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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION
PROBLEMS WITH APPLICATIONS∗
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Abstract. We study local weak sharp minima and sharp minima for smooth semi-infinite
optimization problems SIP. We provide several dual and primal characterizations for a point to be a
sharp minimum or a weak sharp minimum of SIP. As applications, we present several sufficient and
necessary conditions of calmness for infinitely many smooth inequalities. In particular, we improve
some calmness results in [R. Henrion and J. Outrata, Math. Program., 104 (2005), pp. 437–464].
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1. Introduction. The notion of a sharp minimum, namely, a strong isolated
minimum or a strong unique local minimum, of real-valued functions, introduced in
[24], plays an important role in the convergence analysis of numerical algorithms in
mathematical programming problems (see [4, 12, 22, 30]). As such, it has received
extensive attention and investigation. As a generalization of sharp minima, weak
sharp minima for real-valued functions were introduced and studied in [5]. Extensive
study of weak sharp minima for real-valued convex functions has been done in the
literature (cf. [2, 3, 28, 31, 33]). It has been found that the weak sharp minimum
is closely related to the error bound in convex programming (cf. [32]), a notion that
has received much attention and has produced a vast number of publications (see
[16, 17, 23, 31, 32]).

The calmness is an important type of Lipschitz-like property for multifunctions,
which play a key role in many issues of mathematical programming such as sensitivity
analysis, error bounds, and optimality conditions. Thus, the study of the calmness
has recently received increasing attention in the mathematical programming literature
(see [8, 9, 10, 15]).

In this paper, we will study local weak sharp minima for the following semi-infinite
optimization problem:

(SIP) min f(x) subject to φ(x, y) ≤ 0 for all y ∈ Y,

where f : X → R is a smooth function, X is an Euclidean space, Y is an infinite
index set, and φ : X × Y → R is a function such that the function x �→ φ(x, y)
is smooth for each index y ∈ Y . It is known that (SIP) has many important and
interesting applications in engineering design, control of robots, mechanical stress of
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574 XI YIN ZHENG AND XIAO QI YANG

materials, and social sciences; see the survey paper [11] and the books [6, 21, 25]. In
the past three decades, (SIP) and its broad range of applications have been an active
study area in mathematical programming (see [1, 7, 13, 14, 20, 27, 29] and references
therein).

Let Z denote the set of all feasible points for (SIP); that is,

Z := {x ∈ X : φ(x, y) ≤ 0 for all y ∈ Y }.

We say that x̄ ∈ X is a local sharp minimum of (SIP) if x̄ ∈ Z and there exist
η, δ ∈ (0, +∞) such that

η‖x− x̄‖ ≤ f(x) − f(x̄) + sup
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ),(1.1)

where B(x̄, δ) denotes the open ball with center x̄ and radius δ.
We say that x̄ is a local weak sharp minimum of (SIP) if x̄ ∈ Z and there exist

η, δ ∈ (0, +∞) such that

ηd(x, Lf (x̄) ∩ Z) ≤ f(x) − f(x̄) + sup
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ),(1.2)

where Lf (x̄) := {x ∈ X : f(x) = f(x̄)} and d(x, Lf (x̄) ∩ Z) := inf{‖x − u‖ : u ∈
Lf (x̄) ∩ Z}.

Recall a known optimality condition of (SIP) (cf. [11, 13, 34]) that if x̄ is a local
minimum of (SIP) and a constraint qualification is satisfied at x̄, then there exist
ti ≥ 0 and yi ∈ I0(x̄), i = 1, . . . , p, such that

0 = f ′(x̄) +

p∑
i=1

tiφ
′
x(x̄, yi),(1.3)

where I0(x̄) denotes the index set of active inequality constraints at x̄. Furthermore,
under a convexity assumption, the optimality condition (1.3) also becomes sufficient.

When Y is a compact topological space and φ(x, y) and φ′
x(x, y) satisfy some

continuity conditions, we will prove that x̄ is a local weak sharp minimum of (SIP) if
and only if there exist η, δ ∈ (0, +∞) such that for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ)

Ñ(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(x̄)},(1.4)

where X∗ denotes the dual space of X, BX∗ denotes the unit ball of X∗, and Ñ(A, u)
is any one of the Fréchet, limiting, or Clarke normal cones of A at u; in particular, x̄
is a local sharp minimum of (SIP) if and only if

0 ∈ int(f ′(x̄) + [0, 1]co{φ′
x(x̄, y) : y ∈ I0(x̄)}).(1.5)

It is interesting to compare (1.5) and (1.4) with (1.3). These are referred to as
dual characterizations. We also obtain a set of primal ones for a local weak sharp
minimum of (SIP). Moreover, we obtain mixed characterizations for a local (weak)
sharp minimum.

Motivated by Henrion and Outrata [10], we consider the calmness of multifunc-
tions defined by infinitely many smooth inequalities. As applications of several char-
acterizations of weak sharp minima mentioned above, we provide several equivalent
conditions for the calmness; in particular, we improve one of the main results in [10].
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 575

The outline of the paper is as follows. In section 2, some preliminaries on notions
of variational analysis are given. In section 3, several characterizations for a local
weak sharp minimum and a local sharp minimum of (SIP) are obtained. In section 4,
some equivalent conditions for the calmness of the system of infinitely many smooth
inequalities are provided.

2. Preliminaries. Let X be an Euclidean space and ψ : X → R ∪ {+∞} a
proper lower semicontinuous function. For x ∈ dom(ψ) := {x ∈ X : φ(x) < +∞}, let

∂̂ψ(x) denote the Fréchet subdifferential of ψ at x; that is,

∂̂ψ(x) :=

{
x∗ ∈ X∗ : lim inf

u
ψ→x

ψ(u) − ψ(x) − 〈x∗, u− x〉
‖u− x‖ ≥ 0

}
,

where u
ψ→ x means u → x and ψ(u) → ψ(x). The limiting subdifferential of ψ at x

is denoted by ∂ψ(x) and is defined by

∂ψ(x) := lim sup

u
ψ→x

∂̂ψ(u);

that is, x∗ ∈ ∂ψ(x) if and only if there exist sequences xk
ψ→ x and x∗

k → x∗ with

x∗
k ∈ ∂̂ψ(xk).

The following proposition is well known (cf. [18, Theorem 2.33]) and is useful for
us.

Proposition 2.1. Let ψ1, ψ2 : X → R ∪ {+∞} be proper lower semicontinuous
functions and x ∈ dom(ψ1)∩dom(ψ2). Suppose that ψ1 is locally Lipschitz at x. Then

∂(ψ1 + ψ2)(x) ⊂ ∂ψ1(x) + ∂ψ2(x).

For a closed subset A of X and a ∈ A, let N̂(A, a) and N(A, a) denote the Fréchet
normal cone and the limiting normal cone of A at a, respectively; that is,

N̂(A, a) = ∂̂δA(a) and N(A, a) = ∂δA(a),

where δA denotes the indicator function of A. Thus, x∗ ∈ N̂(A, a) if and only if

lim sup
x

A→a

〈x∗,x−a〉
‖x−a‖ ≤ 0, where x

A→ a means x ∈ A and x → a, and x∗ ∈ N(A, a) if

and only if there exist xk
A→ a and x∗

k → x∗ such that x∗
k ∈ N̂(A, xk) for all k ∈ N,

where N denotes the set of all natural numbers.
Let T (A, a) denote the tangent cone of A at a; that is,

T (A, a) := {h ∈ X : ∃tk → 0+ and hk → h such that a + tkhk ∈ A for all k ∈ N}.

It is known (cf. [26, Theorem 6.28]) that

N̂(A, a) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 for all h ∈ T (A, a)}.(2.1)

Let Tc(A, a) denote the Clarke tangent cone; that is, v ∈ Tc(A, a) if and only if, for
each sequence {ak} in A converging to a and each sequence {tk} in (0, ∞) decreasing
to 0, there exists a sequence {vk} in X converging to v such that ak + tkvk ∈ A for
all k ∈ N. Let Nc(A, a) denote the Clarke normal cone of A at a and be defined by

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ 0 for all v ∈ Tc(A, a)}.(2.2)
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576 XI YIN ZHENG AND XIAO QI YANG

It is well known (cf. [26, Proposition 6.5] and [18, Theorem 3.57]) that

N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a) and Nc(A, a) = coN(A, a).(2.3)

Histories of the subdifferentials and the normal cones can be found in [18, 19, 26].
For any x ∈ X, let PA(x) denote the projection of x on A; that is,

PA(x) := {a ∈ A : ‖x− a‖ = d(x,A)}.

We will need the following known result (cf. [26, Example 6.16]).
Lemma 2.1. Let A be a closed subset of X and x ∈ X. Then

x− a ∈ N̂(A, a) for any a ∈ PA(x).(2.4)

3. Weak sharp minima for smooth semi-infinite optimization problems.
Throughout the remainder of this paper, let X be an Euclidean space of dimension
m and Y a compact topological space (e.g., a bounded closed subset of an Euclidean
space). Let f : X → R and φ : X × Y → R be as in section 1. We always assume
that the following properties hold:

(P1) The function x �→ φ(x, y) is smooth for each y ∈ Y , and the function y �→
φ(x, y) is continuous for each x ∈ X.

(P2) The functions (x, y) �→ φ(x, y) and (x, y) �→ φ′
x(x, y) are continuous on X×Y ,

where φ′
x(x, y) denotes the derivative of the function x �→ φ(x, y).

In the literature on semi-infinite optimization, assumptions (P1) and (P2) have been
extensively used.

Since Y is compact and (P1) holds, it is easy to verify that x̄ ∈ Z is a local
sharp minimum and a local weak sharp minimum of (SIP) if and only if there exist
η, δ ∈ (0, +∞) such that

η‖x− x̄‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ)(3.1)

and

ηd(x, Lf (x̄) ∩ Z) ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ),(3.2)

respectively.
It follows from (3.2) that every local weak sharp minimum of (SIP) is a local

solution of (SIP). Clearly, x̄ is a local sharp minimum of (SIP) if and only if x̄ is a
local weak sharp minimum of (SIP) and

Lf (x̄) ∩ Z ∩B(x̄, δ) = {x̄} for some δ > 0.

For convenience, let

Φ(x) := max{φ(x, y) : y ∈ Y } and I(x) := {y ∈ Y : φ(x, y) = Φ(x)}.

From (P1) and the compactness of Y , it is clear that I(x) �= ∅ for all x ∈ X. For each
x ∈ Z, let I0(x) denote the index set of active inequality constraints at x; that is,

I0(x) := {y ∈ Y : φ(x, y) = 0}.

We will provide characterizations for x̄ to be a local weak sharp minimum or a local
sharp minimum of (SIP). We need the following lemma.
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 577

Lemma 3.1. Let x̄ ∈ X and ε > 0. Then there exists δ > 0 such that for any
x ∈ B(x̄, δ) and u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ)

〈f ′(u), x− u〉 ≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖ for all y ∈ I0(u).

Proof. Since (x, y) �→ φ′
x(x, y) is continuous, for any y ∈ Y there exist open

neighborhoods Uy and Vy of x̄ and y, respectively, such that

‖φ′
x(x1, v1) − φ′

x(x2, v2)‖ < ε for all x1, x2 ∈ Uy and for all v1, v2 ∈ Vy.

Since Y is compact, there exist y1, . . . , yk ∈ Y such that Y =
⋃k

i=1 Vyi . Let U :=⋂n
i=1 Uyi , and take δ > 0 such that B(x̄, δ) ⊂ U . It is easy to verify that

‖φ′
x(x1, y) − φ′

x(x2, y)‖ < ε for all x1, x2 ∈ B(x̄, δ) and for all y ∈ Y.(3.3)

Since f is continuously differentiable, we assume without loss of generality that

‖f ′(x1) − f ′(x2)‖ < ε for all x1, x2 ∈ B(x̄, δ)(3.4)

(considering smaller δ if necessary). Let x ∈ B(x̄, δ), u ∈ Lf (x̄) ∩ Z ∩ B(x̄, δ), and
y ∈ I0(u). By the mean value theorem, there exist θ1, θ2 ∈ (u, x) := {tu + (1 − t)x :
0 < t < 1} such that

f(x) − f(x̄) = f(x) − f(u) = 〈f ′(θ1), x− u〉

and

φ(x, y) = φ(x, y) − φ(u, y) = 〈φ′
x(θ2, y), x− u〉.

It follows from (3.4) and (3.3) that

〈f ′(u), x− u〉 = 〈f ′(u) − f ′(θ1), x− u〉 + 〈f ′(θ1), x− u〉
≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖.

The proof is completed.
Lemma 3.2. Let x̄ ∈ Z and u ∈ Lf (x̄) ∩ Z. Then

〈f ′(u), h〉 = 0 and 〈φ′
x(u, y), h〉 ≤ 0, for all h ∈ T (Lf (x̄)∩Z, u) and for all y ∈ I0(u).

Proof. Let h ∈ T (Lf (x̄) ∩ Z, u) and y ∈ I0(u). Then there exist tk → 0+ and
hk → h such that u + tkhk ∈ Lf (x̄) ∩ Z for all k ∈ N. Hence

f(u + tkhk) = f(u) = f(x̄) and φ(u + tkhk, y) ≤ 0 for all k ∈ N.

Since f is continuously differentiable,

f(u + tkhk) − f(u) = 〈f ′(u), tkhk〉 + o(tk).
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578 XI YIN ZHENG AND XIAO QI YANG

It follows that 〈f ′(u), hk〉 + o(tk)
tk

= 0. This implies that 〈f ′(u), h〉 = 0. Let ε be an
arbitrary positive number. Then Lemma 3.1 implies that

〈φ′(u, y), tkhk〉 ≤ φ(u + tkhk, y) + ε‖tkhk‖ ≤ ε‖tkhk‖

for all k large enough, and so 〈φ′(u, y), h〉 ≤ ε‖h‖. Since ε is arbitrary, it follows that
〈φ′(u, y), h〉 ≤ 0. This completes the proof.

In the next theorems we first provide some dual characterizations and then some
primal characterizations for a feasible point of (SIP) to be a local weak sharp mini-
mum. As usual, let coA denote the convex hull of A. For convenience, we adopt the
conventions that if u ∈ Lf (x̄) ∩ Z, with I0(u) = ∅, then

[0, 1]co{φ′
x(u, y) : y ∈ I0(u)} := {0}

and

max
y∈I0(u)

[〈φ′
x(u, y), h〉]+ := 0 for all h ∈ X.

Theorem 3.1. Let x̄ be a feasible point of (SIP) (i.e., x̄ ∈ Z). Then the following
statements are equivalent:

(i) x̄ is a local weak sharp minimum of (SIP).
(ii) There exist η, δ ∈ (0, +∞) such that

N̂(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}(3.5)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
(iii) There exist η, δ ∈ (0, +∞) such that

N(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}(3.6)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
(iv) There exist η, δ ∈ (0, +∞) such that

Nc(Lf (x̄) ∩ Z, u) ∩ ηBX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}(3.7)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
Proof. (i)⇒(ii). Suppose that there exist η, δ ∈ (0, +∞) such that (3.2) holds.

Let u ∈ Lf (x̄) ∩ Z ∩ B(x̄, δ
2 ) and u∗ ∈ N̂(Lf (x̄) ∩ Z, u) ∩ BX∗ . Let ε > 0, and take

r ∈ (0, δ
2 ) such that

〈u∗, v − u〉 ≤ ε‖v − u‖ for all v ∈ Lf (x̄) ∩ Z ∩B(u, r).

Let x ∈ B(u, r
2 ) ⊂ B(x̄, δ). Then there exists v ∈ Lf (x̄) ∩ Z such that ‖x − v‖ =

d(x, Lf (x̄) ∩ Z). Hence,

‖v − u‖ ≤ ‖v − x‖ + ‖x− u‖ ≤ 2‖x− u‖ < r.

Therefore,

〈u∗, x− u〉 = 〈u∗, x− v〉 + 〈u∗, v − u〉
≤ ‖x− v‖ + ε‖v − u‖
≤ (1 + ε)‖x− v‖ + ε‖x− u‖
= (1 + ε)d(x, Lf (x̄) ∩ Z) + ε‖x− u‖.
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 579

It follows from (3.2) and B(u, r
2 ) ⊂ B(x̄, δ) that

η〈u∗, x− u〉 ≤ (1 + ε)(f(x) − f(x̄) + [Φ(x)]+) + ηε‖x− u‖ for all x ∈ B
(
u,

r

2

)
.

Noting that f(u) = f(x̄) and [Φ(u)]+ = 0, it follows that u is a local minimum of the
function

x �→ −η〈u∗, x− u〉 + (1 + ε)(f(x) − f(x̄) + [Φ(x)]+) + ηε‖x− u‖.

This and Proposition 2.1 imply that

ηu∗ ∈ (1 + ε)(f ′(u) + ∂[Φ(·)]+(u)) + ηεBX∗ .

Letting ε → 0, one has

ηu∗ ∈ f ′(u) + ∂[Φ(·)]+(u) = f ′(u) + co({0} ∪ ∂Φ(u)) = f ′(u) + [0, 1]∂Φ(u).

Noting (by [26, Theorem 10.31]) that

∂Φ(u) =

{
{0} I0(u) = ∅,
co{φ′

x(u, y) : y ∈ I0(u)} I0(u) �= ∅,

it follows that (3.5) holds.
(ii)⇒(iii). Suppose that there exist η, δ ∈ (0, +∞) such that (3.5) holds for all

u ∈ Lf (x̄)∩Z∩B(x̄, δ). Let u ∈ Lf (x̄)∩Z∩B(x̄, δ) and u∗ ∈ N(Lf (z̄)∩Z, u)∩ηBX∗ .
Take a sequence {uk} in Lf (x̄) ∩ Z and a sequence {u∗

k} in X∗ such that uk → u,

u∗
k → u∗, and u∗

k ∈ N̂(Lf (x̄) ∩ Z, uk) for all k ∈ N. Without loss of generality, we
assume that uk ∈ B(x̄, δ) and u∗

k ∈ ηBX∗ for each k ∈ N. By (3.5), one has

u∗
k ∈ f ′(uk) + [0, 1]co{φ′

x(uk, y) : y ∈ I0(uk)} for all k ∈ N.

We divide into two cases: 1) I0(uk) = ∅ for infinitely many k and 2) I0(uk) �= ∅ for
infinitely many k.

Case 1. Without loss of generality we assume that I0(uk) = ∅ for all k ∈ N

(passing to a subsequence if necessary). Thus, u∗
k = f ′(uk) for all k ∈ N. It follows

that u∗ = f ′(u). Hence (3.6) holds.
Case 2. We can assume that I0(uk) �= ∅ for all k ∈ N. Noting that X is of

dimension m, it follows from the Caratheodory theorem (cf. [26, Theorem 2.29]) that
there exist t1k, . . . , tm+1k ∈ [0, 1] and y1k, . . . , ym+1k ∈ I0(uk) such that

m+1∑
i=1

tik ≤ 1 and u∗
k = f ′(uk) +

m+1∑
i=1

tikφ
′
x(uk, yik) for all k ∈ N.

Without loss of generality, we assume that

tik → ti and yik → yi ∈ I0(u) as k → ∞, i = 1, . . . ,m + 1

(passing to subsequences if necessary). Thus,

m+1∑
i=1

ti ≤ 1 and u∗ = f ′(u) +

m+1∑
i=1

tiφ
′
x(u, yi).

This shows that (3.6) holds for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).
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580 XI YIN ZHENG AND XIAO QI YANG

(iii)⇒(iv). Suppose that there exist η, δ ∈ (0, +∞) such that (3.6) holds for all
u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ). It follows that

N(Lf (x̄)∩Z, u) ⊂ R+f
′(u)+R+co{φ′

x(u, y) : y ∈ I0(u)} for all u ∈ Lf (x̄)∩Z∩B(x̄, δ).

On the other hand, by (2.1) and Lemma 3.2 one has

R+f
′(u) + R+co{φ′

x(u, y) : y ∈ I0(u)} ⊂ N̂(Lf (x̄) ∩ Z, u) for all u ∈ Lf (x̄) ∩ Z.

It follows that

N̂(Lf (x̄) ∩ Z, u) = N(Lf (x̄) ∩ Z, u) for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).

By (2.1) and (2.3), one has

N(Lf (x̄) ∩ Z, u) = Nc(Lf (x̄) ∩ Z, u) for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ).

Therefore, (iv) holds.
(iv)⇒(i). Suppose that there exist η, δ ∈ (0, +∞) such that (3.7) holds for all

x ∈ Lf (x̄)∩Z∩B(x̄, δ). Let x ∈ B(x̄, δ
2 )\Lf (x̄)∩Z, and take u ∈ PLf (x̄)∩Z(x). Then

u ∈ B(x̄, δ), and it follows from Lemma 2.1 and (2.3) that x−u
‖x−u‖ ∈ Nc(Lf (x̄)∩Z, u).

We claim that I0(u) �= ∅. Suppose to the contrary that I0(u) = ∅. Then, by the
definition, [0, 1]co{φ′

x(u, y) : u ∈ I0(u)} = {0}. This and (3.7) imply that the
intersection Nc(Lf (x̄) ∩ Z, u) ∩ ηBX∗ is the singleton {f ′(u)}, contradicting the fact

that it contains 0 and η(x−u)
‖x−u‖ . Hence I0(u) �= ∅. By (3.7), there exist t1, . . . , tq ∈

[0, +∞) and y1, . . . , yq ∈ I0(u) such that

q∑
i=1

ti ≤ 1 and
η(x− u)

‖x− u‖ = f ′(u) +

q∑
i=1

tiφ
′
x(u, yi).

Hence

η‖x− u‖ = 〈f ′(u), x− u〉 +

q∑
i=1

ti〈φ′
x(u, yi), x− u〉.

Let ε ∈ (0, η
2 ). By Lemma 3.1, without loss of generality we assume that

〈f ′(u), x− u〉 ≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖ for all y ∈ I0(u)

(considering smaller δ if necessary). Therefore,

η‖x− u‖ ≤ f(x) − f(x̄) +

q∑
i=1

tiφ(x, yi) + 2ε‖x− u‖

≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ + 2ε‖x− u‖.

It follows that

(η − 2ε)‖x− u‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+;

that is,

(η − 2ε)d(x, Lf (x̄) ∩ Z) ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+.
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 581

Since f(x) = f(x̄) and maxy∈Y [φ(x, y)]+ = 0 if x ∈ Lf (x̄) ∩ Z, the last inequal-
ity holds trivially if x ∈ Lf (x̄) ∩ Z. This shows that (i) holds. The proof is
completed.

Remark. In view of the proof of Theorem 3.1, one can see that the implication
(i)⇒(ii) of Theorem 3.1 holds even when X is a Banach space of infinite dimension.

Theorem 3.2. Let x̄ ∈ Z. Then the following statements are equivalent:
(i) x̄ is a local weak sharp minimum of (SIP).
(ii) There exist η, δ ∈ (0, +∞) such that

ηd(h, T (Lf (x̄) ∩ Z, u)) ≤ 〈f ′(u), h〉 + max
y∈I0(u)

[〈φ′
x(u, y), h〉]+(3.8)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ) and h ∈ X.
(iii) There exist η, δ ∈ (0, +∞) such that

ηd(h, Tc(Lf (x̄) ∩ Z, u)) ≤ 〈f ′(u), h〉 + max
y∈I0(u)

[〈φ′
x(u, y), h〉]+(3.9)

for all u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ) and h ∈ X.
(iv) There exist η, δ ∈ (0, +∞) such that

η‖x− u‖ ≤ 〈f ′(u), x− u〉 + max
y∈I0(u)

[〈φ′
x(u, y), x− u〉]+(3.10)

for any x ∈ B(x̄, δ) and u ∈ PLf (x̄)∩Z(x).
Proof. (i)⇒(iii). Suppose that (i) holds. Then by Theorem 3.1 there exist η, δ ∈

(0, +∞) such that (3.7) holds for all u ∈ Lf (x̄) ∩ Z ∩ B(x̄, δ). Let u ∈ Lf (x̄) ∩ Z ∩
B(x̄, δ) and h ∈ X. By Lemma 3.2, (3.9) holds if h ∈ Tc(Lf (x̄) ∩ Z, u). Now we
assume that h �∈ Tc(Lf (x̄) ∩ Z, u). Take h0 ∈ PTc(Lf (x̄)∩Z,u)(h). Then by Lemma 2.1
and (2.3) one has

h− h0 ∈ Nc(Tc(Lf (x̄) ∩ Z, u), h0).

Since Tc(Lf (x̄) ∩ Z, u) is a convex cone,

〈h− h0, z − h0〉 ≤ 0 for all z ∈ Tc(Lf (x̄) ∩ Z, u).

Hence

〈h− h0, h0〉 = 0 and 〈h− h0, z〉 ≤ 0 for all z ∈ Tc(Lf (x̄) ∩ Z, u).

This and (2.2) imply that η(h−h0)
‖h−h0‖ ∈ Nc(Lf(x̄) ∩ Z, u). It follows from (3.7) that

I0(u) �= ∅, and there exist t1, . . . , tq ∈ [0, +∞) and y1, . . . , yq ∈ I0(u) such that

q∑
i=1

ti ≤ 1 and
η(h− h0)

‖h− h0‖
= f ′(u) +

q∑
i=1

tiφ
′
x(u, yi).

Hence

ηd(h, Tc(Lf (x̄) ∩ Z, u)) =

〈
η(h− h0)

‖h− h0‖
, h− h0

〉

=

〈
η(h− h0)

‖h− h0‖
, h

〉

= 〈f ′(u), h〉 +

q∑
i=1

ti〈φ′
x(u, yi), h〉

≤ 〈f ′(u), h〉 + max
y∈I0(u)

[〈φ′
x(u, y), h〉]+.

Therefore, (3.9) holds. This shows that (iii) holds.
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582 XI YIN ZHENG AND XIAO QI YANG

Since Tc(Lf (x̄) ∩ Z, u) ⊂ T (Lf (x̄) ∩ Z, u) for any u ∈ Lf (x̄) ∩ Z,

d(h, T (Lf (x̄)∩Z, u)) ≤ d(h, Tc(Lf (x̄)∩Z, u)) for all h ∈ Xand for all u ∈ Lf (x̄)∩Z.

Hence (iii)⇒(ii) holds trivially.
Suppose that (ii) holds. Take η, δ ∈ (0, +∞) such that (3.8) holds for all u ∈

Lf (x̄)∩Z∩B(x̄, δ) and h ∈ X. Let x ∈ B(x̄, δ
2 )\Lf (x̄)∩Z, and take u ∈ PLf (x̄)∩Z(x).

By Lemma 2.1, one has x−u
‖x−u‖ ∈ N̂(Lf (x̄) ∩ Z, u). Hence 〈 x−u

‖x−u‖ , z〉 ≤ 0 for any

z ∈ T (Lf (x̄) ∩ Z, u). This implies that

‖x− u‖ ≤
〈

x− u

‖x− u‖ , x− u− z

〉
≤ ‖x− u− z‖ for all z ∈ T (Lf (x̄) ∩ Z, u).

Hence ‖x − u‖ = d(x − u, T (Lf (x̄) ∩ Z, u)). Noting that u ∈ B(x̄, δ), it follows from
(3.8) that (3.10) holds. This shows that the implication (ii)⇒(iv) holds.

Suppose that (iv) holds. Take η, δ ∈ (0, +∞) such that (3.10) holds for any x ∈
B(x̄, δ) and u ∈ PLf (x̄)∩Z(x). Let x ∈ B(x̄, δ

2 ) \Lf (x̄)∩Z, and take u ∈ PLf (x̄)∩Z(x).
Then u ∈ B(x̄, δ). Hence (3.10) holds for such x and u. Let ε ∈ (0, η

2 ). By Lemma
3.1, without loss of generality we assume that

〈f ′(u), x− u〉 ≤ f(x) − f(x̄) + ε‖x− u‖

and

〈φ′
x(u, y), x− u〉 ≤ φ(x, y) + ε‖x− u‖ for all y ∈ I0(u)

(taking smaller δ if necessary). Hence

[〈φ′
x(u, y), x− u〉]+ ≤ [φ(x, y)]+ + ε‖x− u‖ for all y ∈ I0(u).

It follows from (3.10) that

η‖x− u‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+ + 2ε‖x− u‖.

Therefore,

(η − 2ε)d(x, Lf (x̄) ∩ Z) = (η − 2ε)‖x− u‖ ≤ f(x) − f(x̄) + max
y∈Y

[φ(x, y)]+.

This shows that (i) holds. The proof is completed.
Now we provide a mixed characterization for x̄ to be a weak sharp minimum of

(SIP), which is inspired from [10, Theorem 4].
Proposition 3.1. Let x̄ ∈ Z. Then x̄ is a local weak sharp minimum of (SIP)

if and only if the following conditions are satisfied:
(i) T (Lf (x̄) ∩ Z, x̄) = {h ∈ X : 〈f ′(x̄), h〉 + maxy∈I0(x̄)[〈φ′

x(x̄, y), h〉]+ ≤ 0}.
(ii) There exist η0, δ ∈ (0, +∞) such that for any u ∈ Lf (x̄) ∩ Z ∩B(x̄, δ) \ {x̄}

N̂(Lf (x̄) ∩ Z, u) ∩ η0BX∗ ⊂ f ′(u) + [0, 1]co{φ′
x(u, y) : y ∈ I0(u)}.

Proof. By Lemma 3.2, one has

T (Lf (x̄)∩Z, x̄) ⊂ {h ∈ X : 〈f ′(x̄), h〉+ max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ ≤ 0 for all y ∈ I0(x̄)}.
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 583

It follows from (ii) of Theorem 3.2 and (ii) of Theorem 3.1 that the necessity part
holds.

To prove the sufficiency part, suppose that (i) and (ii) hold. We claim that there
exists η1 > 0 such that

η1‖h‖ ≤ 〈f ′(x̄), h〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ for all h ∈ N̂(Lf (x̄) ∩ Z, x̄).(3.11)

Suppose to the contrary that there exists a sequence {hk} in N̂(Lf (x̄) ∩ Z, x̄) such
that

‖hk‖ = 1 and 〈f ′(x̄), hk〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), hk〉]+ <

1

k
for all k ∈ N.

Without loss of generality we assume that hk → h0. Then

h0 ∈ N̂(Lf (x̄) ∩ Z, x̄) and 〈f ′(x̄), h0〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h0〉]+ ≤ 0.

It follows from (i) that h0 ∈ T (Lf (x̄) ∩ Z, x̄), contradicting ‖h0‖ = 1 and (2.1). This
shows that (3.11) holds. Let x ∈ B(x̄, δ

2 ) \ Lf (x̄) ∩ Z and u ∈ PLf (x̄)∩Z(x). Then
u ∈ B(x̄, δ) \ {x} and x−u

‖x−u‖ ∈ N̂(Lf (x̄) ∩ Z, u). In the case when u = x̄, by (3.11)

one has

η1‖x− x̄‖ ≤ 〈f ′(x̄), x− x̄〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), x− x̄〉]+.(3.12)

In the case when u �= x̄, by (ii) there exist ti ∈ [0, +∞) and yi ∈ I0(u), i = 1, . . . , q,
such that

q∑
i=1

ti ≤ 1 and
η0(x− u)

‖x− u‖ = f ′(u) +

q∑
i=1

tiφ
′(u, yi).

It follows that

η0‖x− u‖ = 〈f ′(u), x− u〉 +

q∑
i=1

ti〈φ′
x(u, yi), x− u〉

≤ 〈f ′(u), x− u〉 + max
y∈I0(u)

[〈φ′
x(u, yi), x− u〉].

This and (3.12) imply that (iv) of Theorem 3.2 holds with η = min{η0, η1}. It follows
from Theorem 3.2 that the sufficiency part holds. The proof is completed.

Remark. Letting

ψ(x) := f(x) + max
y∈Y

[φ(x, y)]+ for all x ∈ X,

it is clear that if x̄ is a local weak sharp minimum of (SIP), then x̄ is a local weak
sharp minimum of ψ: There exist η, δ ∈ (0, +∞) such that

ηd(x, Lψ(x̄)) ≤ ψ(x) − ψ(x̄) for all x ∈ B(x̄, δ).

The converse implication may not be true. Indeed, let X = R, Y = {y0}, f(x) = −x2,
and φ(x, y0) = x2 for all x ∈ R. Then Z = {0}, and x̄ = 0 is not a local weak sharp
minimum of (SIP). But, noting that ψ(x) = f(x) + maxy∈Y [φ(x, y)]+ = 0 for all
x ∈ X, 0 is a weak sharp minimum of ψ.
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584 XI YIN ZHENG AND XIAO QI YANG

When ψ is a convex function, in terms of the normal and tangent cones of the
solution set as well as the subdifferential and the directional derivative of ψ, some
characterizations for the weak sharp minimum of ψ have been established (cf. [2, 33]).
To the best of our knowledge, in the nonconvex case no one considers corresponding
characterizations.

Finally, we provide characterizations for x̄ ∈ Z to be a local sharp minimum of
(SIP).

Theorem 3.3. Let x̄ ∈ Z. Then the following statements are equivalent:
(i) x̄ is a local sharp minimum of (SIP).
(ii) There exists η > 0 such that

ηBX∗ ⊂ f ′(x̄) + [0, 1]co{φ′
x(x̄, y) : y ∈ I0(x̄)}.

(iii) There exists η > 0 such that

η‖h‖ ≤ 〈f ′(x̄), h〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ for all h ∈ X.

(iv) {h ∈ X : 〈f ′(x̄), h〉 + maxy∈I0(x̄)[〈φ′
x(x̄, y), h〉]+ ≤ 0} = {0}.

Proof. (i)⇒(ii) is immediate from Theorem 3.1 and N({x̄}, x̄) = X∗. (ii)⇒(iii)
and (iii)⇒(iv) are trivial.

It remains to prove (iv)⇒(i). Suppose that (iv) holds. Noting that T ({x̄}, x̄) =
{0}, by Proposition 3.1 we need only show that Lf (x̄) ∩ Z ∩ B(x̄, δ) = {x̄} for some
δ > 0. Suppose to the contrary that there exists a sequence {xk} in Lf (x̄) ∩ Z \ {x̄}
such that xk → x̄. Without loss of generality we assume that xk−x̄

‖xk−x̄‖ → h (passing to

a subsequence if necessary). Thus, h ∈ T (Lf (x̄) ∩ Z, x̄). It follows from Lemma 3.2
that

〈f ′(x̄), h〉 + max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ ≤ 0,

contradicting (iv) and ‖h‖ = 1. The proof is completed.

4. Calmness for infinitely many smooth inequalities. Recently Henrion
and Outrata [10] studied the calmness of infinitely many smooth inequalities. Let
C(Y ) denote the Banach space of all continuous functions on Y equipped with the
maximum norm, and consider the multifunction M : C(Y ) ⇒ X defined by

M(g) := {x ∈ X : φ(x, y) ≤ −g(y) for all y ∈ Y } for all g ∈ C(Y ),(4.1)

where X, Y , and φ(x, y) are as in section 3. For ḡ ∈ C(Y ) and x̄ ∈ M(ḡ), recall that
M is calm at (ḡ, x̄) if there exist L, δ ∈ (0, +∞) such that

d(x,M(ḡ)) ≤ L‖g − ḡ‖ for all g ∈ B(ḡ, δ) and for all x ∈ B(x̄, δ) ∩M(g).

We say that M is strongly calm at (ḡ, x̄) if there exist L, δ ∈ (0, +∞) such that

‖x− x̄‖ ≤ L‖g − ḡ‖ for all g ∈ B(ḡ, δ) and for all x ∈ B(x̄, δ) ∩M(g).

It is clear that M is strongly calm at (ḡ, x̄) if and only if M is calm at (ḡ, x̄) and
M(ḡ)∩B(x̄, δ) = {x̄} for some δ > 0. Let Λ := {g ∈ C(Y ) : g(y) ≤ 0 for all y ∈ Y }
and x̄ ∈ M(0). It is known (cf. [10]) that M is calm at (0, x̄) if and only if there exist
L, δ ∈ (0, +∞) such that

d(x,M(0)) ≤ Ld(φ(x, ·),Λ) for all x ∈ B(x̄, δ).
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WEAK SHARP MINIMA FOR SEMI-INFINITE OPTIMIZATION 585

Noting that

M(0) = Z and d(φ(x, ·),Λ) = max
y∈Y

[φ(x, y)]+,

it follows that M is calm at (0, x̄) if and only if there exist η, δ ∈ (0, +∞) such that

ηd(x, Z) ≤ max
y∈Y

[φ(x, y)]+ for all x ∈ B(x̄, δ).(4.2)

Setting f(x) = 0 for all x ∈ X in (SIP), one sees that (4.2) means that x̄ is a local
weak sharp minimum of (SIP). Thus, by Theorems 3.1 and 3.2 and Proposition 3.1
we have the following characterizations for M to be calm at (0, x̄).

Theorem 4.1. Let M be as in (4.1) and x̄ ∈ M(0). Then the following statements
are equivalent:

(i) M is calm at (0, x̄).
(ii) There exist τ, δ ∈ (0, +∞) such that

N̂(M(0), u)∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)} for all u ∈ M(0)∩B(x̄, δ).

(iii) There exist τ, δ ∈ (0, +∞) such that

N(M(0), u)∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)} for all u ∈ M(0)∩B(x̄, δ).

(iv) There exist τ, δ ∈ (0, +∞) such that

Nc(M(0), u)∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)} for all u ∈ M(0)∩B(x̄, δ).

(v) There exist τ, δ ∈ (0, +∞) such that

d(h, T (M(0), u)) ≤ τ max
y∈I0(u)

[〈φ′
x(u, y), h〉]+

for all u ∈ M(0) ∩B(x̄, δ) and h ∈ X.
(vi) There exist τ, δ ∈ (0, +∞) such that

d(h, Tc(M(0), u)) ≤ τ max
y∈I0(u)

[〈φ′
x(u, y), h〉]+

for all u ∈ M(0) ∩B(x̄, δ) and h ∈ X.
(vii) There exist τ, δ ∈ (0, +∞) such that

‖x− u‖ ≤ τ max
y∈I0(u)

[〈φ′
x(u, y), x− u〉]+

for any x ∈ B(x̄, δ) and u ∈ PM(0)(x).
(viii) T (M(0), x̄) = {h ∈ X : 〈φ′

x(x̄, y), h〉 ≤ 0 for all y ∈ I0(x̄)}, and there exist
τ, δ ∈ (0, +∞) such that for any u ∈ M(0) ∩B(x̄, δ) \ {x̄}

N̂(M(0), u) ∩BX∗ ⊂ [0, τ ]co{φ′
x(u, y) : y ∈ I0(u)}.

In the remainder of this section, we assume that Y is a compact subset of Rn.
Following Henrion and Outrata [10], let

J := {S ∈ K(Y ) : ∃xi
bdM(0)\{x̄}−→ x̄ such that dH(S, I0(xi)) → 0},

where K(Y ) denotes the family of all compact subsets of Y and dH denotes the
Hausdorff distance between compact sets.

Corollary 4.1. Let M be as in (4.1) and x̄ ∈ M(0). Suppose that the following
conditions are satisfied:
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586 XI YIN ZHENG AND XIAO QI YANG

1. T (M(0), x̄) = {h ∈ X : 〈φ′
x(x̄, y), h〉 ≤ 0 for all y ∈ I0(x̄)}.

2. There exists ρ > 0 such that

d(0, co{φ′
x(x̄, y) : y ∈ S)}) > ρ for all S ∈ J .

Then M is calm at (0, x̄).
Proof. We claim that there exists δ > 0 such that

d(0, co{φ′
x(x, y) : y ∈ I0(x)}) > ρ for all x ∈ bd(M(0)) ∩B(x̄, δ) \ {x̄}.(4.3)

If this is not the case, then there exists a sequence {xi} in bd(M(0)) \ {x̄} such that

xi → x̄ and d(0, co{φ′
x(xi, y) : y ∈ I0(xi)}) ≤ ρ for all i ∈ N.

Noting that X is of dimension m, it follows from the Caratheodory theorem that for
each i ∈ N there exist tji ≥ 0 and yji ∈ I0(xi), j = 1, . . . ,m + 1, such that

m+1∑
j=1

tji = 1 and

∥∥∥∥∥∥
m+1∑
j=1

tjiφ
′
x(xi, yji)

∥∥∥∥∥∥ ≤ ρ.

By (P2) and the compactness of Y , without loss of generality we assume that

tji → tj ≥ 0 and yji → yj ∈ I0(x̄), j = 1, . . . ,m + 1.

Hence,

m+1∑
j=1

tj = 1 and

∥∥∥∥∥∥
m+1∑
j=1

tjφ
′
x(x̄, yj)

∥∥∥∥∥∥ ≤ ρ.(4.4)

Since the space of compact subsets of X endowed with the Hausdorff distance is itself
compact, without loss of generality we assume that there exists S0 ∈ J such that
dH(I0(xi), S0) → 0. It is clear that yj ∈ S0, j = 1, . . . ,m + 1. This and (4.4) imply
that d(0, co{φ′

x(x̄, y) : y ∈ S0)}) ≤ ρ, contradicting condition 2. Hence there exists
δ > 0 such that (4.3) holds. Recalling (cf. [26, Definition 7.25 and Theorem 10.31])
that Φ(x) = maxy∈Y φ(x, y) is regular and ∂Φ(x) = co{φ′(x, y) : y ∈ I(x)}, it follows
from (4.3) and [26, Proposition 10.3] that

N(M(0), x) = R+co{φ′
x(x, y) : y ∈ I0(x)} for all x ∈ bd(M(0)) ∩B(x̄, δ) \ {x̄}.

Let x ∈ bd(M(0)) ∩ B(x̄, δ) \ {x̄} and x∗ ∈ N(M(0), x) ∩ BX∗ . Then there exist
t ∈ [0, +∞) and u∗ ∈ co{φ′

x(x, y) : y ∈ I0(x)} such that x∗ = tu∗. This and (4.3)
imply that t < 1

ρ . Hence,

N(M(0), x) ∩BX∗ ⊂
[
0,

1

ρ

]
co{φ′

x(x, y) : y ∈ I0(x)}.

It is clear that

N(M(0), x) ∩BX∗ = {0} ⊂
[
0,

1

ρ

]
co{φ′

x(x̄, y) : y ∈ I0(x)} for all x ∈ int(M(0)).

Hence, (viii) of Theorem 4.1 holds, and so M is calm at (0, x̄). The proof is
completed.
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Remark 4.1. Corollary 4.1 is a slight improvement of [10, Theorem 4], which,
in addition to all assumptions on Corollary 4.1, requires that (x, y) �→ φ(x, y) is
continuously differentiable and (x, y) �→ φ′(x, y) is locally Lipschitz. Noting that

J = {S ⊂ Y : ∃xi
bdM(0)\{x̄}−→ x̄ such that I0(xi) = S for all i ∈ N}

when Y is a finite set, Corollary 4.1 recaptures [10, Theorem 3].
The following example shows that implication (viii)⇒(i) of Theorem 4.1 properly

improves [10, Theorems 4 and 3]. Let X = R2, Y = {0, 1}, φ((s, t), 0) = 0, and
φ((s, t), 1) = s − t for all (s, t) ∈ R2. Then M(0) = {(s, t) ∈ R2 : s ≤ t} and
I0(x) = Y for any x ∈ bd(M(0)). Let x̄ = (0, 0). Then J = {Y }. Noting that

co{φ′((s, t), y) : y ∈ Y } = {(u,−u) : 0 ≤ u ≤ 1} for all (s, t) ∈ R2,

it follows that d(0, co{φ′
x(x̄, y) : y ∈ S}) = 0 for all S ∈ J . Thus, Corollary 4.1

and so [10, Theorems 4 and 3] are not applicable. On the other hand, noting that
bd(M(0)) = {(s, s) : s ∈ R},

T (M(0), (s, s)) = M(0) and N(M(0), (s, s)) = {(t,−t) : t ≥ 0} for all s ∈ R,

one can see that (viii) of Theorem 4.1 holds. Hence, applying implication (viii)⇒(i)
of Theorem 4.1, one obtains that M is calm at (0, x̄).

We conclude with characterizations for M to be strongly calm at (0, x̄).
Theorem 4.2. Let M be as in (4.1) and x̄ ∈ M(0). Then the following statements

are equivalent:
(i) M is strongly calm at (0, x̄).
(ii) There exists τ ∈ (0, +∞) such that

BX∗ ⊂ [0, τ ]co{φ′
x(x̄, y) : y ∈ I0(x̄)}.

(iii) X∗ = R+co{φ′
x(x̄, y) : y ∈ I0(x̄)}.

(iv) There exists τ ∈ (0, +∞) such that

‖h‖ ≤ τ max
y∈I0(x̄)

[〈φ′
x(x̄, y), h〉]+ for all h ∈ X.

(v) {h ∈ X : 〈φ′
x(x̄, y), h〉 ≤ 0 for all y ∈ I0(x̄)} = {0}.

Proof. Noting that M is strongly calm at (0, x̄) if and only if x̄ is a local sharp
minimum of (SIP) with f ≡ 0, (i)⇔(ii)⇔(iv)⇔(v) are immediate from Theorem 3.3.
It is clear that (ii)⇒(iii)⇒(v) hold. The proof is completed.
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