correlation
spectrum of the QPC is calculated and is presented in Fig. 2
where only the positive frequency regime is shown. For
〈n〉 = 0.02 � 0.582 in the quantum regime [see Fig. 2(a)],
there is only a single peak in the spectrum corresponding to
the transition frequency between the two eigenstates of the
DQD. From Eq. (34), the peak is located at the resonance
frequency ν0 given in Eq. (30). The corresponding probability
distribution function pn is also shown in the right panel of the
figures showing the probability of finding the NAMR in state

FIG. 2. (Color online) Left panel: Current correlation spectrum
of the QPC when the average phonon numbers in the NAMR are
(a) 〈n〉 = 0.02, (b) 0.3, (c) 0.6, and (d) 6, respectively, given by the
thermal distribution, i.e., pn = 〈n〉n/(1 + 〈n〉)n+1. Right panel: the
corresponding probability of the NAMR in state |n〉. The coupling
strength between the NAMR and the DQD is chosen as g = 0.3ωm.
The other parameters are ωm = 2π × 100 MHz, � = 2ωm, γ2 =
0.01ωm, γ1 = 0.2γ2, γd = 2γ2, and ζ/T = 0.044.
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|n〉. This spectrum is nearly indistinguishable from the pure
ground state with 〈n〉 = 0. At a higher temperature, other
peaks begin to appear in the current correlation spectrum
[Fig. 2(b)]. The peak position as given in Eqs. (30) and (34)
admits an NAMR-induced shift analogous to an ac Stark
shift. In the regime with, e.g., 〈n〉 = 0.6 [Fig. 2(c)] and 6
[Fig. 2(d)], multiple peaks are obtained. As each resonance
peak in the spectrum corresponds to a phonon-number state of
the NAMR, the relative area under each peak could be used,
in principle, to calculate the phonon statistics of the NAMR.

To observe multiple peaks in the correlation spectrum, the
separation between two adjacent peaks must be larger than
the intrinsic peak width, i.e., 2χ > γ0. The ensemble can
then be individually resolved, which allows us to detect the
phonon number to verify the cooling efficiency of the NAMR.
On the contrary, the phonon-number state of the NAMR
cannot be measured when 2χ < γ0. Indeed, a relatively strong
coupling between an NAMR and a quantum dot has been
recently demonstrated.26 Thus, the regime with 2χ > γ0 could
be achievable. Also, the ground-state cooling of an NAMR
coupled to a DQD was proposed.17 One can then apply
the proposed coupled NAMR-DQD system to verify the
ground-state cooling of the NAMR. The frequency shifts in
the DQD energy levels are also different for the ground and
excited states of the NAMR and can then be used to read out
the phonon state of the NAMR, which can be different from
the phonon statistics in the thermal state discussed above.

Figure 3(a) shows the current correlation spectrum of the
QPC when the NAMR is in its ground state with 〈n〉 = 0.02.

FIG. 3. (Color online) (a) Current correlation spectrum of the
QPC when the NAMR is in the ground state and the coupling strengths
g between the NAMR and the DQD are 0 (black squares), 10 MHz
(red circles), 30 MHz (blue upper triangles), and 50 MHz (olive
lower triangles), respectively. (b) Frequency shift δg as a function of
the coupling strength g when the NAMR is in the ground state. Other
parameters are the same as those in Fig. 2.

If the NAMR and the DQD are decoupled, i.e., g = 0,
the frequency corresponding to the peak position is about
2π × 0.4 GHz, which is the transition frequency 2� between
the two eigenstates of the DQD. By increasing the coupling
strength g, we find that the peak shifts to the right, while
the linewidth as well as the amplitude are unchanged. This
suggests that the energy levels of the DQD are shifted so that
the energy splitting is widened under the effect of the NAMR.
However, these changes do not involve the absorption of any
NAMR phonon. As demonstrated in Fig. 3(b), the frequency
shift increases with the square of the coupling strength
between the DQD and the NAMR, consistent with χ = g2/δ in
Eq. (10).

B. QPC-induced backaction in the current correlation
spectrum of the QPC

The backaction on the DQD due to measurement by the
QPC is illustrated in Fig. 4 when the NAMR is practically in
its ground state with 〈n〉 = 0.02. There is no backaction effect
when the bias voltage VQPC across the QPC is less than the
energy difference between the two DQD eigenstates,21 i.e.,
eVQPC < δ0. At eVQPC = 2π × 0.5 GHz > δ0, for example,
a single peak located at ω ∼ 2π × 0.4 GHz appears. When
VQPC is increased, we find that the linewidth of the spectrum
becomes broadened, which results from γ0 = γ1 + γd/2 where
γ1 is proportional to the bias voltage. Physically, the broad-
ening results from more frequent state transitions in the DQD
induced by the backaction from the QPC when a larger bias
voltage is applied across the QPC.

Dissipations in the NAMR due to the environment have
been neglected in our analysis. Dissipation in an NAMR (see
Ref. 27) can be expressed as γm = ωm/Q with a quality
factor Q. However, even for the NAMR-DQD coupling
discussed above (e.g., 2π × 30 MHz), the dissipation of the
NAMR is still very small: γm/g ∼ 10−4 for an experimentally
achievable quality factor26 Q = 105. This justifies neglecting
the dissipations of the NAMR due to other environmental
effects in our calculations.

For a QPC, a Kondo-like model was proposed in Ref. 28,
which is similar to the Kondo problem in a single quantum dot

FIG. 4. (Color online) Current correlation spectrum of the QPC
at various voltage biases VQPC of the QPC when the NAMR is
approximately in the ground state, i.e., 〈n〉 = 0.02. Other parameters
are the same as those in Fig. 2.
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coupled to two leads where the spin degree of freedom plays
an important role. Here, as in Refs. 22 and 29, the QPC we
used is simply modeled as a tunneling junction, and the spin
degree of freedom does not affect its performance. In addition,
it should be noted that the Kondo effect in the DQD can be
avoided here. In fact, the present setup involves no reservoirs
(leads) coupled to the DQD because the coupling between
the DQD and the reservoirs is tuned to zero or is negligibly
small. Nevertheless, the Kondo effect in a DQD needs a strong
coupling between the DQD and the reservoirs in addition to
other requirements.

In practice, there are finite cross-capacitive couplings
among various gate electrodes, which affect the whole system.
However, because the coupling between the NAMR and
the DQD is in the dispersive regime, the effect of the
NAMR on varying the parameters of the DQD is small.
As for the cross-capacitive couplings in the DQD system,
the experiment in Ref. 30 showed that the effect of the
cross-capacitive couplings can be canceled by adjusting the
plunger voltage of the detector during sweeps of the DQD
plunger voltages. In our proposed setup in Fig. 1(b), more gate
electrodes are introduced. This will enhance the tunability
of the DQD system to achieve the needed parameters of the
system.

VI. CONCLUSIONS

We have proposed an approach to study quantum behaviors
of an NAMR by coupling it indirectly to a QPC as a
charge detector via a DQD serving as a quantum transducer.
By detecting the current correlation spectrum of the charge
detector, quantum behaviors of the NAMR can be observed.
It provides interesting insight on the quantum system as well
as dynamics of these backaction effects induced by an act
of measurement, which necessarily perturbs the system being
measured. More importantly, the cooling of the NAMR down
to the quantum regime can be verified. In the quantum regime,
NAMR-phonon-induced shifts (an analog to the Stark shift)
of DQD energy levels as well as their relations with coupling
strength between the NAMR and the DQD are demonstrated.
Backaction effects from the charge detector are also explained.
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