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Abstract. We propose a fast verification method for saddle point linear systems where the
(1,1) block is singular. The proposed verification method is based on an algebraic analysis of a
block diagonal preconditioner and rounding mode controlled computations. Numerical comparison
of several verification methods with various block diagonal preconditioners is given.
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1. Introduction. We consider the system of saddle point linear systems

Hu = b ≡
(

A B
BT 0

) (
x
y

)
=

(
c
d

)
,(1.1)

where A is an n×n symmetric positive semidefinite matrix and B is an n×m matrix,
with m ≤ n. We denote l = n + m. We assume that the coefficient matrix H is
nonsingular, which implies that B has full-column rank.

In recent years, saddle point problems have received considerable attention. A
large amount of work has been devoted to developing efficient algorithms for solving
saddle point problems. In a recent comprehensive survey [1], Benzi, Golub, and
Liesen discussed a large selection of numerical methods for saddle point problems. We
are aware that it is very important to verify the accuracy of approximate solutions
obtained by the numerical methods. However, there is little discussion on validated
solutions of saddle point problems by taking all possible effects of rounding errors into
account.

Standard validation methods for the solution of a system of linear equations use an
approximation of the inverse of the coefficient matrix. These methods are not efficient
for the saddle point problem (1.1) when the dimension l is large or the condition
number of H is large, due to the indefiniteness of H and the singularity of A.

In [2], a numerical validation method is proposed for verifying the accuracy of
approximation solutions of the saddle point problem (1.1) without using an approxi-
mation of the inverse H−1, under the assumption that A is symmetric positive definite.
The method uses the special structure of the saddle point problem to represent the
variable x by the inverse of A and the variable y. For the case that A is singular and
the size of the problem is large, it is a significant challenge to compute a rigorous up-
per bound for the norm ‖H−1‖ without using an approximation of the inverse H−1.
In this paper, we present a fast method to compute rigorous error bounds for the
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saddle point problem (1.1) where A is symmetric positive semidefinite. In particular,
we present a fast method to compute a constant α such that

‖u∗ − u‖2 ≤ α‖b −Hu‖2 foru ∈ Rl,(1.2)

where u∗ is the exact solution of (1.1). This method is based on an algebraic analysis
of a block diagonal preconditioner for saddle point systems studied in a recent paper
[6] by Golub, Greif, and Varah. Instead of approximating the inverse of the l × l
indefinite matrix H, we use approximations of inverses of two symmetric positive
definite matrices in Rn×n and Rm×m to define the constant α in the error bound
(1.2). Moreover, we present fast methods to estimate upper bounds for the norms of
inverses of the two symmetric positive definite matrices based on fast validated matrix
computation by Oishi and Rump [8].

In section 2, we define the error constant α. In section 3, we discuss how to
compute an upper bound of α efficiently and accurately by taking all possible effects
of rounding errors into account. In section 4, we compare our verification method with
the Krawczyk method [13], the LU decomposition method [8], the verifylss function of
INTLAB, and a block component verification method proposed in [2] using examples
from CUTEr [6], optimal surface fitting [3, 10], mixed finite element discretization of
the Stokes equations [1], and image restoration [5, 15].

2. A new error bound. Let W be an m × m symmetric positive semidefinite
matrix such that

M(W ) = A + BWBT

is a symmetric positive definite matrix. Note that BWBT is singular for any sym-
metric positive definite matrix W when m < n. However, if W is symmetric positive
definite, we can show that M(W ) is symmetric positive definite under the conditions
that A is positive semidefinite and H is nonsingular. To see it, let x̄ �= 0 be a solution
of M(W )x̄ = 0. Then we have

x̄T Ax̄ + x̄T BWBT x̄ = 0.

Since A and BWBT are positive semidefinite, we obtain

x̄T Ax̄ = 0 and x̄T BWBT x̄ = 0,

which implies

Ax̄ = 0 and BT x̄ = 0.

Therefore, we find that Hz = 0 with z = (x̄, 0). This contradicts that H is nonsingular.
Recently, Golub, Greif, and Varah [6] performed an algebraic study of the block

diagonal positive definite preconditioner

M(W ) =
(

M(W ) 0
0 BT M(W )−1B

)
.(2.1)

They showed that M(W ) has the attractive property that the eigenvalues of the
associated preconditioned matrix M(W )−1H are bounded in a small range.

Lemma 2.1 (see [6]). The eigenvalues of the preconditioned matrix M(W )−1H
are bounded within the two intervals[

−1,
1 −√

5
2

]
∪

[
1,

1 +
√

5
2

]
.
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Lemma 2.1 makes it possible for us to present rigorous error bounds for the saddle
point problem (1.1).

Theorem 2.1. Let u∗ be the exact solution of (1.1). For any u ∈ Rl, we have

‖u∗ − u‖2 ≤ 2√
5 − 1

max
(∥∥M(W )−1

∥∥
2
, ‖M(W )‖2

∥∥∥(
BT B

)−1
∥∥∥

2

)
‖b −Hu‖2.(2.2)

Proof. Obviously, we have

‖u∗ − u‖2 ≤ ∥∥H−1
∥∥

2
‖b −Hu‖2.

Now, we use Lemma 2.1 to give an upper bound of ‖H−1‖2. Let L be a nonsingular
matrix such that LLT = M(W ), and let

S = L−1HL−T .(2.3)

Then the inverse H−1 can be given as

H−1 = L−TS−1L−1.

Since H and S are symmetric, we have

∥∥H−1
∥∥

2
= max

v∈Rl

v �=0

∣∣∣∣vTL−TS−1L−1v

vT v

∣∣∣∣
= max

v∈Rl

v �=0

∣∣∣∣vTL−TS−1L−1v

vTL−TL−1v

vTL−TL−1v

vT v

∣∣∣∣
≤ max

w∈Rl

w �=0

∣∣∣∣wTS−1w

wT w

∣∣∣∣max
v∈Rl

v �=0

∣∣∣∣vTM(W )−1v

vT v

∣∣∣∣
=

∥∥S−1
∥∥

2

∥∥M(W )−1
∥∥

2
.(2.4)

From (2.3) and LLT = M(W ), we have

LTM(W )−1HL−T = S.

Hence S and M(W )−1H have the same eigenvalues.
By Lemma 2.1, the eigenvalues of S are bounded within the two intervals[

−1,
1 −√

5
2

]
∪

[
1,

1 +
√

5
2

]
.

Hence all eigenvalues of S−1 satisfy

|λi| ≤ 2√
5 − 1

, i = 1, 2, . . . , l.

From (2.4), we obtain

∥∥H−1
∥∥

2
≤ 2√

5 − 1

∥∥M(W )−1∥∥
2
.
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Moreover, from (2.1), we have∥∥M(W )−1∥∥
2
≤ max

(∥∥M(W )−1
∥∥

2
,
∥∥∥(

BT M(W )−1B
)−1

∥∥∥
2

)
≤ max

(∥∥M(W )−1
∥∥

2
, ‖M(W )‖2

∥∥∥(
BT B

)−1
∥∥∥

2

)
,

where the last inequality uses

λmin

(
BT M(W )−1B

)
= min

y∈Rm

y �=0

(
M(W )−1By, By

)
(By, By)

(
BT By, y

)
(y, y)

≥ λmin

(
M(W )−1

)
λmin(BT B).

Theorem 2.1 shows that an upper bound of the inverse ‖H−1‖2 can be obtained by
computing upper bounds for the norm of inverses of two symmetric positive definite
matrices with sizes of n × n and m × m. When n and/or m are large, the number of
its flops is much less than the methods working on the (n + m) × (n + m) matrix H.
For example, the LU decomposition method for (1.1) requires O((n + m)3) flops, but
estimating ‖M(W )−1‖∞ and ‖(BT B)−1‖∞ requires only O(n3)+O(m3) flops, which
will save O(n2m + nm2) flops computational cost. Moreover, since the two matrices
are symmetric, we can replace ‖ · ‖2 by ‖ · ‖∞ for the matrix norm in (2.2) and have

‖u∗− u‖2 ≤ 2√
5 − 1

max
(∥∥M(W )−1

∥∥
∞, ‖M(W )‖∞

∥∥∥(
BT B

)−1
∥∥∥
∞

)
‖b −Hu‖2.(2.5)

In general, (2.5) is easier to implement than (2.2).

3. Verification methods. When we apply Theorem 2.1 and other verification
methods to verify the accuracy of an approximate solution of (1.1) on a computer, it
is necessary to consider rounding error. The IEEE 754 arithmetic standard [4] defines
the rounding modes for double precision floating point numbers. Since Intel’s CPU
follows this standard, the rounding modes can be used on most personal computers
(PCs) and workstations. We use rounding downwards, rounding upwards, and round-
ing nearest to compute rigorous error bounds for (2.5). We also apply these rounding
modes to the following three verification methods.

Krawczyk method [11, 13].

K(U) := u −R(Hu − b) + (I −RH)(U − u),
K(U) ⊂ int(U) ⇒ u∗ ∈ K(U) ⇒ ‖u∗ − u‖∞ ≤ ‖radius(U)‖∞,

where R is an approximate inverse of H and U is an interval vector whose center is u.
LU decomposition method [8]. Let LU be an approximate LU factorization of H,

that is, H ≈ LU .

‖u∗ − u‖∞ ≤
∥∥U−1L−1(b −Hu)

∥∥
∞

1 − ∥∥U−1L−1H− I∥∥
∞

.

Block component verification method [2]. Let u∗ = (x∗, y∗), r1 = Ax + By − c,
and r2 = BT x − d.

‖u∗ − u‖∞ ≤ max(‖x∗ − x‖∞, ‖y∗ − y‖∞),
‖x∗ − x‖∞ ≤ ‖A−1‖∞ (‖r1‖∞ + ‖B‖∞‖y∗ − y‖∞),

‖y∗ − y‖∞ ≤ ‖A‖∞
∥∥∥(

BT B
)−1

∥∥∥
∞

(
‖r2‖2 +

√∥∥BBT
∥∥
∞

∥∥A−1
∥∥
∞‖r1‖2

)
.
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verifylss of INTLAB [14].

U = verifylss(H, b),
‖u − u∗‖∞ ≤ 2‖radius(U)‖∞ for u ∈ U.

Note that when A is singular, the block component verification method cannot
be applied to (1.1) directly but to the equivalent system(

A + BWBT B
BT 0

) (
x
y

)
=

(
c + BWd

d

)
.(3.1)

Obviously, the error bounds depend on the choice of W . We tested the error
bounds with various W . In this paper, we consider two types of choices

W1(γ) = γ/
∥∥BT B

∥∥
2
I

and

W2(γ) = γ
(
BT B

)−1

if A is singular. We set W = 0 if A is nonsingular.

4. Numerical experiment. The numerical testing was carried out on an IBM
PC (3.0 GHz Pentium 4 processor, 1GB of memory) with the use of MATLAB 7.0 and
INTLAB (Version 5.4) [12, 14]. We use the function setround in INTLAB [14] to com-
pute the error bound. The function setround allows the rounding mode of the processor
to be changed between round nearest (setround(0)), round down (setround(-1)), round
up (setround(1)), and round towards zero (setround(2)). To compute ‖M(W )−1‖∞,
we first use setround(0) to compute an approximate inverse R of M(W ). Next we use

S=intval(R),

beta=abss(norm(S,inf)/(1-norm(S*M(W)-I)))

to get an upper bound β for ‖M(W )−1‖∞ as

∥∥M(W )−1
∥∥
∞ ≤ ‖R‖∞

1 − ‖RM(W ) − I‖∞ ≤ β.

Similarly, we apply the function setround to (2.5) to get an upper bound Γ by taking
all possible effects of rounding errors into account such that

‖u∗ − u‖2 ≤ Γ.(4.1)

We compare the error bound (2.5) with the Krawczyk method, the LU decompo-
sition method, the block component verification method, and the function verifylss of
INTLAB using examples from CUTEr [6], optimal surface fitting [3, 10], mixed finite
element discretization of the Stokes equations [1], and image restoration [5, 15].

Example 4.1 (CUTEr matrices). We used two test problems genhs28 and gouldqp3
from the CUTEr collection [7], which were used in [6].

The genhs28 is an (n+m)×(n+m) saddle point matrix, where A is an n×n tridi-
agonal matrix with 2, 4, 2 along its superdiagonal, main diagonal, and subdiagonal,
respectively, except A1,1 = An,n = 2. The rank of A is n−1. B is n×m with values 1,
2, 3 along its main diagonal, first subdiagonal, and second subdiagonal, respectively.
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Fig. 1. Error bounds (2.5) for genhs28 with different W . (n, m) = (500, 498), ‖A‖2 ≈ 8.0,
‖BT B‖2 ≈ 36.0, and ‖(BT B)−1‖2 ≈ 0.38.

Table 1

The error bounds for Example 4.1, genhs28. rank(A) = n − 1.

(n, m) (10,8) (500,498) (1500,1498) (3000,2998)
cond(H) 40.232 40.461 40.461 40.460

‖u − u∗‖∞ 2.22e−16 2.22e−16 2.22e−16 9.99e−16
‖b −Hu‖2 2.46e−14 2.02e−13 3.50e−13 1.03e−12

(2.5) W1(1) 5.67e−13 4.58e−12 7.95e−12 2.33e−11
[3.6e−15] [1.859] [48.093] [477.059]

W2(1) 1.46e−13 1.41e−12 2.45e−12 7.21e−12
[7.1e−15] [1.983] [48.906] [1102.207]

Block W1(1) 6.11e−10 5.74e−09 9.95e−09 2.82e−08
component [3.6e−15] [1.953] [89.373] [480.387]

W2(1) 3.96e−11 3.82e−10 6.63e−10 1.88e−09
[1.1e−14] [2.078] [90.185] [1105.536]

LU 5.72e−16 5.67e−16 5.67e−16 Fail1

[3.6e−15] [14.103] [385.535]
Krawczyk 2.32e−15 2.32e−15 3.55e−15 Fail

[0.031] [6.625] [166.894]
verifylss 3.33e−16 3.33e−16 3.33e−16 Fail

[0.016] [4.795] [109.827]

The gouldqp3 is an (n + m) × (n + m) saddle point matrix, where A is an n × n
matrix with rank(A) = n − 2.

We set the exact solution u∗ and right-hand side vector b as

u∗ = (1, . . . , 1)T , b = Hu∗.

Figure 1 shows the error bounds for genhs28 with (n, m) = (500, 498) as γ changes
from min(‖A‖2, 1/‖A‖2) to max(‖A‖2, 1/‖A‖2). In Tables 1–2, we report numerical
results with W1(1) and W2(1).

Example 4.2 (surface fitting problem). Let Ω ⊂ R2 be a convex bounded domain,
pi = (p1

i , p
2
i ) ∈ Ω be the measurement points, and qi be the corresponding real values

(i = 1 . . . k). We consider the following surface fitting problem [3, 10]

min
k∑

i=1

(f(pi) − qi)2 + μ|f |2H2(Ω)(4.2)

over all functions f in the Sobolev space H2(Ω). Here μ is a fixed parameter.

1In Tables 1–5, “Fail” means out of the memory; [ ] shows CPU time (sec.).
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Table 2

The error bounds for Example 4.1, gouldqp3. rank(A) = n − 2.

(n, m) (699,349) (1999,999) (2999,1499)
cond(H) 139.018 139.018 139.018

‖u − u∗‖∞ 2.22e−16 2.22e−16 9.99e−16
‖b −Hu‖2 8.29e−14 1.40e−13 3.80e−13

(2.5) W1(1) 5.63e−12 9.54e−12 2.58e−12
[2.406] [55.341] [194.385]

W2(1) 3.62e−12 6.13e−12 1.66e−12
[2.500] [81.605] [313.902]

Block W1(1) 4.31e−09 7.30e−09 1.97e−08
component [2.468] [55.951] [195.433]

W2(1) 1.94e−09 3.30e−09 8.90e−09
[2.546] [82.278] [314.996]

LU 4.75e−16 4.75e−16 Fail
[19.420] [498.377]

Krawczyk 3.37e−15 3.37e−15 Fail
[7.760] [179.915]

verifylss 3.33e−16 3.33e−16 Fail
[5.968] [118.114]

We apply a finite element approximation with uniform triangular meshes to (4.2)
and obtain a convex optimization problem in R4m+1 [3]:

min‖Nx1 + μek − q‖2
2 + μ

(
xT

2 Gx2 + xT
3 Gx3

)
subject to (s.t.) Gx1 = B1x2 + B2x3,(4.3)

eT
k Nx1 = 0,

where N ∈ Rk×m and B1, B2, G ∈ Rm×m. Here G is a symmetric positive semidefinite
matrix. The problem (4.3) is equivalent to the following saddle point system:⎛

⎜⎜⎜⎜⎝
NT N G NT ek

μG −BT
1

μG −BT
2

G −B1 −B2

eT
k N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

y1

y2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

2NT (q − μek)
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,(4.4)

where y1 and y2 are the Lagrange multipliers. In many applications, k < m, which
results in the matrix NT N being singular; i.e., the (1, 1) block of the saddle point
matrix in (4.4) is singular.

In this example, we use real data of the 2006 average temperature in the Aomori
region from the Japan Meteorological Agency. We choose k = 47, n = 3m + 1, and
rank(A) = 2m+47 and set μ =1.0e−5 in (4.4). Numerical results of the error estimate
with various m, n are given in Table 3.

Example 4.3 (the Stokes equation). We consider the saddle point system arising
from the mixed finite element discretization of the stationary Stokes equation:⎧⎨

⎩
−νΔu + ∇p = ϕ in Ω,

−div u = 0 in Ω,
u = 0 on ∂Ω,

(4.5)

where Ω = (0, 1) × (0, 1), ∂Ω is the boundary of Ω, ν > 0 is the kinematic viscosity
coefficient, ϕ = (ϕ1, ϕ2) is a given force field, u : Ω → R2 is a velocity field, and
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Table 3

The error bounds for Example 4.2, surface fitting problem. rank(A) = 2m + 47.

(n, m) (766,255) (1450,483) (2350,783) (3070,1023)
cond(H) 7.22e+05 1.31e+06 2.11e+06 2.56e+06
‖b −Hu‖2 1.41e−14 1.61e−14 2.43e−14 2.54e−14

(2.5) W1(1) 4.46e−09 1.20e−08 3.38e−08 4.94e−08
[2.749] [16.154] [66.213] [145.311]

W2(1) 4.85e−09 3.38e−09 9.25e−08 1.27e−08
[2.812] [16.591] [68.119] [150.388]

Block W1(1) 4.14e+01 5.36e+02 4.74e+03 1.04e+04
component [2.796] [16.310] [66.415] [145.951]

W2(1) 4.51e+01 1.02e+02 6.98e+02 1.27e+04
[2.859] [16.763] [68.492] [151.122]

LU 8.46e−15 6.98e−15 3.51e−14 Fail
[19.422] [122.702] [514.185]

Krawczyk 1.43e−13 2.12e−13 4.76e−13 Fail
[7.243] [27.809] [198.123]

verifylss 2.93e−14 4.17e−14 7.84e−14 Fail
[5.047] [29.984] [124.562]

p : Ω → R is a pressure field. We apply a mixed finite element approximation with
uniform triangular meshes and obtain a saddle point linear system (1.1) where the
velocity is approximated by the standard piecewise quadratic basis functions and the
pressure is approximated by piecewise linear basis functions.

In this example, A is nonsingular and A−1 ≥ 0. We use Theorem 2 in [9] to get
a upper bound of ‖A−1‖∞, i.e.,

∥∥A−1
∥∥
∞ ≤ ‖w̃‖∞

1 − ‖s‖∞ ,

where w̃ is an approximate solution of Aw = en, s = Aw̃−en, and en = (1, 1, . . . , 1)T ∈
Rn.

In this example, ‖(BT B)−1‖2 = O(h−2), where h is the mesh size. To avoid using
‖(BT B)−1‖2 for small h, we consider a preconditioned system. Let L be an m × m
nonsingular matrix such that LT L ≈ BT B. Let

P =
(

I
L−1

)
, H̃ = PTHP =

(
A B̃

B̃T 0

)
, b̃ = PT b,

B̃ = BL−1, M̃(W ) = A + B̃WB̃T .

Applying Theorem 2.1 to the preconditioned system

H̃P−1u = b̃,

we obtain

‖u − u∗‖∞ ≤‖P‖∞
∥∥P−1(u∗ − u)

∥∥
∞ ≤ ‖P‖∞

∥∥P−1(u∗ − u)
∥∥

2

≤ 2‖P‖∞√
5 − 1

max
(∥∥M̃(W )−1

∥∥
2
, ‖M̃(W )‖2

∥∥∥∥(
B̃T B̃

)−1
∥∥∥∥

2

)
‖PT (b −Hu)‖2

≤ 2 max
(
1,

∥∥L−1
∥∥
∞

)
√

5 − 1
max

(∥∥M̃(W )−1
∥∥
∞, ‖M̃(W )‖∞

∥∥L
(
BT B

)−1LT
∥∥
∞

)
× ∥∥PT (b −Hu)

∥∥
2
.(4.6)
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Table 4

The preconditioned error bounds for Example 4.3, Stokes equation. rank(A) = n.

(n, m) (882,144) (2738,400) (9522,1296) (20402,2704)
cond(H) 4.11e+05 1.21e+06 4.09e+06 8.66e+06
‖b −Hu‖2 1.58e−15 2.56e−15 5.04e−15 7.32e−15

(4.7) 1.10e−11 9.24e−11 1.14e−09 5.11e−09
[0.078] [1.001] [19.312] [149.383]

Preconditioned 7.24e−11 6.06e−10 7.46e−09 4.59e−08
block component [0.078] [1.002] [19.295] [149.352]
LU 7.04e−16 1.53e−15 Fail Fail

[15.780] [430.490]
Krawczyk 2.00e−14 6.00e−14 Fail Fail

[2.516] [50.391]
verifylss 1.11e−16 2.22e−16 Fail Fail

[5.202] [124.224]

We call (4.6) a preconditioned error bound. From ‖L−1‖∞ ≈ √‖(BT B)−1‖∞ =
O(h−1), the preconditioned error bound is expected to be sharper than (2.5) for the
Stokes equation. Similarly, we can get a preconditioned block component verification
method as Method 2 in [2].

Numerical results of the preconditioned error bounds for Example 4.3 with ν = 1
are given in Table 4.

Example 4.4 (image restoration). Suppose the discretized scenes have p = p1 ×
p2 pixels. Let f ∈ Rp, g ∈ Rq be the underlying image and the observed image,
respectively. Let H ∈ Rq×p be the corresponding blurring matrix of block Toeplitz
with Toeplitz blocks. Restoration of f is an ill-conditioned problem. We consider the
linear least squares problem with Tikhonov’s regularization [5, 15]

min
f

‖Hf − g‖2
2 + α‖Df‖2

2,(4.7)

where α is a regularization parameter and D ∈ R(2p−p1−p2)×p is a regularization
matrix of a first order finite difference operator

D =
(

Δ(p1−1)×p1 ⊗ Ip2×p2

Ip1×p1 ⊗ Δ(p2−1)×p2

)
with Δ =

⎛
⎜⎜⎜⎝

1 −1
1 −1

. . . . . .
1 −1

⎞
⎟⎟⎟⎠ .

Problem (4.7) can be rewritten as a quadratic programming

min
1
2
xT Ax + cT x

s.t. BT x = 0,
(4.8)

where

x =
(

f
v

)
, A =

(
2HT H 0
0 αI

)
∈ R(3p−p1−p2)×(3p−p1−p2),

BT =
(
D −I

) ∈ R(2p−p1−p2)×(3p−p1−p2), c =
(−2HT g

0

)
.
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(a) (b) (c)

Fig. 2. (a) original image, (b) observed image, (c) restored image, PSNR = 29.82 db.

Table 5

The error bounds for Example 4.4, image restoration.

(n, m) (1160,760) (1825,1200) (2465,1624) (3400,2244)
cond(H) 3.15e+08 3.40e+08 3.67e+08 4.57e+08
‖b −Hu‖2 2.13e−14 2.80e−14 3.39e−14 4.04e−11

(2.5) W1(1) 3.01e−06 4.33e−06 5.70e−06 6.96e−06
[13.564] [50.798] [124.061] [353.168]

W2(1) 3.01e−06 4.32e−06 5.70e−06 6.96e−06
[13.203] [48.687] [119.068] [320.720]

Block W1(1) 5.42e+03 8.50e+03 1.23e+04 1.52e+04
component [13.798] [51.361] [125.123] [355.182]

W2(1) 1.11e+04 1.74e+04 2.51e+04 3.13e+04
[13.203] [49.265] [120.161] [349.141]

LU 1.05e−09 1.56e−09 Fail Fail
[127.660] [481.395]

Krawczyk K(U) �⊂ U K(U) �⊂ U Fail Fail

verifylss 3.46e−14 3.91e−14 Fail Fail
[29.672] [112.698]

The optimal condition for (4.8) is a saddle point problem(
A B
BT 0

) (
x
y

)
=

(−c
0

)
,

where y is the Lagrange multiplier vector for the constraints BT x = 0. In this problem,
A is a positive semidefinite matrix and B has full-column rank.

We generate an original image of the cameraman as shown in Figure 2(a). The
image is blurred by a Gaussian function

h(i, j) = e−(i2+j2)/18,

truncated such that the function has a support of 7×7, and then pixels are con-
taminated by Gaussian noise with the standard deviation of 0.05. The blurred and
noisy image is shown in Figure 2(b). We solve the saddle point problem to find a
restored image, which is shown in Figure 2(c). In the saddle point matrix, A has
rank(A)=2p− p1 − p2 + [p1/2][p2/2]. Here [·] denotes the nearest integer.

Numerical results of the error bounds for the restored image are given in Table 5.
To end this section, we use a 3 × 3 block ill-conditioned saddle matrix to show

that the error bound (2.5) is tight.
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Example 4.5. We consider the following problem:

H =

⎛
⎝ εI 0 0

0 0 B
0 BT 0

⎞
⎠ , b =

⎛
⎝ b1

b2

b3

⎞
⎠ ,

where b1, b2, b3 ∈ Rm, I, B ∈ Rm×m, and B is nonsingular. It is easy to find the
inverse and the solution

H−1 =

⎛
⎝ 1

ε I 0 0
0 0 B−T

0 B−1 0

⎞
⎠ , u∗ =

⎛
⎝ 1

ε b1

B−T b3

B−1b2

⎞
⎠ .

Consider 0 < ε ≤ 1 and ‖B‖∞ ≥ 1. The condition number of H satisfies

‖H‖∞
∥∥H−1

∥∥
∞ ≥ ε−1‖B‖∞.

When ε → 0, the condition number will go to ∞.
Using (2.2) or (2.5) with W = B−1B−T , we obtain

M(W ) =
(

εI 0
0 I

)

and

‖u∗ − u‖2 ≤ 2
ε(
√

5 − 1)
‖b −Hu‖2(4.9)

for 0 < ε ≤ 1/‖(BT B)−1‖∞. Furthermore, the equality holds in (4.9) when B =
ε(
√

5−1)
2 I and u = (1

ε b1, u2, u3).

5. Final remark. Using the algebraic analysis of a block diagonal preconditioner
in [6], we proposed a fast verification method for saddle point linear systems where
the (1, 1) block may be singular. The method was implemented by using INTLAB [14]
and taking all possible effects of rounding errors into account. Numerical results show
that the method is efficient.
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