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THE BEST RANK-ONE APPROXIMATION RATIO
OF A TENSOR SPACE’

LIQUN QI'

Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out
that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rank-
one approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly
less than one, and it gives a convergence rate for the greedy rank-one update algorithm. For finite dimensional
general tensor spaces, third order finite dimensional symmetric tensor spaces, and finite biquadratic tensor
spaces, we give positive lower bounds for the best rank-one approximation ratio. For finite symmetric tensor
spaces and finite dimensional biquadratic tensor spaces, we give upper bounds for this ratio.

Key words. tensors, best rank-one approximation ratio, bounds

DOI. 10.1137/100795802

1. Introduction. The best rank-one approximation problem for higher-order ten-
sors has wide applications in wireless communication systems, magnetic resonance ima-
ging, signal and image processing, data analysis, higher order statistics, as well as
independent component analysis (2], (3], [4], [6], [7], {10], [12], [14], [15], [17], [19],
(21], [23], [26].

A basic question for the best rank-one approximation problem is whether there ex-
ists a positive lower bound for the quotient of the best rank-one approximation of a
tensor and the norm of that tensor such that this lower bound only depends upon
the order and dimensions of that tensor. If such a positive lower bound exists, then
it will provide an upper bound for the quotient of the residual of the best rank-one ap-
proximation of any tensor in that tensor space and the norm of that tensor. This upper
bound is strictly less than one, and it gives a convergence rate for the greedy rank-one
update algorithm [1], [9], [8], [24]. In the next section, we show that such a positive lower
bound exists. We call it the best rank-one approximation ratio of that tensor space.

In section 3, we give a positive lower bound for the best rank-one approximation
ratio of a general finite dimensional tensor space. In section 4, we give a positive lower
bound for the best rank-one approximation ratio of a third order finite dimensional sym-
metric tensor space, and an upper bound of this ratio of a finite dimensional symmetric
tensor space. In section 5, we give a positive lower bound and an upper bound for the
best rank-one approximation ratio of a finite dimensional biquadratic tensor
space. Some numerical results are given in section 6. Four open questions are raised
in section 7.

2. General discussion. The following discussion is borrowed from [9] and was

suggested by a referee. Let V. be separable Hilbert spaces with inner product {(,.),
J j

for j=1, ..., m. Consider the tensor product Hilbert space V = ®;’_‘__1 V; (or the

subspace of symmetric tensors Sym™(V) C V®™®, here V" =V with V,=V for
i=1,...,m) with norm || - || induced by the inner product (-,-) = II7, (-, -),. Denote
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the set of rank-one tensors by
Sy ={BeV:B=@m", o), o) e V,}.
For Sym™( V), S; should be replaced by the set of symmetric rank-one tensors
™ = (B e Sym™(V):B=1v®", ve V}.

Denote the zero tensor in V by O. Since §; is weakly closed (see Lemma 1 of |9] and its
proof), for A € V\ {0}, it can be shown (see Lemma. 6 of [9]) that

* 2—mln 2= 2 - - it
(1) A-B| = min|A - B? = | AI? - o(A)? = "A"2(1 uAn2>

where

(2.2) a(A) = Be.é??l);l]:l (A, B)|.

The value o(A) is called the first singular value of A € V in [13]. In the finite di-
mensional case, it is actually the largest absolute value of the singular values of such a
tensor in the sense of [14]. It itself may not be a singular value.

In the symmetric case, we may replace o(.A) by

(23) p(A)= max [(AB)
BeSY™, |iBi|=1

In the finite dimensional case, p(A) is actually the largest absolute value of the Z-
eigenvalues of such a tensor A in the sense of [19]. It itself may not be a Z-eigenvalue
of that tensor. Hence, we call it the spectral radius of that tensor in this paper. In sec-
tion 4, we will give the definition of Z-eigenvalues.

Define

(2.4) App(V) = max {u b < TI%%M CV,A# o}

We call App(V) the best rank-one approzimation ratio of V, or simply the approxima-
tion ratio of V. It is independent from a particular tensor; rather, it is an important index
of the tensor space V.

Similarly, we may define the best rank-one approximation ratio of Sym™(V) as

(2.5) App(Sym™(V)) = max {u < %%%VA € Sym™(V), A# O}.

By (2.1), for A € V\ {0}, we have

IA - B|?

26) AT

<1- App(V)?
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where B* is the best rank-one approximation of A. Hence, the approximation ratio of ¥V
gives an upper bound for the quotient of the residual of the best rank-one approximation
of any tensor in V and the norm of that tensor.

In the finite dimensional case, S is closed. Then, by (2.2), we see that o(-) is also a
norm of V. By (2.4) and the norm equivalence theorem [18], we have

(2.7) App(V) > 0.

Thus, in the finite dimensional case, (2.6) provides an upper bound for the quotient of
the residual of the best rank-one approximation of any tensor A in V and the norm of A.
This upper bound is also strictly less than one.

We now consider the following greedy rank-one update algorithm [8], [13] (called
progressive separated representation in [9] and, in the symmetric case, called successive
symmetric rank-one decomposition in [24]). For A € V\ {0}, let A® = A. For k> 0,
let B*) be the best rank-one approximation of A®), and let A®*1) = A® — B®) Then by
(2.1) and (2.6), we have

MAFD2 < JABPL — App(V)?] < -+ < [LAIP[L — App(V)+1,

This shows that A4 = >°% . B(*) and gives a convergence rate for this algorithm. Numer-
ical examples of this algorithm can be found in section 6. More discussion on this algo-
rithm can be found in (1], [8], [9], [13], [24]. The symmetric case can be treated similarly.
We also have

(2.8) App(Sym™(R")) > 0.

3. A general finite dimensional tensor space. Let 2 < n; <---< n,,. Consider
V=V(im;ng, ...,n,) = 7.1R™ in this section. In this case, for A € V, we may denote
A= (a;...;,), where i;=1,...,n;. The norm || -|| induced by the inner product
(z,y) =z"y in M™ is actually the Frobenius norm. For A € V, it has the form

E JZ e,

tp=1

For z\) € R", we call it a unit vector if (z())T2() = 1. The best rank-one approx-
imation of A is a rank-one tensor Azl ... a(™ =1 Q" ) = (/Iac( xE’ )) where
A€ R, zU) € R are unit vectors such that the Frobemus norm ||A PEOI ||
is minimized.

Let A€ V. For z) € ™, j =1, ..., m, denote
L L

Ad® g = (A r, s =Y g 2D g

i L1 Ln
=1 tp=1

Then we have
(31)  o(A) =max {JAzD ... ™|z e Ry, (a0)T2l) =1 for j=1, ..., m}.

We may see that o(A) is the largest absolute value of the singular values of A in the
sense of [14]. By (3.1), for any A € V and any unit vectors z\) € R" for j = 1, m,
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we have

L0 T
(3.2) o(A) > |AzD) ... gM| = Z Z ail-ni,,.xgll) xﬁ"‘) )
i=1 =1

Clearly, for any 4 € V and A # O, we have

a(A)
0<—=<1
IAll

Then we have
0<App(V) < 1.

For a matrix space, we have m = 2. It is not difficult to see that in that case

1
App(V(m; ny,ng)) = —— o
THEOREM 3.1. Let

e
nl DY nm—]
Then p is a positive lower bound for App(V(m;ny, ..., ny)).
Proof. Suppose that A€ V(m;n,...,n,). For each (i, ...,%,_5), satisfying
that 1 <4 <my, ..., 1 <y <nyy, let K, ...; , be an n,_; X n, matrix with
its (4, j)th element as a;,. Then by (3.1), we have

e dy—gif”
o(K; .. _,) <a(A).
We have
™ -2 n M2
M= Y KPS Y oK, )
3=l =1 4=1 =1
Lo Nyp—2
< Z N0 (A2 =ny - n,u_10(A)2
4= fp_2=1
Now the conclusion follows. 0

The above bound is tight when m = 2. The question is if it is the exact value of
App(V(m;ny, ..., ny)) for m > 3.

4. A finite dimensional symmetric tensor space. We now consider
Sym™(R"). For A€ Sym™(R"), we can denote A= (a,...; ), where 4, ..., i, =
1,...,n and the entries a;...; are invariant under any permutation of its indices.
Let 41 € R and z € R™ be a unit vector. Then Az™ = 12®™ denotes the rank-one mth
order n-dimensional real symmetric tensor, whose (%, --- i,)th element is
Az; --- ;. The best rank-one approximation of A is a rank-one tensor 1z™ such that
the Frobenius norm || A — Az™|| is minimized. The Frobenius norm of tensor .A has the
form
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According to [19], 4z™ is the best rank-one approximation of A if and only if 1 is a. Z-
eigenvalue of .A with the largest absolute value, while z is a Z-eigenvector of A, asso-
ciated with the Z-eigenvalue A.

Denote Az™"! as an n-dimensional vector whose ith component is

(3

-1y —
(Az" )= 3 i@y o T,

PR

Suppose 1 € R and z € R" satisfy the system

m—1 __
(4.1) { Az =iz,

z' z=1

Then we call 1 a Z-eigenvalue of A, and we call z a Z-eigenvector of A, associated with
the Z-eigenvalue 1. Then the spectral radius p(A) is the largest absolute value of the Z-
eigenvalues of A.
For A € Sym™(R") and z € R*, we have
n
Az = <A, Zm> = Z (I:il l-mxl-l oo 1}2"".

ity =1

(4.2) p{A)= max |Az™|.
z€R", 2T z=1
Thus, we have
p(A)
0<=—=<1
[IAl

for any A € Sym™(R"), A# O.
Clearly,

0 < App(Sym™(R")) <1

for all m,n > 2. In the case of a symmetric matrix space, we have m = 2. It is not dif-
ficult to see that

1
2 nyy —
App(Sym?(R")) =7
Again, it is an open question to find the exact values of App(Sym™(R™)) for m > 3.
By Theorem 2.2 of [28], we have the following theorem.
THEOREM 4.1. For any A € Sym*(R™), we have p(A) = o(A).
CoNJECTURE 1. For any A € Sym™(R") with m > 4, we still have p(A) = o(A).
ProposiTION 4.2.

n
max{ E z;
=1

rER™, 2Tz = 1} =+/n.
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Proof. We have

n
ma.x{ x| z € R", J;Tx=1}=max{2zi:z€91", szzl}.
=

n

2

i=1

Following the optimization theory, we have the conclusion. 1]
Let
1
_Em.n - Tlm_l

If m = 2k is even, then let A(™" € Sym™(R"), and let ji,,, be defined by

(4.3) Almmlgm — (g7 g)k
and
1
Fomn = Ao

If m = 2k + 1 is odd, then let A(™™ € Sym™(R"), and let ji,,, be defined by

(4.4) Almn)gm — (g7 )k (zn: zi)

=1
and

. v
Kma = T A
fl At
THEOREM 4.3. The value ps , is a positive lower bound for App(Sym3(R™)). On the
other hand, the value fiy, , is an upper bound for App(Sym™(R™)) form =2,3, .... We
have

1 1
4.5 —= =, = App(Sym?(R")) = iy, = —,
(4.5) Jn Mo, ( (R™)) 2=
1

(4.6) — =My S App(Sym?*(R")) < fi3, = 5,
and
(a7) App(Sym* (R)) < fig, = |/~

— n%+2n

Proof. By Theorems 3.1 and 4.1, (2.4), and (2.5), we have the first conclusion. If m
is even, by (4.2) and (4.3), we have p(A™™) = 1. If m is odd, by (4.2), (4.4), and Pro-
position 4.2, we have p(A(™™) = \/n. By (2.5), we have the second conclusion.

The equalities (4.5) are basic knowledge of linear algebra.
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For (4.6), we need only prove the last equality. The other equality and inequalities
of (4.6) follow from the first two conclusions. Let A®™ = (a;;;) be defined by (4.4).
Then

@i =1
fori=1,...,n,
1
Qiic = Qiv; = @Qi;; = —
11§ i i 3
for i,j=1,...,n, i # j, and the other elements of A®" are zero. Then,
2
(3on) (12 9 n° +5n
“-A " “ Z a’m + Z n] + az]z + a’]u - 6 ’
1<4,j<n
i#]

Hence, the last equality of (4.6) holds.
For (4.7), we need only prove the equality. The inequality of (4.7) follows from the
second conclusion. Let AU" = (aij1) be defined by (4.3). Then

G =1
fori=1,...,n,
1
Giijj = Gijiy = Qijji = jiji = Ajigy = Gyjig = 3
for 4,7 =1,...,n, i # j, and the other elements of A" are zero. Then,
At
= E Gyt Y a%; + a%;; + a2l
1111 n]; z]z] z]yz ]1]1 jiij it
l<z<]<n

__n+2n
=—a

Hence, the equality of (4.7) also holds. g

CoNJECTURE 2. For m >4, y, .= \/% is also a positive lower bound for
App(Sym™(R")).

In the previous version of this paper, we got a positive lower bound

3
M =
V/An! +12V30° + (35 — 36v/3)n? + (243 — 30)n

for App(Sym*(R™)). The proof is tedious, and the bound is much smaller than
By, = \/1— Hence, we do not include that result here.

Now, (4.5) gives the exact values of App(Sym™(R")) for m = 2. What are the exact
values of App(Sym™(R™)) for m > 3? Does an equality hold for one of the two inequal- -
ities of (4.6), or are both the inequalities of (4.6) strict? What is the exact value of
App(Sym?3(R™))? What is the exact value of App(Sym?*(R"))?
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5. A finite dimensional biquadratic tensor space. Beside symmetric and gen-
eral tensors, there are also various partially symmetric tensors. Among partially sym-
metric tensors, biquadratic tensors have received much attention in recent years [5], [11],
[16], [20], [22], [25], [27].

An (n x p)-dimensional biquadratic tensor A has the form A = (a;j;), where
,j=1,....,n; kl=1,...,p; 2<n<p, with symmetric property aiu = aju =
ayy, for any i, j, k, and I. We use B,,, to denote the set of all (n x p)-dimensional bi-
quadratic tensors. Then B, , = Sym?(R")@Sym?(R?) is a tensor space.

The best rank-one approximation of A€B,, is a rank-one tensor Ar?yi=
2 ®2z®y®y=(Azz;yry), where 1 € R, z € R", and y € R? are unit vectors with
7'z = y"y = 1 such that the Frobenius norm |.A — 22?y?|| is minimized.

Let A€ B, ,. For z € R" and y € R?, denote

A y? = (A, 2?) Z Z T YY1

i5=1 k=1
For A € B, ,, define
(5.1) op(A) = max {|A?y?|:z e R, z'z=1, ye R?, y 'y = 1}.

Again, we see that pp(-) is a norm of B, ,. We may also see that pp(.A) is the largest
absolute value of the M-eigenvalues of A, defined as below [20], [25]. Denote A- zyy as a
vector in R", whose ith component is 37 | > 7, ayu%;yry1, and denote Azzy - as a
vector in RP, whose Ith component is z;szl Yoy Giuziziy. A e R, ze R and y €
R? satisfy the system

A- zyy = Az,
Azzy - = Ay,
=1,

yy=1,

then we call 1 an M-eigenvalue of A, and we call z and y left and right M-eigenvectors
of A, associated with the M-eigenvalue 2. We call pp(A) the bispectral radius
of A.

CONJECTURE 3. If n = p and A € Sym*(R"), then pp(A) = p(A).

Similarly, for any A € B, , and A # O, we have

PB(-A)
1Al

0< <1

Define the best rank-one approzimation ratio of B, , as

A
App(B,,) = {u p < ”JE‘“) VAEB,, A# (’)}

Then,

0 < App(B,,) < 1.

We now have the following theorem.
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THEOREM 5.1. We have

Proof. For each (4,5), 1 < 4,5 < n, let K;; be a p x p symmetric matrix with its
(k, [)th element as a;;,;. Then by (5.1), we have

p(Ky;) < pp(A).

We have
lAlI* = Z 1K ll* < Z pr(Ki;)* < n’ppp(A).
ig=1 ig=1

The first inequality of (5.3) follows.
Let A € B, , be defined by

A’y = (z7z)(y"y).

By (5.1), pp(A) = 1. It is easy to see that ||A||> = np. By (5.2), we have the second
inequality of (5.3). The proof is complete. 0
Again, what is the exact value of App(B,,,)?

6. Numerical results. In this section, we present some intuitive numerical results
of general third order tensors, symmetric third order tensors, and biquadratic tensors to
show the validity of the theoretical results established in this paper. We use the greedy
update algorithm to decompose the tensors. In every iteration of the greedy method, we
use the higher order power method [12], its symmetric version, and the bisymmetric
power method [25] to compute the best rank-one approximation of each of the three
kinds of tensors, respectively. Since all the best rank-one approximation problems
for higher order tensors are NP-hard, the solution found by the. power method is only
an approximate value of the best rank-one approximation. Nevertheless, favorable nu-
merical results are achieved for the tested tensors. The experiments were conducted in
MATLAB on a personal PC.

Let .AM be the tensor given in the following examples for k > 1; let {ng)}i21 be the
sequence of computed rank-one approximations of A*) by the power method. The power
method is terminated whenever HBE:‘_)I - ng)H < 1.0 x 1075, Then, let B®) := Bgi)l be the
computed rank-one approximation of A®*), Let A*+1) .= A® — B® We terminate the
H%H < 1.0 x 1075, The results are shown in
Figures 1-3. In these figures, the horizontal axis represents the iteration k, rank-one

greedy update algorithm whenever

) (k) . ® . ,
ration denotes f’l—%%-ll%, computed residual denotes ”j ”Il’ and theoretical residual denotes

(1 — a?)* with a the corresponding lower bound for App(V) established in sections 3,
4, and 5, respectively.
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Fic. 1. Performance map of a 3 x 3 x 3 tensor.

25

Ezample 1. The first example is a 3 X 3 x 3 tensor with entries as follows in the
format of the MATLADB multidimensional array notation: '

A(:, ) =
A(:,:,2)=
A(:,:,3) =

0.4333
0.8154
0.0643

0.4866
0.7641
0.6708

0.3871
0.1355
0.9715

0.4278
0.0199
0.3815

0.8087
0.9924
0.8296

0.0769
0.7727
0.7726

0.4140
0.5598 |,
0.8834

0.2073
0.8752 |,
0.1325

0.3151
0.4089
0.5526

The results are shown in Figure 1. The lower bound for App(V) in this case is % We
observe from Figure 1 that all the computed rank-one rations are above the lower bound,
and theoretical residual dominates computed residual as expected.
Ezample 2. The second example is a 3 x 3 x 3 symmetric tensor with the
independent entries as follows in the format of the MATLAB multidimensional array
notation:
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F16. 2. Performance map of a 3 x 3 X 3 symmetric tensor.

A(1,1,1) = 0.0517;  A(2,2,2) = 0.3943; A(3,3,3) = 0.9723;

A(1,1,2) = 0.3579; A(1,1,3) = 0.5298; A(1,2,2) = 0.7544;

A(1,3,3) = 0.3612; .A(1,2,3) = 0.2156; .A(2,2,3) = 0.0146;
A(2,3,3) = 0.6718.

The results are shown in Figure 2. The lower bound for App(V) in this case is 3. We
observe from Figure 2 that 27 of 30 computed rank-one rations are above the lower
bound. The three exception cases are due to the fact that the power method does
not guarantee the computed solution is the best rank-one approximation, while theo-

retical residual dominates computed residual as expected.
Ezample 3. The third example is a 2 X 2 x 3 x 3 biquadratic tensor with the inde-

pendent entries as follows in the format of the MATLAB multidimensional array notation:

(1,1,1,1) = 0.8728; .A(1,1,1,2) = 0.8932; A(1,1,1,3) = 0.6199;
(1,1,2,2) = 0.7716; A(1,1,2,3) = 0.6240; A(L,1,3,3) = 0.7999;
(1,2,1,1) = 0.7562; A(1,2,1,2) = 0.7749; A(1,2,1,3) = 0.5485;
A(1,2,2,2) = 0.5406; A(1,2,2,3) =0.5487; A(1,2,3,3) = 0.6386;
(2,2,1,1) = 0.8378; A(2,2,1,2) = 0.7583; A(2,2,1,3) = 0.5386;
(2,2,2,2) = 0.6850; .A(2,2,2,3) = 0.6113; A(2,2,3,3) = 0.5993.
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Fic. 3. Performance map of a 2 x 2 x 3 x 3 biquadratic tensor.

The results are shown in Figure 3. The lower bound for App(V) in this case is
% = 0.2887. Similar phenomena as that in Figure 2 could be observed.
2 . ; . e
From the numerical experiments, we see that the results established in this paper do
give a convergence rate for the greedy rank-one update algorithm.

7. Four open questions. This paper leaves four outstanding challenging
questions.
1. Are Conjectures 1-3 true? By Theorem 3.1, (2.4), and (2.5), we may see that if
Conjecture 1 is true, then Conjecture 2 is true.
2. What are the exact values of App(V(m;n,, ..., n,)) for m > 37
3. What are the exact values of App(Sym™(R")) for m > 37
4. What are the exact values of App(B,,)? '
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