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Critical behavior of two-dimensional spin systems under the random-bond
six-state clock model

Raymond P. H. Wu,a) Veng-cheong Lo, and Haitao Huang
Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
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The critical behavior of the clock model in two-dimensional square lattice is studied numerically

using Monte Carlo method with Wolff algorithm. The Kosterlitz-Thouless (KT) transition is

observed in the six-state clock model, where an intermediate phase exists between the low-

temperature ordered phase and the high-temperature disordered phase. The bond randomness is

introduced to the system by assuming a Gaussian distribution for the coupling coefficients with the

mean l ¼ 1 and different values of variance, from r2 ¼ 0:1 to r2 ¼ 3:0. An abrupt jump in the

helicity modulus at the transition, which is the key characteristic of the KT transition, is verified

with a stability argument. The critical temperature Tc for both pure and disordered systems is

determined from the critical exponent gðTcÞ ¼ 1=4. The results showed that a small amount of

disorder (small r) reduces the critical temperature of the system, without altering the nature of

transition. However, a larger amount of disorder changes the transition from the KT-type into that

of non-KT-type. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754821]

I. INTRODUCTION

In statistical mechanics, ferromagnetic systems can be

described by various spin models such as the Ising model1,2

and the Potts model.3 In a ferromagnetic system, non-zero

magnetization is developed below a critical temperature Tc.

As the temperature increases above Tc, the magnetization

becomes zero and the system becomes paramagnetic. If the

system is cooled down again, just below Tc, the ferromag-

netic phase recurs again. The transition from paramagnetic

phase to ferromagnetic phase is determined by the competi-

tion between the spin-spin interactions and the thermal fluc-

tuations acting on the system. In these systems, spontaneous

symmetry breaking occurred and long-range order is devel-

oped at the transition. The phase transition is of great inter-

est, because there is universality in the critical phenomena.

At the transition, the details of the physical system are not

important and the properties of the system are only governed

by the critical exponents. Different models with the same

critical exponents are said to belong to the same universality

class. It happens that, a single model, elaborated to study cer-

tain phenomenon is found to be useful in studying another

physical situation with the same universality class. Most

phase transitions, including those exhibited by the Ising

model and the Potts model belong to either the first-order

type or the second-order type.

Apart from the ordinary first-order and second-order

phase transitions manifested in most spin models, a specific

phase transition called the Kosterlitz-Thouless (KT) transi-

tion is observed in superfluid systems and it can be described

by the two-dimensional XY model.4–6 Unlike the phase tran-

sitions in other spin models, there are excitations of spin

waves and vortices in the XY model. The driving force

behind the KT transition involves the binding and unbinding

of the vortex-antivortex pairs, which play the role of charges

in the system. This is entirely different from the simple spin-

spin interactions in other spin models. The KT transition

does not involve symmetry breaking and only topological

long-range order is found in the system.

The q-state clock model is a discrete version of the XY
model. In this model, an ensemble of spins with q different

orientations interact with each other and the strength of inter-

actions are determined by the coupling coefficients which

are usually assumed to be a constant. For q ¼ 2, the clock

model reduces to the Ising model, while for q ¼ 3, it is

equivalent to the three-state Potts model, and for q ¼ 4, it is

also called the Ashkin-Teller model,7 which is the four-

component version of the Ising model. At the limiting case

q!1, where the spin state varies continuously, it restores

to the XY model. It is known that, the phase transition in the

Ising model is of the second-order type, while that in the XY
model is of the KT-type. The clock model, being a bridge

between different models, is expected to have various critical

behavior under different values of q. Extensive studies8–15

on the clock model had shown that, for q � 4, the phase tran-

sition is Ising-like, and for q � 6, it is XY-like. There is still

no conclusive result for the case where q ¼ 5.9,15–17 Since

the critical behavior for the q-state clock model does not

change appreciably on varying q values when q is large. This

means that, without using the XY model, which involves the

continuous spin state, the six-state clock model (q ¼ 6) can

be used to study the KT transition.

The presence of defects interrupts the periodic structure

of crystalline materials and the systems become disordered

when the quantity of interruptions is large. It can be visual-

ized by a random distribution of coupling coefficients

between neighboring spins. The effects of disorder on phase

transition have attracted many interests.18–20 In some sys-

tems, a small amount of disorder can have dramatic effects

and even changes the nature of phase transition.19 A numbera)Electronic mail: rayphwu@gmail.com.
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of numerical works21–23 had studied the effects of non-

magnetic impurities on the KT transition. Since non-

magnetic impurities can be viewed as lattice vacancies, the

results found that the KT transition disappears as the vacancy

density reaches the lattice percolation limit. In real systems,

the source of defects may not be only from the non-magnetic

impurities but also from the magnetic ones. In statistical point

of view, it is natural to consider a Gaussian distribution for the

coupling coefficients. Theoretical works24 conjectured that

strong disorder will induce a first-order phase transition in the

XY model. It is our motivation to study the effects of disorder

on the phase transition in the six-state clock model.

II. MODEL

We consider an ensemble of spins on a two-dimensional

square lattice with size N ¼ L� L. For simplicity, we

assumed the spins interact with their nearest neighbors only.

In the q-state clock model, the spins are confined in a plane

with q different orientations each of which is specified by a

phase angle

hn ¼ n
2p
q

� �
; (1)

where n ¼ 0; 1; 2; :::; q� 1 denotes the state of a spin. The

Hamiltonian of the clock model takes the form

H ¼ �
X
hiji

KðhijÞ, where hiji denotes the summation is over

the nearest neighbors only and hij ¼ hi � hj is the phase

angle difference between two spins at lattice sites i and j.
The function KðhÞ is periodic with a period 2p. One simple

form for K(h) is KðhÞ ¼ Jcosh, where J is the coupling coef-

ficient between two neighboring spins. The Hamiltonian is

then given by

H ¼ �
X
hiji

Jijcosðhi � hjÞ: (2)

The spin at spin state n can also be denoted by the spin

vector

Sn ¼ ðsinhn; coshnÞ: (3)

Subsequently, the Hamiltonian can be expressed as

H ¼ �
X
hiji

JijSi � Sj: (4)

Usually, the coupling coefficients Jij are assumed to be a

constant J. A positive J value indicates a ferromagnetic sys-

tem, where the energy is lowered by aligning the spins in the

same direction. On the contrary, a negative J value makes

the neighboring spins oppositely aligned and results in an

antiferromagnetic system. To investigate the effects of disor-

der, the coupling coefficients Jij are assumed to follow the

Gaussian distribution

PðJÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp �ðJ � lÞ2

2r2

" #
; (5)

where l ¼ 1 is the mean and r2 is the variance of the distri-

bution. The bond randomness is reflected by the parameter

r. In particular, r2 ¼ 0 represents a pure system with no dis-

order and with constant coupling coefficient J ¼ 1.

III. MONTE CARLO ALGORITHM

We performed numerical calculations using Monte

Carlo method and the periodic boundary conditions were

applied to the lattice with size up to N ¼ 128� 128. The

Wolff algorithm25 which is the improvement of the

Swendsen-Wang algorithm,26 is applicable to many spin

models including the clock model. Instead of updating a sin-

gle spin, a cluster of spins is updated in the Wolff algorithm

to overcome the problem of critical slowing down. We

adopted the original idea of Wolff which applies to the XY
model. The specialized algorithm for the q-state clock model

is described as follows:

(1) A mirror line is chosen randomly with a normal vector r.

(2) A lattice site i is chosen randomly for a cluster

formation.

(3) Spins at the neighboring sites j are added to the cluster

according to the probability

P ¼ 1� exp � 2Jij

T
ðr � SiÞðr � SjÞ

� �
: (6)

(4) The cluster is updated by reflecting all the spins in the

line perpendicular to the normal vector r.

To implement these procedures, consider the normal vector

rk ¼ ðsin/k; cos/kÞ; (7)

where the angles /k specifies the state of the normal vector

and for even q

/k ¼ k
p
q

� �
; (8)

while for odd q

/k ¼ k þ 1

2

� �
p
q

� �
; (9)

where k ¼ 0; 1; 2; :::; 2q� 1. Then the phase angle of the

reflected spin is given by

Rh ¼ 2/� hþ p; (10)

where R is the reflection operator. Then all the combinations

for different spin vectors Sn and normal vectors rk can be

pre-calculated to reduce the computational cost.

IV. METHODS

A. Magnetization, specific heat, and susceptibility

Several properties of the system are calculated in order

to study the phase transitions in the clock model. The energy

per spin E of the system is given by

063924-2 Wu, Lo, and Huang J. Appl. Phys. 112, 063924 (2012)
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E ¼ � 1

N

�X
hiji

JijSi � Sj

�
; (11)

where h…i denotes the ensemble average of the quantities.

The magnetization per spin m is given by

m ¼
�

1

N

X
i

sinhi

�
;

�
1

N

X
i

coshi

� !
; (12)

and its magnitude is represented by m. Furthermore, the spe-

cific heat per spin c can be obtained from the fluctuations of

energy and is given by

c ¼ 1

kBT2
ðhE2i � hEi2Þ: (13)

Similarly, the susceptibility per spin v is given by

v ¼ N

kBT
ðhm2i � hmi2Þ: (14)

B. Helicity modulus and fourth-order helicity modulus

Besides judging the existence of the KT transition from

the above properties of the system, the more convincing evi-

dence is by observing the critical behavior of the helicity

modulus. Consider the Hamiltonian of the clock model

including an externally imposed spin twist D ¼ ðDx;DyÞ
across the system

H ¼ �
X
hiji

Jijcosðhi � hj �
1

L
rij � DÞ; (15)

where rij is a unit vector pointing from lattice site i to j. The

components of the spin twist Dx and Dy are defined by the

summation of the phase angle difference hij along the x and

y directions, respectively. The helicity modulus per spin ! is

a measure of the resistance to an infinitesimal spin twist

across the system along one direction. It is related to the free

energy per spin F of the system by ! � @2F=@D2
		
D¼0

, which

leads to the expression

! ¼ � 1

2
hEi � N

T
hs2i; (16)

where

s � 1

N

X
hiji

Jijsinðhi � hjÞðrij � xÞ: (17)

According to the renormalization group calculations,5 the

helicity modulus in the XY model which undergoes the KT

transition jumps from the value ð2=pÞTc to zero at the transi-

tion in the thermodynamic limit. This abrupt jump in the hel-

icity modulus at the transition is the key feature of the KT

transition. Unfortunately, it is very difficult to determine the

discontinuity of the helicity modulus from numerical calcu-

lations because of the limited precision.

A new numerical method27 based on a stability

argument can be used to identify the KT transition. The

expansion of free energy of the system gives

FðDÞ ¼ h!i D2

2! þ h!4i D4

4! þ :::, where !4 � @4F=@D4
		
D¼0

is

the fourth-order helicity modulus and it can be expressed as

h!4i ¼
1

2N
hEi þ 3

4T
hEi2 � 3

4T
hE2i þ 4

T
hs2i þ 3N2

T3
hs2i2

þ 3N

T2
hEihs2i:

(18)

A spin twist to the system gives an additional contribution to

the free energy so that FðDÞ � Fð0Þ. Since the helicity mod-

ulus ! must be non-negative and in the XY model, this quan-

tity is positive and finite below the critical temperature and

is zero above it. Consequently, the fourth-order helicity mod-

ulus !4 must also be non-negative at any temperature where

! vanishes. Supposed !4 is negative at the transition, then !
cannot approach zero continuously but must make a discon-

tinuous jump to zero at the transition instead. Hence, we can

distinguish the KT transition from the ordinary first-order or

the second-order phase transition by the fourth-order helicity

modulus.

C. Critical exponent and critical temperature

From the theory developed by Kosterlitz,5 it is known

that at T ! Tc, the correlation length n and the susceptibil-

ity v in the XY model diverge according to the asymptotic

laws

n / expðbt�1=2Þ; (19)

where t � ðT � TcÞ=Tc and b � 1:5, and

v / n2�g; (20)

where the critical exponent g ¼ 1=4 has the same value as

that of the two-dimensional Ising model2 and is the only

exponent in the absence of external field for the XY model.

From the studies of the superfluid systems,6 the helicity mod-

ulus is given by ! ¼ ð�h=mÞ2qs, where m is the mass of the

superfluid and qs is density of the superfluid. The critical

exponent is given by g ¼ ðT=2pÞð�h=mÞ2qs. Then we can

obtain a relation

g ¼ T

2p!
: (21)

Hence, the critical exponent g can be calculated from the

helicity modulus !. This, in turn, enables us to determine the

critical temperature Tc from the point where the critical

exponent gðTcÞ ¼ 1=4. Furthermore, since the helicity modu-

lus ! jumps from the value ð2=pÞTc to zero at the transition,

we can also determine the critical temperature Tc from the

intersection of the curve and the straight line

! ¼ 2

p
T: (22)
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V. RESULTS AND DISCUSSION

A. Second-order phase transition and the KT
transition

The four-state clock model (q ¼ 4) is known to be

equivalent to the Ising model (q ¼ 2). The nature of phase

transitions for both cases is essentially the same, being of the

second-order type. On the other hand, the phase transition in

the six-state clock model (q ¼ 6) is known to be of the KT-

type. Several properties of the clock model with q ¼ 4 and

q ¼ 6 are calculated under the same conditions to demon-

strate the differences between the second-order phase transi-

tion and the KT transition in these models.

The magnetization against temperature for the four-state

and the six-state clock model with various lattice sizes are

given in Figs. 1(a) and 1(b), respectively. In the four-state

clock model, the magnetization is non-zero below the

critical temperature and above which it vanishes. The

low-temperature ordered phase and the high-temperature

disordered phase are separated at the critical temperature,

manifesting the second-order phase transition. However, in

the six-state clock model, the magnetization undergoes two

transitions instead of a single one. There exists an inter-

mediate phase called the KT phase (or the massless phase)

between the low-temperature ordered phase and the high-

temperature disordered phase.

The specific heat against temperature for the four-state

and the six-state clock model with various lattice sizes are

given in Figs. 2(a) and 2(b), respectively. Also, the suscepti-

bility against temperature for the four-state and the six-state

clock model with various lattice sizes are given in Figs. 3(a)

and 3(b), respectively. In the four-state clock model, a single

peak emerges in both specific heat and susceptibility. They

diverge at the critical temperature as expected in the second-

order phase transition. On the other hand, double peaks are

observed in the six-state clock model. Again, this is a manifes-

tation of the KT transition. It is found that, in both cases, as

the size of the lattice increases, the peaks of both specific heat

and susceptibility become sharper. In the four-state clock

model, the critical temperature decreases as the lattice size

increases. In the six-state clock model, the upper critical tem-

perature also decreases as the lattice size increases, but there

is no appreciable effect on the lower critical temperature.

The helicity modulus against temperature for the

four-state and the six-state clock models with various lattice

sizes are given in Figs. 4(a) and 4(b), respectively. In the

FIG. 1. The magnetization against temperature for (a) the four-state clock

model and (b) the six-state clock model with various lattice sizes.

FIG. 2. The specific heat against temperature for (a) the four-state clock

model and (b) the six-state clock model with various lattice sizes.
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four-state clock model, the helicity modulus remains positive

and finite across the transition despite the finite-size effect.

However, in the six-state clock model, it vanishes above the

critical temperature. In order to demonstrate an abrupt jump

in the helicity modulus in the six-state clock model, the

fourth-order helicity modulus against temperature with vari-

ous lattice sizes is given in Fig. 5. It is demonstrated that the

fourth-order helicity modulus is negative at the phase transi-

tion and thus the discontinuous nature of the helicity modu-

lus is confirmed. Hence, the phase transition for the six-state

clock model is of the KT-type.

The critical exponent g against temperature for the six-

state clock model with various lattice sizes is given in Fig. 6.

The critical temperature that determined from the critical

exponent g and form the helicity modulus are the same. The

results are given in Table I. For the largest lattice size

N ¼ 128� 128, the critical temperature is Tc ¼ 0:916,

which is consistent with the literatures.8–12,14

B. Random-bond six-state clock model

From the above results, the KT transition in the pure

six-state clock model has been demonstrated. Subsequently,

the effects of disorder on the phase transition in the six-state

clock model are then investigated. The bond randomness is

reflected by the parameter r as defined in Eq. (5). The results

with lattice size N ¼ 128� 128 and with different values of

r are shown as follows.

FIG. 3. The susceptibility against temperature for (a) the four-state clock

model and (b) the six-state clock model with various lattice sizes.
FIG. 4. The helicity modulus against temperature for (a) the four-state clock

model and (b) the six-state clock model with various lattice sizes.

FIG. 5. The fourth-order helicity modulus against temperature for the six-

state clock model with various lattice sizes.
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The magnetization against temperature for the random-

bond six-state clock model with various r2 is given in Fig. 7.

As r increases, the critical temperature of the system

decreases. In the pure system, there exists an intermediate

phase between the low-temperature ordered phase and the

high-temperature disordered phase. However, as r increases,

this intermediate phase reduces and for r2 ¼ 3:0, it becomes

unobservable. In this case, the critical behavior of the mag-

netization looks very similar to that of the four-state clock

model.

The specific heat and the susceptibility against tempera-

ture for the random-bond six-state clock model with various

r2 are given in Figs. 8 and 9, respectively. The results for the

specific heat are very noisy especially for large r. However,

we can still able to identify the double-peak feature as in the

pure system for small r. The results for the susceptibility are

much clearer and again the double-peak feature emerges. As

r increases, all the peaks of both specific heat and suscepti-

bility shift to the left, indicating the decreases in the critical

temperature. The distance between the two peaks in the sus-

ceptibility decreases as r increases and for r2 ¼ 3:0, they

merge together as one. Furthermore, the height of the peak

increases as r increases and for r2 ¼ 3:0, it becomes compa-

rable with that of the four-state clock model.

The above results for the random-bond six-state clock

model showed the shrinkage of the intermediate phase as the

amount of disorder (r) increases. Under a large amount of

disorder, the phase transition seems to be of the second-order

type as in the four-state clock model. The intermediate phase

disappeared and only the low-temperature ordered phase and

the high-temperature disordered phase are observed. In order

to demonstrate the disappearance of the KT transition under

a large amount of disorder, the helicity modulus and the

fourth-order helicity modulus of the system are calculated.

The helicity modulus against temperature for the random-

bond six-state clock model with various r2 is given in

Fig. 10. As r increases, the transition becomes boarder. The

helicity modulus still vanishes above the critical temperature

for large r. However, it tends to be continuous rather than

makes a discontinuous jump at the transition. The fourth-

order helicity modulus against temperature for the random-

bond six-state clock model with various r2 is given in

Fig. 11. For r2 ¼ 0:1 and r2 ¼ 0:5, the fourth-order helicity

modulus at the transition are clearly negative, implying the

system undergoes the KT transition. However, despite the

noisy nature, the depth of the trough reduces as r increases.

For r2 ¼ 3:0, the trough is no longer observable and thus the

helicity modulus does not jump discontinuously. Hence we

FIG. 6. The critical exponent g against temperature for the six-state clock

model with various lattice sizes.

TABLE I. The critical temperature for the six-state clock model with

various lattice sizes.

N Tc

8� 8 0.966

16� 16 0.942

32� 32 0.930

64� 64 0.922

128� 128 0.916

FIG. 7. The magnetization against temperature for the random-bond six-

state clock model with lattice size N ¼ 128� 128 and various r2.

FIG. 8. The specific heat against temperature for the random-bond six-state

clock model with lattice size N ¼ 128� 128 and various r2.
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can conclude that the transition is no longer of the KT-type

and this is consistent with our observations discussed before.

The critical exponent g against temperature for the

random-bond six-state clock model with various r2 is given

in Fig. 12. Again, the critical temperature that determined

from the critical exponent g and form the helicity modulus

are the same. The results are given in Table II. Also, the

critical temperature against r2 for the random-bond six-

state clock model is given in Fig. 13. Since the transition

is no longer of the KT-type for large r, the critical tempera-

ture determined from these methods may beyond the defini-

tions described above. Hence the results for r2 ¼ 2:0 and

r2 ¼ 3:0 are only for comparison purpose.

The driving force behind the KT transition involves the

binding and unbinding of the vortex-antivortex pairs. Since

these processes are not affected by a small perturbation on

the local spin phase angle, under a small amount of disorder,

the phase transition is still of the KT-type. However, the

binding and unbinding of the vortex-antivortex pairs are pro-

hibited under a large amount of disorder and thus the transi-

tion is only determined by the competition between the spin-

spin interactions and the thermal fluctuations acting on the

system. Hence, the transition is no longer of the KT-type and

becomes the ordinary first-order or the second-order phase

transition. If the amount of disorder is too large, there will be

no phase transition in the system, because the ordering of

spins cannot be developed.

FIG. 9. The susceptibility against temperature for the random-bond six-state

clock model with lattice size N ¼ 128� 128 and various r2.

FIG. 10. The helicity modulus against temperature for the random-bond six-

state clock model with lattice size N ¼ 128� 128 and various r2.

FIG. 11. The fourth-order helicity modulus against temperature for the

random-bond six-state clock model with lattice size N ¼ 128� 128 and var-

ious r2.

FIG. 12. The critical exponent g against temperature for the random-bond

six-state clock model with lattice size N ¼ 128� 128 and various r2.
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VI. CONCLUSION

We have studied the effects of disorder on the phase

transition in the six-state clock model (q ¼ 6). The critical

temperature for both pure and disordered systems is deter-

mined. The results showed that a small amount of disorder

reduces the critical temperature of the system, without alter-

ing the nature of transition. However, a larger amount of dis-

order changes the transition from the KT-type into that of

non-KT-type. In the present work, we cannot conclude

whether the phase transition of the random-bond six-state

clock model changes to the first-order type or the second-

order type. Further investigation is necessary.
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