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SWITCHING GAMES OF STOCHASTIC DIFFERENTIAL SYSTEMS∗

SHANJIAN TANG† AND SHUI-HUNG HOU‡

Abstract. A two-player, zero-sum, switching game is formulated for general stochastic differen-
tial systems and is studied using a combined dynamic programming and viscosity solution approach.
The existence of the game value is proved. For the proof of the related dynamic programming prin-
ciple (DDP) for the lower and upper value functions, the measurability problem, of the same kind
as mentioned in the paper of Fleming and Souganidis, is also encountered, and we are able to get
around it via a delicate adaptation of their technique. Moreover, the traditional direct method to
prove the time continuity of lower and upper value functions also gives rise to a serious measurability
problem. To get around the new difficulty, a subtle dynamic programming argument is developed to
obtain the time continuity, which in return is used to derive the DDP for random intermediate times
from the DDP with deterministic intermediate times.
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1. Introduction. Consider a differential game of the following stochastic differ-
ential system on Wiener space (Ω,F , P ):

(1.1)

{
dy(t) = f(t, y(t), a(t), b(t)) dt + g(t, y(t), a(t), b(t)) dw(t), t ∈ (s, 1],

y(s) = x

with the cost functional

(1.2)

Js,x(a(·), b(·)) = Esx

{∫ 1

s

f0(t, y(t), a(t), b(t)) dt + h(y(1))

+
∑
i≥1

k(θi, ai−1, ai) −
∑
j≥1

l(τj , bj−1, bj)

}
.

Here f, g, f0, and h are given maps; w(·) is the coordinate process in Ω, and its natural
filtration is denoted by Ft. The subscript sx of the expectation operator E indicates
that the underlying mathematical expectation is taken under the condition that the
underlying system state process y(·) takes the value x at time s. The first player
chooses the control a from a given finite set A to minimize the payoff (1.2), and each
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STOCHASTIC SWITCHING GAMES 901

of his instantaneous actions is related with one positive cost k, while the second player
chooses the control b from a given finite set B to maximize the payoff (1.2), and each
of his instantaneous actions is associated with the other positive cost l.

For differential switching games, a key point in connecting value functions with
the corresponding Isaacs’ equations is to prove the following fact: It is the best way
for a player to keep his underlying switching position for some time of a positive
length, whenever he is not on his switching set. In the deterministic case, such an
assertion is easy to understand from the following almost obvious fact: If he is not
on his switching set, a player will keep away from the set for some deterministic
time interval of a positive length, as the system state evolves continuously. See Yong
[10] for details. In the stochastic case, the situation becomes complicated due to the
nature of diffusion: Even if he is not on his switching set, it is possible for a player
to arrive at his switching set in an arbitrarily short time. That is, if he is not on his
switching set, although the system state still evolves continuously, a player can keep
away from the switching set only for some random (rather than deterministic, in
general) time interval, almost surely (rather than uniformly, in general) of a positive
length. Then the intuition of the dynamic programming principle for the underlying
switching game suggests that if he is not on his switching set, the optimal action of a
player has to vary with different events, even within a very short deterministic time
period. We show in section 3 by using arguments quite different from the deterministic
case that, whenever he is not on his switching set, a player’s best action is to keep his
underlying switching position, before he escapes from a sufficiently small ball centered
at the current state, within some deterministic time interval of a positive length.

It has been widely recognized that the dynamic programming method is both
easy and efficient for the study of deterministic optimal control and differential games
within the framework of viscosity solutions. The general nonsmooth feature of inf-sup
functions is no longer a difficulty in view of the notion of viscosity solutions. However,
applications of dynamic programming to optimal stochastic controls and stochastic
differential games still encounter difficulties; the reader is referred to Bertsekas and
Shreve [1] and Fleming and Souganidis [6] for detail. It was noticed by Fleming
and Souganidis [6], in the study of classical stochastic differential games, that the
conventional proof of the dynamic programming principle for the lower and upper
value functions encounters a serious measurability issue. In this paper, we observe
that the traditional direct approach to show the time continuity of lower and upper
value functions also gives rise to a serious measurability problem. The difficulty is
circulated using a dynamic programming argument.

In this paper, the coefficients of differential games are allowed to grow linearly,
and a powerful simple test function is given to prove the uniqueness of unbounded
viscosity solutions for the associated Isaacs’ system of variational inequalities.

The rest of our paper is organized as follows. Section 2 is devoted to the for-
mulation of our stochastic switching game, the definitions of some restrictive class of
admissible controls, and strategies to be used in the following sections. Several useful
dynamic programming results and the time continuous properties are established in
section 3. The existence of the value is proved for our game in section 4.

There are some related papers which remain to be mentioned. For the optimal
switching problem, the reader is referred to Capuzzo Dolcetta and Evans in [2] in
the deterministic case, and to Evans and Friedman [4], Tang and Yong [7] and the
references therein in the stochastic case. For the switching game, the reader is referred
to Yong [10] in the deterministic case with the dynamic programming approach and
the notion of viscosity solution, and to Yamada [8, 9] in the stochastic and infinite
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902 SHANJIAN TANG AND SHUI-HUNG HOU

time-horizon case with an analytical approach rather than the dynamic programming
approach.

2. Preliminaries. Let A = {1, 2, . . . ,m}, B = {1, 2, . . . , n}, and X be a finite-
dimensional Euclidean space. Let f : [0, 1] × X × A × B → X, g : [0, 1] × X × A ×
B → X × W, f0 : [0, 1] × X × A × B → R, k : [0, 1] × A × A → R+ ≡ [0,∞), and
l : [0, 1] ×B ×B → R+ be continuous functions satisfying the following hypotheses.

Hypothesis 1. There exists a constant L > 0 such that for all x, x̂ ∈ X, t ∈
[0, 1], a ∈ A, and b ∈ B,

|f(t, x, a, b) − f(t, x̂, a, b)| + |g(t, x, a, b) − g(t, x̂, a, b)| ≤ L|x− x̂|,
|f(t, x, a, b)| + |g(t, x, a, b)| ≤ L(1 + |x|),
|f0(t, x, a, b) − f0(t, x̂, a, b)| + |h(x) − h(x̂)| ≤ L|x− x̂|,
|f0(t, 0, a, b)| + |h(0)| ≤ L.

Hypothesis 2. For all a, â, ã ∈ A, a �= â �= ã, and 0 ≤ s ≤ t ≤ 1,

k(t, a, ã) < k(t, a, â) + k(t, â, ã),

k(t, a, â) > 0, k(t, a, a) = 0,

k(t, a, ã) ≤ k(s, a, ã).

Hypothesis 3. For all b, b̂, b̃ ∈ B, b �= b̂ �= b̃, and 0 ≤ s ≤ t ≤ 1,

l(t, b, b̃) < l(t, b, b̂) + l(t, b̂, b̃),

l(t, b, b̂) > 0, l(t, b, b) = 0,

l(t, b, b̃) ≤ l(s, b, b̃).

For s, ŝ ∈ [0, 1] such that s < ŝ, let

(2.1) Ωs,ŝ = {ω ∈ C([s, ŝ]; Rd) : ω(s) = 0}.

Denote by Fs,ŝ the topological σ-field of Ωs,ŝ and consider the Wiener space
(Ωs,ŝ,Fs,ŝ, Ps,ŝ). Let

(2.2) Ωs = Ωs,1, Ps = Ps,1, Fs = Fs,1,

and

(2.3)

⎧⎪⎨⎪⎩
ω1 = ω|[s,ŝ],
ω2 = (ω − ω(ŝ))|[ŝ,1],
Πω = (ω1, ω2).

We see that the map Π : Ωs → Ωs,ŝ × Ωŝ induces an identification

(2.4) Ωs = Ωs,ŝ × Ωŝ.

Moreover, the inverse of Π is defined in an evident way: Ωs = Π−1(Ωs,ŝ,Ωŝ). Finally,
we have

Ps = Ps,ŝ ⊗ Pŝ.
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STOCHASTIC SWITCHING GAMES 903

Define

(2.5) w(r, ω) = ω(r), (ω, r) ∈ Ωs × [s, 1].

Then {w(r), r ∈ [s, 1]} is a standard Wiener process.
Definition 2.1. An admissible switching process for player I (resp., II) on [s, 1]

with initial value a0 (resp., b0) is defined to be a pair of sequences {ai, θi}i≥0 (resp.,
{bi, τi}i≥0) such that each θi (resp., τi) is an Fs,.-stopping time, with

s = θ0 ≤ θ1 ≤ · · · ≤ 1 a.s.

(resp., s = τ0 ≤ τ1 ≤ · · · ≤ 1 a.s.),

each ai (resp., bi) is Fs,θi- (resp., Fs,τi-) measurable with values in A (resp., B), and

E
∑
i≥1

k(θi, ai−1, ai) < ∞
(

resp., E
∑
j≥1

l(τj , bj−1, bj) < ∞
)
.

Denote by Aa[s, ŝ] (resp., Bb[s, ŝ]) the totality of the admissible switchings for player
I (resp., II) on [s, ŝ] with the initial value a (resp., b).

We shall identify {ai, θi}i≥0 ∈ Aa[s, 1] with

a(r) =
∑
i≥1

ai−1χ[θi−1,θi)(r), r ∈ [s, 1].

Note that in the case of θ1 = θ2 the term a1χ[θ1,θ2)(r) will be void, but we still
keep it in the above expression. This is due to the fact that the sequence {ai, θi}
with or without (a1, θ1) represents two different switching controls and their costs are
different. A similar identification will also be used for {bi, τi} ∈ Bb[t, 1].

Following Elliott and Kalton [3] and Fleming and Souganidis [6], we define in the
switching game an admissible strategy as follows.

Definition 2.2. For s ∈ [0, 1] and a ∈ A (resp., b ∈ B), an admissible strategy
αa,s (resp., βb,s) with the initial value a (resp., b) for player I (resp., II) on [s, 1] is
a mapping αa,s : ∪b∈BBb[s, 1] → Aa[s, 1] (resp., βb,s : ∪a∈AAa[s, 1] → Bb[s, 1]) such
that

b(r) = b̂(r) (resp., a(r) = â(r)) a.s. ∀r ∈ [s, ŝ]

implies

αa,t[b(·)](r) = αa,t [̂b(·)](r) (resp., βb,t[a(·)](r) = βb,t[â(·)](r))

for r ∈ [s, ŝ].
We denote all admissible strategies with the initial value a (resp., b) for player I

(resp., II) on [s, 1] by Γa[s, 1] (resp., Δb[s, 1]). We adopt the convention that

(2.6)
Aa[1, 1] = a, Γa[1, 1] = a,

Bb[1, 1] = b, Δb[1, 1] = b.

Set for (s, x) ∈ [0, 1] ×X,

(2.7)
Va,b(s, x) = inf

α∈Γa[s,1]
sup

b(·)∈Bb[s,1]

Js,x(α(b(·)), b(·)), V (s, x) = (Va,b(s, x))a∈A,b∈B ;

Ua,b(s, x) = sup
β∈Δb[s,1]

inf
a(·)∈Aa[s,1]

Js,x(a(·), β(a(·))), U(s, x) = (Ua,b(s, x))a∈A,b∈B .
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904 SHANJIAN TANG AND SHUI-HUNG HOU

The matrix-valued functions V and U are called the lower and the upper value func-
tion, respectively. If V = U , we say that the above stochastic switching game has a
value. Our aim is to study the existence of the value of our stochastic switching game.
U and V should satisfy the dynamic programming principle. However, the conven-
tional proof leads to serious technical problems related to measurability issues, which
have been noticed by Fleming and Souganidis [6] in the study of classical stochastic
differential games . To circumvent these problems, we borrow the techniques of Flem-
ing and Souganidis [6] and introduce in the following the concepts of restrictive class
of admissible strategies, π-admissible switching processes, and π-admissible strategies.

Consider s ∈ [0, 1], ŝ ∈ (s, 1), and b(·) ∈ Bb[s, 1]. For Ps,ŝ-a.s. ω1 ∈ Ωs,ŝ, the map
b(ω1) : [ŝ, 1] × Ωŝ → B defined by

b(ω1)(ω2)(r) = b(ω1, ω2)(r), r ∈ [ŝ, 1],

is an admissible control for player II, i.e., b(ω1) ∈ Bb(ŝ)[ŝ, 1].
Definition 2.3. Let α ∈ Γa[ŝ, 1]. If for ∀s ∈ (0, ŝ) and ∀b(·) ∈ Bb[s, 1], b ∈ B,

the map (τ, ω) �→ α[b(ω1)](ω2)(τ) is B([ŝ, τ ]) ⊗ Fs,τ -measurable for every τ ∈ [ŝ, 1],
then α is called an r-strategy with initial value a for player I on [s, 1]. The set of
r-strategies with initial value a on [s, 1] of player I is denoted by Γa

1 [s, 1].
Similarly, we define r-strategies with initial value b ∈ B on [s, 1] for player II and

denote their collection by Δb
1[s, 1].

Set

(2.8)
V 1
a,b(s, x) = inf

α∈Γa
1 [s,1]

sup
b(·)∈Bb[s,1]

Js,x(α(b(·)), b(·)), V 1(s, x) = (V 1
a,b(s, x))a∈A,b∈B ;

Ua,b
1 (s, x) = sup

β∈Δb
1[s,1]

inf
a(·)∈Aa[s,1]

Js,x(a(·), β(a(·))), U1(s, x) = (Ua,b
1 (s, x))a∈A,b∈B .

The matrix-valued functions V 1 and U1 are called the r-lower and the r-upper value
function, respectively.

Let πs = {s = t0 < t1 < · · · < tM = 1} be a partition of [s, 1], and denote
by ||πs|| = max1≤i≤M (ti − ti−1) its mesh. The notions of π-admissible switching
processes and π-admissible strategies are then defined as follows.

Definition 2.4. Let a(·) = {ai, θi}i≥0 ∈ Aa[s, 1]. If each θi is a πs-valued
stopping time, then it is called a π-admissible switching process with initial value
a ∈ A on [s, 1] for player I. The set of π-admissible switching processes with initial
value a ∈ A on [s, 1] for player I is denoted by Aa

π[s, 1]. The π-admissible switching
processes with initial value b ∈ B on [s, 1] for player II are defined in a similar way,
and their collection is denoted by Bb

π[s, 1].
Definition 2.5. α ∈ Γa[s, 1] is called a π-admissible strategy with initial value

a ∈ A on [s, 1] for player I, if it satisfies the following properties: (1) ∀b(·) ∈
Bb[s, 1], b ∈ B, α[b(·)] ∈ Aa

π[s, 1]. (2) Fix b ∈ B. If s ∈ [ti0 , ti0+1), then
α[b1(·)]|[s,ti0+1) = α[b2(·)]|[s,ti0+1) ∀ b1(·), b2(·) ∈ Bb[s, 1]. (3) If b(·) = b̄(·) on [s, ti),

then α[b(·)](ti) = α[b̄(·)](ti), Ps-a.s. for i ∈ {i0 + 1, . . . ,M}. The collection of π-
admissible strategies with initial value a ∈ A on [s, 1] for player I is denoted by Γa

π[s, 1].
The π-admissible strategies with initial value b ∈ B on [s, 1] for player II are defined
in a similar way, and their collection is denoted by Δb

π[s, 1].
It is crucial, in our case of the switching game, that α[b(·)](ti) in Definition 2.5 is

required to be independent of b(ti) for α ∈ Γa
π[s, 1] and i = i0 + 1, . . . ,M . Definition

2.5 differs from Fleming and Souganidis’ in that α[b(·)]|[s,ti0+1) may depend on b(s−)
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STOCHASTIC SWITCHING GAMES 905

even if α ∈ Γa
π[s, 1], and this is due to the fact that the initial position of a player is

crucial in our switching game.
According to the definitions of V 1

a,b(s, x), Ua,b
1 (s, x), Va,b(s, x), and Ua,b(s, x), we

have immediately the following two relations:

(2.9) Va,b(s, x) ≤ V 1
a,b(s, x) and Ua,b

1 (s, x) ≤ Ua,b(s, x).

Next, let us introduce some operators. For any m × n matrix-valued function
W (·, ·) = (W a,b(·, ·)) defined on [0, 1]×X, we define for (a, b, s, x) ∈ A×B× [0, 1]×X

(2.10)

Ma,b[W ](s, x) = min
â�=a

{W â,b(s, x) + k(s, a, â)},

Ma,b[W ](s, x) = max
b̂ �=b

{W a,b̂(s, x) − l(s, b, b̂)}.

The two operators are called obstacle operators. According to the definitions, for
any (a, b, s, x) ∈ A×B × [0, 1] ×X, the following are true:

(2.11)

Ma,b[V ](s, x) ≤ Va,b(s, x) ≤ Ma,b[V ](s, x),

Ma,b[V
1](s, x) ≤ V 1

a,b(s, x) ≤ Ma,b[V 1](s, x),

Ma,b[U ](s, x) ≤ Ua,b(s, x) ≤ Ma,b[U ](s, x),

Ma,b[U1](s, x) ≤ Ua,b
1 (s, x) ≤ Ma,b[U1](s, x).

Before closing this section, we state without proof the following result on the
continuity in the space variable of the costs and the value functions.

Proposition 2.1. (1) For any a(·) ∈ Aa[s, 1], b(·) ∈ Bb[s, 1], α ∈ Γa[s, 1], and β ∈
Δb[s, 1], the functions Jsx(α[b(·)], b(·)) and Jsx(a(·), β[a(·)]), (s, x) ∈ [0, T ]×X, grow
linearly, are Lipschitz continuous in the space variable x, and are Hölder-continuous in
the time variable s, uniformly with respect to the other variable s and x, respectively,
and uniformly as well with respect to the four parameters: α, a(·), β, and b(·).

(2) The functions V, V 1, U, and U1 grow linearly and are Lipschitz continuous in
the space variable x, uniformly with respect to the time variable s.

The time continuity of value functions turns out to be a measurability issue and
will be considered in the next section.

3. Dynamic programming and time continuity of various value func-
tions. In this section, we use the Bellman dynamic programming principle to study
the time continuity and the dynamics of various value functions related to our game.

Proposition 3.1. (1) The lower value function V 1(·, ·) satisfies the following
suboptimality condition: For any (a, b) ∈ A×B, x ∈ X, and 0 ≤ s < ŝ ≤ 1,

(3.1a)

V 1
a,b(s, x) ≤ inf

α∈Γa
1 [s,1]

sup
b(·)∈Bb[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj) + V 1
α[b(·)](ŝ),b(ŝ)(ŝ, y(ŝ))

}
,

where {ai, θi} and {bj , τj} are associated with α[b(·)] and b(·), respectively, and
α[b(·)](ŝ) = α[b(·)](ŝ + 0), b(ŝ) = b(ŝ + 0).

(2) The upper value function U1(·, ·) satisfies the following superoptimality condi-
tion: For any (a, b) ∈ A×B, x ∈ X, and 0 ≤ s < ŝ ≤ 1,

D
ow

nl
oa

de
d 

10
/2

9/
12

 to
 1

58
.1

32
.1

61
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



906 SHANJIAN TANG AND SHUI-HUNG HOU

(3.1b)

Ua,b
1 (s, x) ≥ sup

β∈Δb
1[s,1]

inf
a(·)∈Aa[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), a(·), β[a(·)](r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj) + U
a(ŝ),β[a(·)](ŝ)
1 (ŝ, y(ŝ))

}
,

where {ai, θi} and {bj , τj} are associated with a(·) and β[a(·)], respectively, and
β[a(·)](ŝ) = β[a(·)](ŝ + 0), b(ŝ) = b(ŝ + 0).

Proof of Proposition 3.1. We prove only the inequality (3.1a); the inequality
(3.1b) can be proved in the same manner.

Let (s, x, a, b) be fixed, and let Wa,b(s, x) be the right-hand side of (3.1a). Then,
∀ε > 0, there exists α ∈ Γa

1 [s, 1] such that

(3.2)

Wa,b(s, x) ≥ Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj) + V 1
α[b(·)](ŝ),b(ŝ)(ŝ, y(ŝ))

}
− ε

for every b(·) ∈ Bb[s, 1]. Also, for each â ∈ A, b̂ ∈ B, ξ ∈ X,

(3.3) V 1
â,b̂

(ŝ, ξ) = inf
α∈Γâ

1 [ŝ,1]
sup

b(·)∈Bb̂[ŝ,1]

Jŝξ(α[b(·)], b(·));

thus there exists αâ,b̂
ξ ∈ Γâ

1 [ŝ, 1] for which

(3.4) V 1
â,b̂

(ŝ, ξ) ≥ sup
b(·)∈Bb̂[ŝ,1]

Jŝξ(α
â,b̂
ξ [b(·)], b(·)) − ε.

Next let {Ai : i = 1, 2, . . . } be a partition of X by Borel sets, and choose ξi ∈
Ai(i = 1, 2, . . . ). If the diameter of the Ai’s is sufficiently small, then for i = 1, 2, . . .
and w ∈ Ai,

(3.5)

|Jŝw(α[b(·)], b(·)) − Jŝξi(α[b(·)], b(·))| < ε for any b(·) ∈ Bb̂[ŝ, 1] and α ∈ Γâ
1 [ŝ, 1],

and

(3.6) |V 1
â,b̂

(ŝ, w) − V 1
â,b̂

(ŝ, ξi)| < ε.

Now we use the strategies α and αâ,b̂
ξi

, i = 1, . . . , â ∈ A, b̂ ∈ B, to construct a new

admissible strategy α̃ ∈ Γa
1 [s, 1] as follows: For (r, ω) ∈ [s, 1] × Ωs and b(·) ∈ Bb[s, 1],

we define

(3.7)
α[b(·)](ω)(r)

=

{
α[b(·)](ω)(r) if r < ŝ,∑∞

i=1

∑
â∈A,b̂∈B χ{b(ŝ)=b̂,α[b(·)](ŝ)=â}χAi(ysx(ŝ))αâ,b̂

ξi
[b(ω1)](ω2)(r) if r ≥ ŝ,

where ω = (ω1, ω2) ∈ Ωt,ŝ × Ωŝ and b(ω1)(·) ∈ Bb(ŝ)[ŝ, 1] is given by b(ω1)(ω2)(r) =
b(ω1, ω2)(r).
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STOCHASTIC SWITCHING GAMES 907

Consequently for any b(·) ∈ Bb[s, 1], using (3.2), (3.4), and (3.6), we obtain

(3.8)

Wa,b(s, x) ≥Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj)

+

∞∑
i=1

∑
â∈A,b̂∈B

χ{α[b(·)](ŝ)=â,b(ŝ)=b̂}χAi
(ys,x(ŝ))V 1

â,b̂
(ŝ, y(ŝ))

}
− ε

≥Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj)

+

∞∑
i=1

∑
â∈A,b̂∈B

χ{α[b(·)](ŝ)=â,b(ŝ)=b̂}χAi(ys,x(ŝ))V 1
â,b̂

(ŝ, ξi)

}
− 2ε.

On the other hand, for ysx(ŝ) ∈ Ai, i = 1, 2, . . . and ∀ b(·) ∈ Bb̂[ŝ, 1], we derive
from (3.4) and (3.5) that

(3.9) V 1
â,b̂

(ŝ, ξi) ≥ Jŝξi(α
â,b̂
ξi

[b(·)], b(·)) − ε ≥ Jŝysx(ŝ)(α
â,b̂
ξi

[b(·)], b(·)) − 2ε.

Combining the above inequalities, we have

(3.10)

Wa,b(s, x) ≥Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑
θi≤ŝ

k(θi, ai−1, ai) −
∑
τj≤ŝ

l(τj , bj−1, bj)

+

∞∑
i=1

χAi(ys,x(ŝ))Eŝysx(ŝ)

{∫ 1

ŝ

f0(r, y(r), α̃[b(·)](r), b(r)) dr

+
∑
θi>ŝ

k(θi, ai−1, ai) −
∑
τj>ŝ

l(τj , bj−1, bj) + h(y(1))

}}
− 4ε.

Therefore,

Wa,b(s, x) ≥ Jsx(α̃, b(·)) − 4ε,

which in turn implies

Wa,b(s, x) ≥ V 1
a,b(s, x) − 4ε,

and the result now follows.
From Proposition 3.1, we can obtain the following time continuity of V 1 and U1.
Proposition 3.2. There exists L > 0 such that for any a ∈ A, b ∈ B, x ∈ X,

and s, t ∈ [0, 1]

(3.11)
|V 1

a,b(s, x) − V 1
a,b(t, x)| ≤ L(1 + |x|)

√
|s− t|,

|Ua,b
1 (s, x) − Ua,b

1 (t, x)| ≤ L(1 + |x|)
√
|s− t|.
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908 SHANJIAN TANG AND SHUI-HUNG HOU

Proof of Proposition 3.2. We prove only the 1
2 -Hölder continuity of the r-lower

value function V 1 in the time variable the 1
2 -Hölder continuity of the r-upper value

function U1 in the time variable can be proved in the same way.
Suppose that s < t. First, we prove the following:

(3.12) V 1
a,b(s, x) − V 1

a,b(t, x) ≤ L(1 + |x|)
√
t− s.

From Proposition 3.1 and Hypothesis 3, we derive

(3.13)
V 1
a,b(s, x)

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr −
∑
τj≤t

l(τj , bj−1, bj) + V 1
a,b(t)(t, y(t))

}

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr −
∑
τj≤t

l(t, bj−1, bj) + V 1
a,b(t)(t, y(t))

}

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr − l(t, b, b(t)) + V 1
a,b(t)(t, y(t))

}
≤ sup

b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr + V 1
a,b(t, y(t))

}
.

Note that in the last step, we have used the relation (2.11). We then have

(3.14)

V 1
a,b(s, x) − V 1

a,b(t, x)

≤ sup
b(·)∈Bb[s,1]

Esx

{∫ t

s

f0(r, y(r), a, b(r)) dr + V 1
a,b(t, y(t)) − V 1

a,b(t, x)

}
,

which proves (3.12) by the uniformly Lipschitz continuity of V 1
a,b(t, x) in x and the

following estimate:

E|ysx(t) − x| ≤ L(1 + |x|)
√
t− s.

Second, we prove the following:

(3.15) V 1
a,b(s, x) − V 1

a,b(t, x) ≥ −L(1 + |x|)
√
t− s.

In fact, for any b̂(·) ∈ Bb[t, 1] and α ∈ Γa
1 [s, 1], we define

b(r) =

{
b, r ∈ [s, t),

b̂(r), r ∈ [t, 1],

and

(3.16)
α̂(ω1)[̂b(·)](r) = α[b(·)](ω1)(r), r ∈ [t, 1],

α̂(ω1)[̂b(·)](t− 0) = a.

D
ow

nl
oa

de
d 

10
/2

9/
12

 to
 1

58
.1

32
.1

61
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



STOCHASTIC SWITCHING GAMES 909

Then we see that b(·) ∈ Bb[s, 1] and α̂(ω1) ∈ Γa
1 [s, 1], a.s. It follows that

(3.17)
Jsx(α[b(·)], b(·))

≥ Esx

{∫ t

s

f0(r, y(r), α[b(·)](r), b(r)) dr + l(t, a, a(t)) + Jtx(α(ω1)[b(·)], b̂(·))

+

∫ 1

t

[f0(r, y(r), α̂(ω1)[̂b(·)](r), b̂(r)) − f0(r, y(r), α̂(ω1)[̂b(·)](r), b(r))] dr
}
.

Here we have used Hypothesis 2. Then we see that

(3.18)

sup
b(·)∈Bb[s,1]

Jsx(α[b(·)], b(·))

≥ sup
b(·)∈Bb[s,1]

Esx[V 1
α[b(·)](t),b(t, x) + l(t, a, α[b(·)](t))] − L(1 + |x|)

√
t− s

≥ V 1
a,b(t, x) − L(1 + |x|)|s− t|1/2,

which implies (3.15).
Remark 3.1. It is still true to replace in Proposition 3.1 the deterministic time

ŝ ∈ (s, 1] with a stopping time τ which takes its values in (s, 1]. In fact, in this version
of Proposition 3.2, it is sufficient to note that, for any (x, a, b) ∈ X ×A×B, the two

random variables V 1
a,b(τ, x) and Ua,b

1 (τ, x) may be sufficiently approximated by

N−1∑
i=0

V 1
a,b(ti, x)χ[ti,ti+1)(τ) and

N−1∑
i=0

Ua,b
1 (ti, x)χ[ti,ti+1)(τ),

respectively, by letting N be sufficiently large. Here we have used the following
notation:

ti =
i(1 − s)

N
, i = 0, 1, . . . , N.

For (s, x, δ) ∈ [0, 1] ×X × (0,∞) and (a(·), b(·)) ∈ Aa[s, 1] × Bb[s, 1], define

τ δs,x(a(·), b(·)) := inf
{
t ∈ [s, T ] : |ya(·),b(·)

s,x (t) − x| ≥ δ
}
∧ T,

where y
a(·),b(·)
s,x is the solution of the system (1.1) corresponding to (a(·), b(·)) ∈

Aa[s, 1]×Bb[s, 1], which will occasionally be abbreviated as ysx or simply y to simplify
the notation. It is easy to see that τ δs,x(a(·), b(·)) is a stopping time for any triplet

(s, x, δ) ∈ [0, 1] × X × [0,∞) and any pair (a(·), b(·)) ∈ Aa[s, 1] × Bb[s, 1]. To sim-
plify the notation, we shall simply write τ δ for τ δs,x(a(·), b(·)) when the dependence
on (s, x, a(·), b(·)) is not confused from the context. We also have

|ya(·),b(·)
s,x (t ∧ τd) − x| ≤ δ

for s ≤ t ≤ 1, a(·) ∈ Aa[s, 1], and b(·) ∈ Bb[s, 1]. Moreover, we have

lim
ŝ→s+

sup
a(·)∈Aa[s,1],b(·)∈Bb[s,1]

P ({ŝ ≥ τ δ})
ŝ− s

= 0.
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910 SHANJIAN TANG AND SHUI-HUNG HOU

In fact, we have

P ({τ δ ≤ ŝ}) = P

({
sup

s≤t≤ŝ
|ya(·),b(·)

s,x (t) − x| ≥ δ

})

≤
N∑
i=1

P δ,i
s,x(a(·), b(·)),

where N is the dimension of the state space X, for i = 1, . . . , N , ei is the unit vector
of X whose ith component is one, and

P δ,i
s,x(a(·), b(·)) := P

({
sup

s≤t≤ŝ
〈ei, ya(·),b(·)

s,x (t) − x〉 ≥ δN− 1
2

})
.

Define

fδ
s,x := sup{|f(t, y, a, b)| : (t, a, b) ∈ [s, 1] ×A×B, |y − x| ≤ δ}

and

gδs,x := sup{|g(t, y, a, b)| : (t, a, b) ∈ [s, 1] ×A×B, |y − x| ≤ δ}.

For θ ∈ X, from Itô’s formula, it follows that the process

Zδ,θ
s,x(t; a(·), b(·))

:= exp

{〈
θ, ys,x(t ∧ τ δ) − x−

∫ t∧τδ

s

f(r, ys,x(r), a(r), b(r)) dr

〉

−1

2

∫ t∧τδ

s

|g∗(r, ys,x(r), a(r), b(r))ei|2 dr
}
, t ∈ [s, 1],

is a continuous martingale, and E[Zδ,θ
s,x(t; a(·), b(·))] = 1 for any (t, a(·), b(·), θ) ∈

[s, T ] × Aa[s, 1] × Bb[s, 1] ×X. Therefore, using Doob’s inequality, we have for h :=
ŝ− s, λ > 0, δ0 ≥ δ > 0, a(·) ∈ Aa[s, 1], and b(·) ∈ Bb[s, 1]

P δ,i
s,x(a(·), b(·))

≤ P

({
sup

s≤t≤ŝ
Zδ,λei
s,x (t; a(·), b(·)) ≥ exp

[
λ(δN− 1

2 − hfδ0
s,x) − 1

2
λ2h|gδ0s,x|2

]})
≤ exp

[
−λ(δN− 1

2 − hfδ0
s,x) +

1

2
λ2h|gδ0s,x|2

]
.

As h is sufficiently small, take

λ =
δN− 1

2 − hfδ0
s,x

h|gδ0s,x|2
,

and we further have

P δ,i
s,x(a(·), b(·)) ≤ exp

{
−|δN− 1

2 − hfδ0
s,x|2

2h|gδ0s,x|2

}
.
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STOCHASTIC SWITCHING GAMES 911

Hence,

lim
ŝ→s+

sup
a(·)∈Aa[s,1],b(·)∈Bb[s,1]

P ({τ δ ≤ ŝ})
ŝ− s

≤ lim
ŝ→s+

sup
a(·)∈Aa[s,1],b(·)∈Bb[s,1]

h−1
N∑
i=1

P δ,i
s,x(a(·), b(·))

≤ lim
h→0

Nh−1 exp

{
−|δN− 1

2 − hfδ0
s,x|2

2h|gδ0s,x|2

}
= 0.

The desired result then follows.
Proposition 3.3. (1) The r-lower value function V 1(·, ·) satisfies the following:

Suppose at (a, b, s, x) ∈ A×B × [0, 1] ×X

(3.19a) V 1
a,b(s, x) > Ma,b[V

1](s, x).

Then there exist a deterministic time s0 > s and a sufficiently small number
δ0 > 0, such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.19b) V 1
a,b(s, x) ≤ Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + V 1
a,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.
(2) The r-upper value function U1(·, ·) satisfies the following: Suppose at (a, b, s, x) ∈

A×B × [0, 1] ×X

(3.20a) Ua,b
1 (s, x) < Ma,b[U1](s, x).

Then there exist a deterministic time s0 > s and a sufficiently small number δ0 > 0,
such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.20b) Ua,b
1 (s, x) ≥ Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + Ua,b
1 (ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.
Remark 3.2. Proposition 3.3 can be viewed as a stochastic version of Theorem

3.2 by Yong [10]. However, it is by no means trivial and is of stochastic nature in
its formulation. The upper limits of the integrals in (3.19b) and (3.20b) are more
complicated than the deterministic counterparts: The former are a deterministic time
ŝ > s which is sufficiently close to the initial time s, stopped by the first time of
the system state process ya,bs,x (steered by both players I and II with constant actions
a ∈ A and b ∈ B, respectively) escaping from a sufficiently small ball centered at
the initial state x, while the latter are simply a deterministic time ŝ > s which is
sufficiently close to the initial time s. Obviously, both coincide. Our proof below is
quite different from the deterministic case and is of stochastic nature; it includes a
delicate analysis.

Proof of Proposition 3.3. We prove only statement (1); the proof of statement (2)
is similar.

If statement (1) were not true, then there would exist sequences ŝ → s, δ → 0+,
and ε → 0+ such that

(3.21) V 1
a,b(s, x)−ε > Esx

{∫ ŝ∧τδ

s

f0(s, y(s; a, b), a, b) ds+V 1
a,b(ŝ∧τ δ, y(ŝ∧τ δ; a, b))

}
.
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912 SHANJIAN TANG AND SHUI-HUNG HOU

On the other hand, using Proposition 3.2 and the idea exposed in Remark 3.1, we can
show the following analogy to Proposition 3.1 (1):

V 1
a,b(s, x) ≤ inf

α∈Γa
1 [s,1]

sup
b(·)∈Bb[s,1]

Esx

{∫ ŝ∧τδ
a(·),b(·)

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

θi≤ŝ∧τδ
a(·),b(·)

k(θi, ai−1, ai) −
∑

τj≤ŝ∧τδ
a(·),b(·)

l(τj , bj−1, bj)

+ V 1
α[b(·)](ŝ),b(ŝ)(ŝ ∧ τ δa(·),b(·), y(ŝ ∧ τ δa(·),b(·)))

}
,

where {ai, θi} and {bj , τj} are associated with α[b(·)] and b(·), respectively; α[b(·)](ŝ) =
α[b(·)](ŝ + 0), b(ŝ) = b(ŝ + 0), and τ δa(·),b(·) := τ δs,x(a(·), b(·)). Therefore, we have

(3.22)

V 1
a,b(s, x) ≤ sup

b(·)∈Bb,s

Esx

{∫ ŝ∧τδ
a,b(·)

s

f0(r, y(r), a, b(r)) dr

−
∑

τj≤ŝ∧τδ
a,b(·)

l(τj , bj−1, bj) + V 1
a,b(ŝ)(ŝ ∧ τ δa,b(·), y(ŝ ∧ τ δa,b(·)))

}
.

Furthermore, by definition, we conclude that there exists bε(·) ∈ Bb[s, 1] such that

(3.23)

V 1
a,b(s, x) − ε ≤ Esx

{∫ ŝ∧τδ
a,bε(·)

s

f0(r, y(r), a, bε(r)) dr

−
∑

τε
j ≤ŝ∧τδ

a,bε(·)

l(τεj , b
ε
j−1, b

ε
j) + V 1

a,bε(ŝ)(ŝ ∧ τ δa,bε(·), y(ŝ ∧ τ δa,bε(·)))

}
,

where {τεj , bεj} = bε(·).
Set

B1 := {ω : bε(r ∧ τ δa,bε(·), ω) �= b for some r ∈ [s, ŝ ∧ τ δa,bε(·)]},
Bc

1 := Ω\B1 = {ω : bε(r ∧ τ δa,bε(·), ω) = b ∀ r ∈ [s, ŝ ∧ τ δa,bε(·)]}.

Note that B1 and Bc
1 depend on (δ, ŝ). Then the two inequalities (3.21) and (3.23)

yield

(3.24) E[χB1 ] > 0 for sufficiently small positive δ and ŝ.

Combining (3.21) and (3.23), we have

(3.25) (I) + (II) + (III) > 0,
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STOCHASTIC SWITCHING GAMES 913

where

(3.26)

(I) = Esx

{∫ ŝ∧τδ
a,bε(·)

s

f0(r, y(r; a, bε(·)), a, bε(r)) dr −
∫ ŝ∧τδ

a,b

s

f0(r, y(r; a, b), a, b) dr

}
≤ C((ŝ− s)(1 + |x| + δ))EχB1 ,

(II) = Esx

{
−

∑
τε
j ≤ŝ∧τδ

a,bε(·)

l(τεj , b
ε
j−1, b

ε
j)

}
≤ −Esx

{ ∑
τε
j ≤ŝ∧τδ

a,bε(·)

l(ŝ ∧ τ δa,bε(·), b
ε
j−1, b

ε
j)

}
,

(III) = Esx[V 1
a,bε(ŝ)(ŝ ∧ τ δa,bε(·), y(ŝ ∧ τ δa,bε(·); a, b

ε(·))) − V 1
a,b(ŝ ∧ τ δa,b, y(ŝ ∧ τ δa,b; a, b))]

= Esx

{
[V 1

a,bε(ŝ)(ŝ ∧ τ δa,bε(·), y(ŝ ∧ τ δa,bε(·); a, b
ε(·)))

− V 1
a,b(ŝ ∧ τ δa,b, y(ŝ ∧ τ δa,b; a, b))]χB1

}
.

Hence, noting Propositions 2.1 and 3.2, we have

(3.27)
0 ≤ (I) + (II) + (III)

≤ {Ma,b[V
1](s, x) − V 1

a,b(s, x) + C[
√
ŝ− s(1 + |x|) + δ]}EχB1

for some positive constant C, which implies that

(3.28) Ma,b[V
1](s, x) − V 1

a,b(s, x) ≥ −C
√
ŝ− s(1 + |x|) + δ.

Letting δ → 0+ and ε → 0+, we have

Ma,b[V
1](s, x) ≥ V 1

a,b(s, x),

which contradicts (3.19a).
Note that the time continuity of V 1 and U1 given by Proposition 3.2 is used in

the proof of Proposition 3.3.
Denote by C0,1(X,Rm×n) the totality of R

m×n-valued uniformly Lipschitz con-
tinuous functions on X. For ϕ(·) = (ϕa,b(·))a∈A,b∈B ∈ C0,1(X,Rm×n), define

(3.29a)

Fa,b(s, ŝ)ϕ(x) = sup
b̂∈B

inf
a(·)∈Aa[s,ŝ]

Esx

{
ϕa(ŝ−),b̂(y(ŝ)) +

∫ ŝ

s

f0(r, y(r), a(r), b̂) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) − l(s, b, b̂)

}
, (a, b, x) ∈ A×B ×X;

F (s, ŝ)ϕ = (Fa,b(s, ŝ)ϕ)a∈A,b∈B

and

(3.29b)

Ga,b(s, ŝ)ϕ(x) = inf
â∈A

sup
b(·)∈Bb[s,ŝ]

Esx

{
ϕâ,b(ŝ−)(y(ŝ)) +

∫ ŝ

s

f0(r, y(r), â, b(r)) dr

+ k(s, a, â) −
∑

s≤τj<ŝ

l(τj , aj−1, aj)

}
, (a, b, x) ∈ A×B ×X;

G(s, ŝ)ϕ = (Ga,b(s, ŝ)ϕ)a∈A,b∈B .
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914 SHANJIAN TANG AND SHUI-HUNG HOU

It is easily shown that F (s, ŝ) and G(s, ŝ) are self-mappings on C0,1(X,Rm×n). There-
fore, the function V π : [0, 1] ×X → C0,1(X,Rm×n) given by

(3.30a)
V π(1, x) = (V π

a,b(1, x))a∈A,b∈B , V π
a,b(1, x) ≡ h(x) for (a, b) ∈ A×B, with x ∈ X;

V π(s, x) = F (s, ti0+1)

M∏
i=i0+2

F (ti−1, ti)h(x), x ∈ X, if s ∈ [ti0 , ti0+1),

is well defined. Let V π
a,b(s, x) be the (a, b)-component of the matrix V π(s, x). Similarly,

define Uπ = (Ua,b
π )a∈A,b∈B : [0, 1] ×X → C0,1(X,Rm×n) as follows:

(3.30b)
Uπ(1, x) = (Ua,b

π (1, x))a∈A,b∈B , Ua,b
π (1, x) ≡ h(x) for (a, b) ∈ A×B, with x ∈ X;

Uπ(s, x) = G(s, ti0+1)

M∏
i=i0+2

G(ti−1, ti)h(x), x ∈ X, if s ∈ [ti0 , ti0+1).

We have the following.
Proposition 3.4. For (a, b, s, x) ∈ A×B× [0, 1]×X and ŝ ∈ π ∩ [s, 1], we have

(3.31a)

V π
a,b(s, x) = inf

α∈Γa[s,1]
sup

b(·)∈Bb
π [s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ V π
α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {ai, θi}, and

(3.31b)

Ua,b
π (s, x) = sup

β∈Δb[s,1]

inf
a(·)∈Aa

π [s,1]
Esx

{∫ ŝ

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ Ua(ŝ−),β[a(·)](ŝ−)
π (ŝ, y(ŝ))

}
,

where a(·) = {ai, θi} and b(·) = β[a(·)] = {bj , τj}.
Proof of Proposition 3.4. We prove only (3.31a) here; the proof of (3.31b) is

identical and therefore will be omitted.
For a(·) ∈ Aa[s, 1] and b(·) ∈ Bb[s, 1], set

(3.32)

Ĵsx(a(·), b(·)) =Esx

{∫ ŝ

s

f0(r, y(r), a(r), b(r)) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) −
∑

s≤tj<ŝ

l(tj , bj−1, bj)

+ V π
a(ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
.

The desired result can be derived from the following assertion: For (a, b, s, x) ∈ A ×
B × [0, 1] ×X and ∀ε > 0, there exist βε ∈ Δb

π[s, 1] and αε ∈ Γa[s, 1] such that

(3.33) V π
a,b(s, x) ≥ Ĵsx(αε[b(·)], b(·)) − ε ∀b(·) ∈ Bb

π[s, 1]
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STOCHASTIC SWITCHING GAMES 915

and

(3.34) V π
a,b(s, x) ≤ Ĵsx(a(·), βε[a(·)]) + ε ∀a(·) ∈ Γa[s, 1].

In fact, the inequality (3.33) implies (3.31a) with the equality sign replaced by
“≥.” On the other hand, for any α ∈ Γa[s, 1], the pair of strategies of βε ∈ Δb

π[s, 1]
and α ∈ Γa[s, 1] define a pair of switching processes aε(·) ∈ Aa[s, 1] and bε ∈ Bb

π[s, 1]
such that

(3.35) Ĵsx(aε(·), βε) = Ĵsx(α, bε(·)),

and this gives the other inequality in (3.31a). We invite the reader to see Fleming
and Souganidis [6] for the details of the proof.

We conclude the proof by establishing (3.33) and (3.34). For ϕ ∈ C0,1(X,Rm×n),
define

(3.36)

ψa,b(s, x, ŝ, ϕ, b̃) = inf
a(·)∈Aa[s,ŝ)

Esx

{
ϕa(ŝ−),b̃(y(ŝ)) +

∫ ŝ

s

f0(r, y(r), a(r), b̃) dr

+
∑

s≤θi<ŝ

k(θi, ai−1, ai) − l(s, b, b̃)

}
.

Here ysx(·) is the solution of (1.1) with b(r) = b̃, r ∈ [s, ŝ].

(3.37) Fa,b(s, ŝ)ϕ(x) = sup
b̃∈B

ψa,b(s, x, ŝ, ϕ, b̃).

If s ∈ [ti0 , ti0+1) for i0 ∈ {0, 1, . . . ,M − 1}, let DM = h,Dj = F (tj , tj+1)Dj+1, for
j = i0 + 1, . . . ,M − 1, and Ds,i0 = F (t, ti0+1)Di0+1. Thus,

(3.38) Ds,i0(x) = V π
a,b(s, x),

and, in particular,

(3.39) Di0(x) = V π
a,b(ti0 , x).

We partition X into Borel sets {Ai : i = 1, 2, . . . } of diameter less than δ, where
δ is to be specified later, and we choose xi ∈ Ai. Given γ > 0, we can choose δ small
enough and b̃ai(j−1) ∈ B for i = 1, 2, . . . and j = i0 + 1, . . . ,M such that

(3.40a) ψa,b(tj−1, xi, tj , Dj , b̃
a
i(j−1)) > Fa,b(tj−1, tj)Dj(xi) − γ,

and thus

(3.40b)

Etj−1xi

{
D

a(tj−),b̃ai(j−1)

j (y(tj)) +

∫ tj

tj−1

f0(r, y(r), a(r), b̃ai(j−1)) dr

+
∑

tj−1≤θi<tj

k(θi, ai−1, ai) − l(tj−1, b, b̃)

}
> Da,b

j−1(xi) − γ ∀a(·) ∈ Aa[tj−1, tj ].D
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916 SHANJIAN TANG AND SHUI-HUNG HOU

We also choose ab̃i(j−1)(·) ∈ Aa(tj−1, tj) such that, for a(·) = ab̃ij(·) and b(r) = b̃, r ∈
(tj−1, tj ],

(3.41)

Etj−1xi

{
D

a(tj−),b̃
j (y(tj ; a

b̃
i(j−1)(·), b̃)) +

∫ tj

tj−1

f0(r, y(r), ab̃i(j−1)(r), b̃) dr

+
∑

tj−1≤θi<tj

k(θi, ai−1, ai) − l(tj−1, b, b̃)

}
< ψa,b(tj−1, xi, tj , Dj , b̃) + γ = Da,b

j (xi) + γ,

where for j = i0 + 1 we replace ti0 by s. Here ytjxi
(·; ab̃ij(·), b̃) is the solution of (1.1)

with the initial data (tj−1, xi) and on the switchings a(·) = ab̃ij(·) and b(·) ≡ b̃.
We need to introduce more notations. As before, we identify ω ∈ Ωs with the pair

(ω1j , ω2j) for j = i0 + 2, . . . ,M , where ω1j = ω|[s,tj−1] and ω2j = ω − ωtj−1 |[tj−1,1].
With this identification, the Wiener measure Ps on Ωs can be regarded as the product
measure P1j ⊗P2j of the two probability measures P1j and P2j , which are defined on
the two measure spaces (Ωs,tj−1 ,Fs,tj−1

) and (Ωtj−1
,Ftj−1), respectively. In view of

this identification, we will be writing

(3.42) EP2j ≡ Etj−1xi
.

The strategies αε ∈ Γa[s, 1] and βε ∈ Δb
π[s, 1] are defined as follows. Let

(a, b, s, x) ∈ A×B × [0, 1) ×X be fixed. For a(·) ∈ Aa[s, 1], we define

(3.43)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βε[a(·)](r) =bχ[s,s) + χ[s,ti0+1)(r)

∞∑
i=1

b̃aii0χAi(x)

+

M−1∑
j=i0+1

χ[tj ,tj+1)(r)

∞∑
ã∈A
i=1

b̃ãijχAi
(ysx(tj))χ{a(tj−)=ã}, r ∈ [s, 1),

βε[a(·)](1) =βε[a(·)](1−),

where the random variable ysx(·) is defined successively on intervals [s, ti0+1], [tj , tj+1],
j = i0 + 1, . . . ,M − 1, as the solution to (1.1) with b(r) = βε[a(·)](r). Note that
∀a(·) ∈ Aa[s, 1] and r ∈ (s, 1), βε[a(·)](r) depends only on a(·)|[s,r) and is independent

of a(r). For b(·) ∈ Bb[s, 1], we define

(3.44)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

αε[b(·)](r) =χ[s,s)

∞∑
i=1

ãbii0χAi
(x) + χ[s,ti0+1)(r)

∞∑
b̃∈B,i=1

ãb̃ii0(r)χAi
(x)χ{b(s)=b̃}

+

M−1∑
j=i0+1

χ[tj ,tj+1)(r)

∞∑
b̃∈B,i=1

ãb̃ij(r)χAi(ysx(tj))χ{b(r)=b̃}, r ∈ [s, 1);

αε[b(·)](1) =αε[b(·)](1−),

where again ysx(·) is defined successively on intervals [s, ti0+1], [tj , tj+1],
j = i0 + 1, . . . ,M − 1, as the solution to (1.1) with a(r) = αε[b(·)](r). Note that
for any b(·) ∈ Bb[s, 1] and r ∈ [s, 1], αε[b(·)](r) depends on b(r).
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STOCHASTIC SWITCHING GAMES 917

For either a(·) ∈ Aa[s, 1] and b(·) = βε[a(·)] or b(·) ∈ Bb
π[s, 1] and a(·) = αε[b(·)],

we have

(3.45)

V π
a,b(s, x) − Ĵsx(a(·), b(·))

= EPs

∑
ti0+1≤tj≤ŝ

{
D

a(tj−1−),b(tj−1−)
j−1 (ysx(tj−1))

+ EPs

[
−
∫ tj

tj−1

f0(r, ysx(r), a(r), b(r)) dr −
∑

tj−1≤θi<tj

k(θi, ai−1, ai)

+
∑

tj−1≤τj<tj

l(τj , bj−1, bj) −D
a(tj−),b(tj−)
j (ysx(tj))

∣∣∣∣ Fs,tj−1

]}
.

To obtain (3.33) and (3.34), it suffices to show that the following statements hold:

(3.46)

D
a(tj−1−),b(tj−1−)
j−1 (ysx(tj−1)) ≥

EPs

[∫ tj

tj−1

f0(r, ysx(r), a(r), b(r)) dr +
∑

tj−1≤θi<tj

k(θi, ai−1, ai)

−
∑

tj−1≤τj<tj

l(τj , bj−1, bj) + D
a(tj−),b(tj−)
j (ysx(tj))

∣∣∣∣ Fs,tj−1

]
− ε(tj − tj−1),

Ps-a.s. ∀ b(·) ∈ Bb
π[s, 1] and a(·) = αε[b(·)]

and

(3.47)

D
a(tj−1−),b(tj−1−)
j−1 (ysx(tj−1))

≤ EPs

[∫ tj

tj−1

f0(r, ysx(r), a(r), b(r)) dr +
∑

tj−1≤θi<tj

k(θi, ai−1, ai)

−
∑

tj−1≤τj<tj

l(τj , bj−1, bj) + D
a(tj−),b(tj−)
j (ysx(tj))

∣∣∣∣ Fs,tj−1

]
+ ε(tj − tj−1),

Ps-a.s. ∀ a(·) ∈ Aa[s, 1] and b(·) = βε[a(·)].
They can be derived from (3.41) and (3.40b), separately.

It is easy to see that V π
a,b(s, x) and Ua,b

π (s, x) grow in a linear way in the state
variable x ∈ X, uniformly with respect to (a, b, s) ∈ A×B × [0, T ] and the partition
π. Analogous to the first part of the proof of Proposition 3.2, we can also show some
time continuity of V π and Uπ. These properties are summarized into the following.

Proposition 3.5. There is a positive constant L such that for s ∈ [0, 1], t ∈
π ∩ [s, 1], a ∈ A, b ∈ B, x ∈ X, and y ∈ X we have

(3.48)

|V π
a,b(s, x)| + |Ua,b

π (s, x)| ≤ L(1 + |x|),
|V π

a,b(s, x) − V π
a,b(s, y)| + |Ua,b

π (s, x) − Ua,b
π (s, y)| ≤ L|x− y|,

|V π
a,b(s, x) − V π

a,b(t, x)| + |Ua,b
π (s, x) − Ua,b

π (t, x)| ≤ L(1 + |x|)
√
t− s.

Next we assume that πi = {j/2i}2i

j=0, i = 0, 1, 2, . . . . Then ||πi|| = 1/2i, and, from
the definition of V πi and Uπi , i = 0, 1, 2, . . . , and Proposition 3.4, we have

(3.49a) V π0

a,b ≤ V π1

a,b ≤ · · · ≤ V πi

a,b ≤ · · · ≤ Va,b, (a, b) ∈ A×B
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918 SHANJIAN TANG AND SHUI-HUNG HOU

and

(3.49b) Ua,b
π0

≥ Ua,b
π1

≥ · · · ≥ Ua,b
πi

≥ · · · ≥ Ua,b, (a, b) ∈ A×B.

Proposition 3.6. For (a, b) ∈ A×B, let va,b = limi→∞ V πi

a,b and v := (va,b)a∈A,b∈B.
Then, for s, t ∈ [0, 1] and x, y ∈ X, we have

(3.50a)

va,b(s, x) ≤ Va,b(s, x),

|va,b(s, x)| ≤ L(1 + |x|),
|va,b(s, x) − va,b(t, x)| ≤ L(1 + |x|)

√
|t− s|,

|va,b(s, x) − va,b(s, y)| ≤ L|x− y|.

Similarly, let ua,b = limi→∞ Ua,b
πi

and u := (ua,b)a∈A,b∈B. Then, for s, t ∈ [0, 1] and
x, y ∈ X,

(3.50b)

ua,b(s, x) ≥ Ua,b(s, x),

|ua,b(s, x)| ≤ L(1 + |x|),
|ua,b(s, x) − ua,b(t, x)| ≤ L(1 + |x|)

√
|t− s|,

|ua,b(s, x) − ua,b(s, y)| ≤ L|x− y|.
Proof of Proposition 3.6. First, we prove (3.50a). Assume, without loss of gener-

ality, that s < t. Let {ti}∞i=1 ⊂ ∪∞
i=0πi ∩ [t, 1] and limi→∞ ti = t. Then we have from

Proposition 3.5 that

(3.51)

|va,b(s, x) − va,b(t, x)|
≤ |va,b(s, x) − va,b(ti, x)| + |va,b(ti, x) − va,b(t, x)|
≤ L(1 + |x|)(

√
ti − s +

√
ti − t), i = 1, 2, . . . .

This concludes the 1
2 -Hölder continuity in the time variable of va,b. Its linear growth

and uniform Lipschitz continuity in the space variable x is straightforward.
In an identical way, we can show (3.50b).
Passing to the limit ‖π‖ → 0 in Proposition 3.4, we obtain that two functions v

and u satisfy the following dynamic programming principle.
Proposition 3.7. For (a, b, s, x) ∈ A×B× [0, 1]×X and ŝ ∈ ∪∞

i=0πi ∩ [s, 1], we
have

(3.52a)

va,b(s, x) = lim
i→∞

inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<ŝ

k(θj , aj−1, aj) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}, and

(3.52b)

ua,b(s, x) = lim
i→∞

sup
β∈Δb[s,1]

inf
a(·)∈Aa

πi
[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θj<ŝ

k(θj , aj−1, aj) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ ua(ŝ−),β[a(·)](ŝ−)(ŝ, y(ŝ))

}
,

where a(·) = {aj , θj} and b(·) = β[a(·)] = {bj , τj}.
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STOCHASTIC SWITCHING GAMES 919

Proof of Proposition 3.7. We only derive the equality (3.52a) from the equality
(3.31a) in Proposition 3.4. The proof of the equality (3.52b) is similar.

Since ŝ ∈ ∪∞
i=0πi ∩ [s, 1], we have ŝ ∈ πi ∩ [s, 1] when i is sufficiently large. From

Proposition 3.4, we have that, when i is sufficiently large,

(3.53)

V πi

a,b(s, x) = inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ ŝ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<ŝ

k(θj , aj−1, aj) −
∑

s≤τj<ŝ

l(τj , bj−1, bj)

+ V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}.
Set, for any C > 0,

OC(x) := {y : |y − x| ≤ C}, Oc
C(x) := {y : |y − x| > C}.

It is easy to see from Propositions 3.5 and 3.6 that

(3.54)

Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|
≤ Esx{χOc

C(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|}
+ Esx{χOC(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|}

≤ {Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|2}
1
2 {P (Oc

C(x))} 1
2

+ Esx{χOC(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|}.

From Propositions 3.5 and 3.6, we have that, for any given positive constant C,

lim
i→∞

V πi(ŝ, y) = v(ŝ, y) uniformly in y ∈ OC(x),

which implies that

(3.55)
lim
i→∞

Esx{χOC(x)(y(ŝ))|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|} = 0.

Moreover,

(3.56) Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))|2 ≤ L(1 + Esx|y(ŝ)|2).

Since

(3.57)
Esx|y(ŝ)|2 ≤ L(1 + |x|2),
P (Oc

C(x)) ≤ C−2Esx|y(ŝ) − x|2 ≤ LC−2(1 + |x|2),

we see that

0 ≤ lim
i→∞

sup
α,b(·)

Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))−vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))| ≤ LC−2(1+ |x|2)

for an arbitrary sufficiently large positive number C, and therefore

(3.58) lim
i→∞

sup
α,b(·)

Esx|V πi

α[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ)) − vα[b(·)](ŝ−),b(ŝ−)(ŝ, y(ŝ))| = 0.

The last equality implies (3.52a) immediately.
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920 SHANJIAN TANG AND SHUI-HUNG HOU

Note that

(3.59) va,b(1, x) = ua,b(1, x) = h(x), (a, b, x) ∈ A×B ×X.

It follows from Proposition 3.7 that, for (a, b, s, x) ∈ A×B × [0, 1] ×X,

(3.60a)

va,b(s, x) = lim
i→∞

inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ 1

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<1

k(θj , aj−1, aj) −
∑

s≤τj<1

l(τj , bj−1, bj) + h(y(1))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}, and

(3.60b)

ua,b(s, x) = lim
i→∞

sup
β∈Δb[s,1]

inf
a(·)∈Aa

πi
[s,1]

Esx

{∫ 1

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θj<1

k(θj , aj−1, aj) −
∑

s≤τj<1

l(τj , bj−1, bj) + h(y(1))

}
,

where a(·) = {aj , θj} and b(·) = β[a(·)] = {bj , τj}. From the above two formulas, we
have

(3.61a) Ma,b[v](s, x) ≤ va,b(s, x) ≤ Ma,b[v](s, x), (a, b, s, x) ∈ A×B × [0, 1] ×X,

and

(3.61b) Ma,b[u](s, x) ≤ ua,b(s, x) ≤ Ma,b[u](s, x), (a, b, s, x) ∈ A×B × [0, 1] ×X.

In view of the time continuity given by Proposition 3.6, the deterministic time
ŝ may be replaced in Proposition 3.7 with an arbitrary stopping time which takes
values in [s, 1]. That is, we have the following.

Proposition 3.8. For (a, b, s, x) ∈ A× B × [0, 1] ×X and any stopping time τ
which take values in [s, 1], we have

(3.62a)

va,b(s, x) = lim
i→∞

inf
α∈Γa[s,1]

sup
b(·)∈Bb

πi
[s,1]

Esx

{∫ τ

s

f0(r, y(r), α[b(·)](r), b(r)) dr

+
∑

s≤θj<τ

k(θj , aj−1, aj) −
∑

s≤τj<τ

l(τj , bj−1, bj)

+ vα[b(·)](τ−),b(τ−)(τ, y(τ))

}
,

where b(·) = {bj , τj} and a(·) = α[b(·)] = {aj , θj}, and

(3.62b)

ua,b(s, x) = lim
i→∞

sup
β∈Δb[s,1]

inf
a(·)∈Aa

πi
[s,1]

Esx

{∫ τ

s

f0(r, y(r), a(r), β[a(·)](r)) dr

+
∑

s≤θj<τ

k(θj , aj−1, aj) −
∑

s≤τj<τ

l(τj , bj−1, bj)

+ ua(τ−),β[a(·)](τ−)(τ, y(τ))

}
,

where a(·) = {aj , θj} and b(·) = β[a(·)] = {bj , τj}.
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STOCHASTIC SWITCHING GAMES 921

Proceeding similarly as in the proof of Proposition 3.3, we derive from Proposition
3.8 the following.

Proposition 3.9. (1) The lower value function v(·, ·) := (va,b)a∈A,b∈B satisfies
the following: Suppose at (a, b, s, x) ∈ A×B × [0, 1] ×X,

(3.63a) va,b(s, x) > Ma,b[v](s, x) (resp., va,b(s, x) < Ma,b[v](s, x)).

Then there exist a deterministic time s0 > s and a sufficiently small number δ0 > 0,
such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.63b)

va,b(s, x) ≤ (resp., ≥) Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + va,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.

(2) The upper value function u(·, ·) := (ua,b)a∈A,b∈B satisfies the following: Sup-
pose at (a, b, s, x) ∈ A×B × [0, 1] ×X,

(3.64a) ua,b(s, x) < Ma,b[u](s, x) (resp., ua,b(s, x) > Ma,b[u](s, x)).

Then there exist a deterministic time s0 > s and a sufficiently small number δ0 > 0,
such that for all ŝ ∈ [s, s0] and δ ∈ (0, δ0],

(3.64b)

ua,b(s, x) ≥ (resp., ≤) Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + ua,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ.

4. Viscosity solutions, uniqueness result, dynamic programming equa-
tions, and existence of the game value. In this section, we shall introduce the
generalized notion of viscosity solution for our Isaacs’ system of variational inequali-
ties. The value functions defined in sections 2 and 3 turn out to be its viscosity sub- or
supersolutions. We then prove the uniqueness of the viscosity solution and establish
the existence of the value of our stochastic switching game.

Define for (a, b, t, x, q,Q) ∈ A×B × [0, 1] ×X ×X × S,

(4.1) Ha,b(t, x, q,Q) := f0(t, x, a, b)+ < q, f(t, x, a, b) > +
1

2
tr(Qgg∗(t, x, a, b)).

Here S is the set of all real symmetric transformations in X. Let C1,2([0, 1) ×X) be
the set of all continuous functions which are continuously differentiable in t and twice
continuously differentiable in x.

Associated with our stochastic switching game is the following Isaacs’ system of
quasi-variational inequalities where W is to be solved:

(1) For (a, b, t, x) ∈ A×B × [0, 1] ×X,

(4.2) Ma,b[W ](t, x) ≤ Wa,b(t, x) ≤ Ma,b[W ](t, x);

(2) for (a, b, t, x) ∈ A×B × [0, 1] ×X such that Wa,b(t, x) > Ma,b[W ](t, x),

(4.3)
∂

∂t
Wa,b(t, x) + Ha,b(t, x,∇Wa,b(t, x),∇2Wa,b(t, x)) ≥ 0;
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922 SHANJIAN TANG AND SHUI-HUNG HOU

(3) for (a, b, t, x) ∈ A×B × [0, 1] ×X such that Wa,b(t, x) < Ma,b[W ](t, x),

(4.4)
∂

∂t
Wa,b(t, x) + Ha,b(t, x,∇Wa,b(t, x),∇2Wa,b(t, x)) ≤ 0;

(4) the terminal condition

(4.5) Wa,b(1, x) = h(x), (a, b, x) ∈ A×B ×X.

Definition 4.1. An R
m×n-valued continuous function W = (Wa,b)a∈A,b∈B on

[0, T ]×X is called a viscosity sub- (resp., super-) solution of (4.2)–(4.5) if it satisfies
(4.2) and (4.5), and moreover, for any ϕ(·, ·) ∈ C1,2([0, 1) ×X) and (a, b) ∈ A × B,
whenever Wa,b(·, ·) − ϕ(·, ·) attains a local maximum (resp., minimum) at (t0, x0) ∈
[0, 1) ×X and

Wa,b(t0, x0) > Ma,b[W ](t0, x0) (resp., Wa,b(t0, x0) < Ma,b[W ](t0, x0)),

we have

∂

∂t
ϕ(t0, x0) + Ha,b(t0, x0,∇ϕ(t0, x0),∇2ϕ(t0, x0)) ≥ 0(

resp.,
∂

∂t
ϕ(t0, x0) + Ha,b(t0, x0,∇ϕ(t0, x0),∇2ϕ(t0, x0)) ≤ 0

)
.

An R
m×n-valued function W = (Wa,b)a∈A,b∈B on [0, T ] × X is called a viscosity

solution of (4.2)–(4.5) if it is both a viscosity sub- and supersolution of (4.2)–(4.5).
Propositions 3.3 and 3.9 imply the following result.
Proposition 4.1. (1) The r-lower and r-upper value functions V 1 and U1 are

viscosity sub- and supersolutions of (4.2)–(4.5), respectively.
(2) The functions v = (va,b) and u = (ua,b) defined in Proposition 3.6 are viscosity

solutions of (4.2)–(4.5).
Proof of Proposition 4.1. We now prove that the r-lower value function V 1 is a

viscosity subsolution of (4.2)–(4.5). From the definition, it follows that V 1
a,b = h for

(a, b) ∈ A×B. In view of (2.11), we see that V 1 satisfies (4.2).
Consider ϕ(·, ·) ∈ C1,2([0, 1)×X) and (a, b) ∈ A×B. Assume that V 1

a,b(·, ·)−ϕ(·, ·)
attains a local maximum at (s, x) ∈ [0, 1) ×X and

V 1
a,b(s, x) > Ma,b[V

1](s, x).

From Proposition 3.3, we see that there exist a deterministic time s0 > s and a
sufficiently small number δ0 > 0, such that for all ŝ ∈ (s, s0] and δ ∈ (0, δ0], we have

V 1
a,b(s, x) ≤ Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + V 1
a,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ))

}
.

Here we have abbreviated τ δs,x(a, b) as τ δ. For sufficiently small ŝ ∈ [s, s0] and δ ∈
(0, δ0], we have

(4.6) V 1
a,b(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ)) − ϕ(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ)) ≤ V 1(s, x) − ϕ(s, x).

Therefore,

Esx

{∫ ŝ∧τδ

s

f0(r, ya,b(r), a, b) dr + ϕ(ŝ ∧ τ δ, ya,b(ŝ ∧ τ δ)) − ϕ(s, x)

}
≥ 0.
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STOCHASTIC SWITCHING GAMES 923

From Itô’s formula, we conclude that

Esx

∫ ŝ∧τδ

s

[
∂

∂t
ϕ(r, ya,b(r)) + Ha,b(r, ya,b(r),∇ϕ(r, ya,b(r)),∇2ϕ(r, ya,b(r)))

]
dr ≥ 0.

Noting (see the arguments following Remark 3.1) that

lim
ŝ→s+

P ({τ δ ≤ ŝ})
ŝ− s

= 0,

we have

0 ≤ lim
ŝ→s+

(ŝ− s)−1Esx

{∫ ŝ∧τδ

s

[
∂

∂t
ϕ(r, ya,b(r)) + Ha,b(· · · )

]
dr

}

= lim
ŝ→s+

(ŝ− s)−1Esx

{
χ{ŝ≤τδ}

∫ ŝ

s

[
∂

∂t
ϕ(r, ya,b(r)) + Ha,b(· · · )

]
dr

}

=
∂

∂t
ϕ(s, x) + Ha,b(s, x,∇ϕ(s, x),∇2ϕ(t, x)).

Concluding the above, we see that V 1 is a viscosity subsolution.
Noting (3.59), (3.61a), and (3.61b), we can prove all other assertions in Proposi-

tion 4.1 in an identical way.
Let us introduce the following sets, which are adopted from Evans and Ishii [5].

For function v : [0, 1] ×X → [−∞,+∞] and (s, z) ∈ [0, 1) ×X, define

(4.7)

℘2,+v(s, z) :=
{

(p, q,Q) ∈ R ×X × S : v(t, x)

≤ v(s, z) + p(t− s) + 〈q, x− z〉 + 1
2 〈Q(x− z), x− z〉

+ o(|t− s| + |x− z|2) as [0, 1] ×X � (t, x) → (s, z)
}
,

(4.8)

℘̄2,+v(s, z) :=
{

(p, q,Q) ∈ R ×X × S : ∃(ti, xi) ∈ [0, 1] ×X,

(pi, qi, Qi) ∈ ℘2,+v(ti, xi),

(ti, xi, v(ti, xi), pi, qi, Qi) → (s, z, v(s, z), p, q,Q)
}
.

Define for (s, z) ∈ [0, 1) ×X

(4.9) ℘2,−v(s, z) = −℘2,+(−v)(s, z) and ℘̄2,−v(s, z) = −℘̄2,+(−v)(s, z).

The following result is standard.
Proposition 4.2. An R

m×n-valued function W = (Wa,b)a∈A,b∈B on [0, T ] ×X
is a viscosity sub- (resp., super-) solution of (4.2)–(4.5) if and only if it satisfies
(4.2) and (4.5), and moreover, for any (t, x, a, b) ∈ [0, 1) × X × A × B, whenever
(p, q,Q) ∈ ℘̄2,+Wa,b(t, x) (resp., ℘̄2,−Wa,b(t, x)) and

Wa,b(t0, x0) > Ma,b[W ](t0, x0) (resp., Wa,b(t0, x0) < Ma,b[W ](t0, x0)),

we have

(4.10) p + Ha,b(t, x, q,Q) ≥ 0 (resp., p + Ha,b(t, x, q,Q) ≤ 0).

D
ow

nl
oa

de
d 

10
/2

9/
12

 to
 1

58
.1

32
.1

61
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



924 SHANJIAN TANG AND SHUI-HUNG HOU

Now let us make a further assumption that will play an important role in the
proof of the uniqueness result.

Hypothsis 4. For any loop {ai, bi}j+1
i=1 ⊂ A×B, with the properties that

(4.11)
j ≤ mn, aj+1 = a1, bj+1 = b1,

and either ai+1 = ai or bi+1 = bi ∀ 1 ≤ i ≤ j,

we have

(4.12)

j∑
i=1

k(s, ai, ai+1) −
j∑

i=1

l(s, bi, bi+1) �= 0 ∀s ∈ [0, 1].

Theorem 4.1. Assume Hypotheses 1– 4. If W and Ŵ are continuous viscos-
ity sub- and supersolutions of (4.2)–(4.5), respectively, and satisfy for (t, x, y, a, b) ∈
[0, 1] ×X ×X ×A×B the following:

(4.13)
|Wa,b(t, x)| + |Ŵa,b(t, x)| ≤ C(1 + |x|),
|Wa,b(t, x) −Wa,b(t, y)| + |Ŵa,b(t, x) − Ŵa,b(t, y)| ≤ C|x− y|,

then

(4.14) Wa,b(t, x) ≤ Ŵa,b(t, x) ∀(t, x, a, b) ∈ [0, 1] ×X ×A×B.

Proof of Theorem 4.1. We prove the theorem by contradiction. So suppose that
∃(ā, b̄, t̄, x̄) ∈ A×B × (0, 1) ×X such that

(4.15) Wā,b̄(t̄, x̄) − Ŵā,b̄(t̄, x̄) = η > 0.

Consider the following test function:

(4.16) ψ(t, x, y) =
|x− y|2

2ε
+ αe−βt(1 + |x|2 + |y|2), (t, x, y) ∈ [0, 1] ×X ×X,

with parameters α > 0 and β > 0. We choose a sufficiently small α > 0 such that it
does not depend on the parameter β > 0 and that it satisfies the following:

(4.17) ψ(t̄, x̄, x̄) <
η

2
∀β > 0.

Now consider the function

(4.18)

Ψa,b(t, x, y) = Wa,b(t, x)−Ŵa,b(t, y)−ψ(t, x, y), (a, b, t, x, y) ∈ A×B×[0, 1]×X×X.

From (4.13), (4.15), and (4.17), we see that there is a point (a0, b0, t0, x0, y0) ∈ A ×
B × [0, 1] ×X ×X such that

(4.19) Ψa0,b0(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y) ≥ Ψā,b̄(t̄, x̄, x̄) ≥ η

2
.

At this stage, we have the following two conclusions.
Conclusion 1. Following the arguments of Yamada [9, pp. 424–425], we can show

the following assertion: Without loss of generality, we may assume that

(4.20) Ma0,b0 [W ](t0, x0) < Wa0,b0(t0, x0), Ma0,b0 [Ŵ ](t0, y0) > Ŵa0,b0(t0, y0).
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Otherwise, we have

(4.21) Ma0,b0 [W ](t0, x0) = Wa0,b0(t0, x0) or Ma0,b0 [Ŵ ](t0, y0) = Ŵa0,b0(t0, y0).

Consequently, there is b1 ∈ B or a1 ∈ A such that

(4.22) Wa0,b0(t0, x0) = Wa0,b1(t0, x0) − l(t0, b0, b1)

or

(4.23) Ŵa0,b0(t0, y0) = Ŵa1,b0(t0, y0) + k(t0, a0, a1).

On the other hand, from (4.19), we have

(4.24) Ψa0,b0(t0, x0, y0) ≥ Ψa1,b0(t0, x0, y0),

which implies immediately

(4.25) Wa0,b0(t0, x0) − Ŵa0,b0(t0, y0) ≥ Wa1,b0(t0, x0) − Ŵa1,b0(t0, y0).

Therefore, we have

(4.26)
0 ≥Wa0,b0(t0, x0) −Wa1,b0(t0, x0) − k(t0, a0, a1)

≥Ŵa0,b0(t0, y0) − Ŵa1,b0(t0, y0) − k(t0, a0, a1),

which shows the following:

(4.27) Wa0,b0(t0, x0) = Wa1,b0(t0, x0) + k(t0, a0, a1)

if (4.23) is true. In summary, there is b1 ∈ B or a1 ∈ A such that either (4.22) or
(4.27) is true. Moreover, we have

(4.28) Wa0,b0(t0, x0) − Ŵa0,b0(t0, y0) = Wa1,b0(t0, x0) − Ŵa1,b0(t0, y0),

from which it follows that

(4.29) Ψa0,b0(t0, x0, y0) = Ψa1,b0(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y).

Symmetrically, we have

(4.30) Ψa0,b0(t0, x0, y0) = Ψa0,b1(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y).

Set (ã1, b̃1) := (a0, b0). We can repeat the above argument to start from the pair
of parameters (ã2, b̃2)—which is (a1, b̃1) or (ã1, b1)—to find a new pair of parameters
(a2, b2) such that either

(4.31) Wã2,b̃2
(t0, x0) = Wã2,b2(t0, x0) − l(t0, b̃2, b2)

or

(4.32) Wã2,b̃2
(t0, x0) = Wa2,b̃2

(t0, x0) + k(t0, ã2, a2)
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926 SHANJIAN TANG AND SHUI-HUNG HOU

is true. Moreover,

(4.33) Ψã2,b2(t0, x0, y0) = Ψa2,b̃2(t0, x0, y0) = max
a∈A
b∈B

sup
t,x,y

Ψa,b(t, x, y).

Then we can continue the procedure until we find a loop {ãi, b̃i}j+1
i=1 which satisfies

the properties (4.11). Summing up (4.31)–(4.32) for the loop, we get

(4.34)

j∑
i=1

k(s, ãi, ãi+1) −
j∑

i=1

l(s, b̃i, b̃i+1) = 0.

Then we get a contradiction to Hypothesis 4.
Conclusion 2. On the maximum point (a0, b0, t0, x0, y0), we have the following

properties:
(i) There is a constant Cα,β , which depends on positive α, β such that |x0|+|y0| ≤

Cα,β ;
(ii) from (4.13) and the following inequality:

2Ψa0,b0(t0, x0, y0) ≥ Ψa0,b0(t0, x0, x0) + Ψa0,b0(t0, y0, y0),

we obtain |x0 − y0| ≤ εCα,β . Hence, |x0 − y0| → 0 as ε → 0, while keeping α and β
fixed;

(iii) since Ψa0,b0(1, x0, y0) ≤ h(x0)− h(y0) ≤ C|x0 − y0|, we conclude from (4.19)
that t0 ∈ [0, 1) whenever ε > 0 is sufficiently small.

A simple computation gives rise to the following:

(4.35)

∂tψ(t, x, y) = −βαe−βt(1 + |x|2 + |y|2),

∂xψ(t, x, y) =
(x− y)

ε
+ 2αe−βtx,

∂yψ(t, x, y) =
(y − x)

ε
+ 2αe−βty,

∂2
(x,y)ψ(t, x, y) =

1

ε

(
I −I
−I I

)
+ 2αe−βt

(
I 0
0 I

)
.

Then, applying Theorem 9 of Evans and Ishii [5] to the function

Wa0,b0(t, x) + (−Ŵa0,b0)(t, y) − ψ(t, x, y)

at the point (t0, x0, y0), we can find p1, p2 ∈ R and Q1, Q2 ∈ S such that

(4.36)

(p1, ∂xψ(t0, x0, y0), Q1) ∈ ℘̄2,+Wa0,b0(t0, x0),

(p2, ∂yψ(t0, x0, y0), Q2) ∈ ℘̄2,+(−Ŵa0,b0)(t0, y0),

p1 + p2 = ∂tψ(t0, x0, y0),(
Q1 0
0 Q2

)
≤ ∂2

(x,y)ψ(t0, x0, y0) + ε
(
∂2
(x,y)ψ(t0, x0, y0)

)2

.

By the definitions of viscosity sub- and supersolutions, and in view of (4.20), we have

(4.37)

p1 + Ha,b

(
t0, x0,

(x0 − y0)

ε
+ 2αe−βt0x0, Q1

)
≥ 0,

−p2 + Ha,b

(
t0, y0,−

(y0 − x0)

ε
− 2αe−βt0y0,−Q2

)
≤ 0.
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Thus, we have (see (4.36))

βαe−βt0(1 + |x0|2 + |y0|2)

≤ Ha,b

(
t0, x0,

(x0 − y0)

ε
+ 2αe−βt0x0, Q1

)
−Ha,b

(
t0, y0,−

(y0 − x0)

ε
− 2αe−βt0y0,−Q2

)
≤ 1

2
tr[(g∗Q1g)(t0, x0, a0, b0) + (g∗Q2g)(t0, y0, a0, b0)]

+

[〈
x0 − y0

ε
, f(t0, x0, a0, b0) − f(t0, y0, a0, b0)

〉
+ 2αe−βt0

(
〈x0, f(t0, x0, a0, b0)〉 + 〈y0, f(t0, y0, a0, b0)〉

)]
+ f0(t0, x0, a0, b0) − f0(t0, y0, a0, b0).

Set

(I) :=
1

2
tr[(g∗Q1g)(t0, x0, a0, b0) + (g∗Q2g)(t0, y0, a0, b0)]

(II) :=

〈
x0 − y0

ε
, f(t0, x0, a0, b0) − f(t0, y0, a0, b0)

〉
+ 2αe−βt0 (〈x0, f(t0, x0, a0, b0)〉 + 〈y0, f(t0, y0, a0, b0)〉)

(III) := f0(t0, x0, a0, b0) − f0(t0, y0, a0, b0).

We now estimate (I), (II), and (III) separately. It is immediate that

(4.38)

∂2
(x,y)ψ(t0, x0, y0) + ε

(
∂2
(x,y)ψ(t0, x0, y0)

)2

≤ 3

ε

(
I −I
−I I

)
+ 4αe−βt0

(
I −I
−I I

)
+ (4εα2e−2βt0 + 2αe−βt0)

(
I 0
0 I

)
.

Then we have

(4.39)

(I) ≤ C

ε
|x0 − y0|2 + Cαe−βt0 |x0 − y0|2

+ C(2εα2e−2βt0 + αe−βt0)(1 + |x0|2 + |y0|2),

(II) ≤ C

ε
|x0 − y0|2 + Cαe−βt0(1 + |x0|2 + |y0|2),

(III) ≤ C|x0 − y0|.

Hence, we have

(4.40)

βαe−βt0(1 + |x0|2 + |y0|2)

≤ C

ε
|x0 − y0|2 + C|x0 − y0| + Cαe−βt0(|x0 − y0|2 + 1 + |x0|2 + |y0|2)

+ C(2εα2e−2βt0 + αe−βt0)(1 + |x0|2 + |y0|2).
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928 SHANJIAN TANG AND SHUI-HUNG HOU

Letting ε → 0, we get

(4.41) βαe−βt(1 + 2|x|2) ≤ Cαe−βt(1 + 2|x|2) + C(2εα2e−2βt + αe−βt)(1 + 2|x|2)

for some (t, x) ∈ [0, 1] × X, which immediately implies β ≤ C + Cα. Since we can
choose β to be sufficiently large so that β > C + αC, we arrive at a contradiction.
Hence, (4.14) is proved.

Remark 4.1. Note that the stochastic nature leads to the corresponding Isaacs’
system of variational inequalities involving a second-order differential operator, and
thus the proof of the uniqueness of the viscosity solutions necessarily involves the
computation of the second-order differentials of the chosen test function, say, ψ in our
proof. Due to this feature, the test function used by Yong [10] does not seem to carry
over to our case. Here we use a different test function. It is both simpler and more
powerful in proving the uniqueness of unbounded viscosity solutions, as is shown in
the above proof.

Theorem 4.2. Let Hypotheses 1– 4 be satisfied. Then our stochastic differential
switching game described by (1.1) and (1.2) has a value. The function V 1 = v = V =
U = u = U1 is the unique viscosity solution of (4.2)–(4.5).

Proof of Theorem 4.2. From Proposition 4.1, we see that V 1 is a viscosity subso-
lution and v is a viscosity supersolution, while u is a viscosity subsolution and U1 is
a viscosity supersolution. From Theorem 4.1, it follows immediately that

V 1
a,b(t, x) ≤ va,b(t, x) and ua,b(t, x) ≤ Ua,b

1 (t, x), (t, x, a, b) ∈ [0, 1] ×X ×A×B.

In view of Proposition 3.6, we have

V 1
a,b ≤ va,b ≤ Va,b, Ua,b

1 ≥ ua,b ≥ Ua,b, (a, b) ∈ A×B.

Combining these inequalities with (2.9), we have

V 1
a,b = va,b = Va,b, Ua,b

1 = ua,b = Ua,b, (a, b) ∈ A×B.

In short form, we have

V 1 = v = V, U1 = u = U.

From Proposition 4.1, we also know that u and v are two viscosity solutions of (4.2)–
(4.5). By Theorem 4.1, we have u = v.

Concluding the above, we have

V 1 = v = V = U1 = u = U.

Therefore, our stochastic differential switching game described by (1.1) and (1.2) has
a value, and the function V 1 = v = V = U = u = U1 is the unique viscosity solution
of (4.2)–(4.5).
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