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Abstract. In this paper, we consider Levitin–Polyak-type well-posedness for a general con-
strained optimization problem. We introduce generalized Levitin–Polyak well-posedness and strongly
generalized Levitin–Polyak well-posedness. Necessary and sufficient conditions for these types of
well-posedness are given. Relations among these types of well-posedness are investigated. Finally,
we consider convergence of a class of penalty methods and a class of augmented Lagrangian methods
under the assumption of strongly generalized Levitin–Polyak well-posedness.
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1. Introduction. The study of well-posedness originates from Tykhonov [26] in
dealing with unconstrained optimization problems. Its extension to the constrained
case was developed by Levitin and Polyak [18]. Since then, various notions of well-
posedness have been defined and extensively studied (see, e.g., [22, 6, 24, 28, 29, 9,
24, 30]). It is worth noting that recent research on well-posedness has been extended
to vector optimization problems (see, e.g., [3, 20, 21, 12, 13, 7]).

Let (X, d1) and (Y, d2) be two metric spaces, and let X1 ⊂ X and K ⊂ Y be two
nonempty and closed sets. Consider the following constrained optimization problem:

(P) min f(x)

s.t. x ∈ X1, g(x) ∈ K,

where f : X → R1 is a lower semicontinuous function and g : X → Y is a continuous
function. Denote by X0 the set of feasible solutions of (P), i.e.,

X0 = {x ∈ X1 : g(x) ∈ K}.

Denote by X̄ and v̄ the optimal solution set and the optimal value of (P), respectively.
Throughout the paper, we always assume that X0 �= ∅ and v̄ > −∞.

Let (Z, d) be a metric space and Z1 ⊂ Z. We denote by dZ1(z) = inf{d(z, z′) :
z′ ∈ Z1} the distance from the point z to the set Z1.

Levitin–Polyak (LP) well-posedness of (P) in the usual sense (when the optimal
set of (P) is not necessarily a singleton) says that, for any sequence {xn} ⊂ X1

satisfying (i) dX0
(xn) → 0 and (ii) f(xn) → v̄, there exist a subsequence {xnk

} of
{xn} and some x̄ ∈ X̄ such that xnk

→ x̄.
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244 X. X. HUANG AND X. Q. YANG

It should be noted that many optimization algorithms, such as penalty-type meth-
ods, e.g., penalty function methods and augmented Lagrangian methods, terminate
when the constraint is approximately satisfied; i.e., dK(g(x̄)) ≤ ε for some ε > 0
sufficiently small, and x̄ is taken as an approximate solution of (P). These meth-
ods may generate sequences {xn} ⊂ X1 that satisfy dK(g(xn)) → 0, not necessarily
dX0

(xn) → 0, as shown in the following simple example.
Example 1.1. Let α > 0. Let X = R1, X1 = R1

+, K = R1
−, and

f(x) =

{
−xα if x ∈ [0, 1];
−1/xα if x ≥ 1,

g(x) =

{
x if x ∈ [0, 1];
1/x2 if x ≥ 1.

Consider the following penalty problem:

(PPα(n)) min
x∈X1

f(x) + n [max{0, g(x)}]α , n ∈ N.

It is easily verified that xn = 21/αn1/α is the unique global solution to (PPα(n)) for
each n ∈ N . Note that X0 = {0}. It follows that we have dK(g(xn)) = 1/(22/αn2/α) →
0, while dX0(xn) = 21/αn1/α → +∞.

Thus, it is useful to consider sequences that satisfy dK(g(xn)) → 0 instead of
dX0

(xn) → 0 as n → ∞ in order to study convergence of penalty-type methods.
The sequence {xn} satisfying (i) and (ii) above is called an LP minimizing se-

quence. In what follows, we introduce two more types of generalized LP well-posedness.
Definition 1.1. (P) is called LP well-posedness in the generalized sense if, for

any sequence {xn} ⊂ X1 satisfying (i) dK(g(xn)) → 0 and (ii) f(xn) → v̄, there exist
a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄. The sequence {xn}

is called a generalized LP minimizing sequence.
Definition 1.2. (P) is called LP well-posedness in the strongly generalized sense

if, for any sequence {xn} ⊂ X1 satisfying (i) dK(g(xn)) → 0 and (ii) lim supn→+∞ f(xn)
≤ v̄, there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.

The sequence {xn} is called a weakly generalized LP minimizing sequence.
Remark 1.1. (i) The study of well-posedness for optimization problems with

explicit constraints dates back to [17] when the abstract set X1 does not appear. In
[17], it was assumed that X is a Banach space and Y is a Banach space ordered by
a closed and convex cone with some special properties; see [17] for details. What is
worth emphasizing is that [17] studied only the case when (P) is a convex program.
However, it is well known that penalty-type methods such as penalization methods
and augmented Lagrangian methods are mostly developed for constrained nonconvex
optimization problems. This is the main motivation of this paper.

(ii) The LP well-posedness in the strongly generalized sense defined above was
called well-posedness in the strongly generalized sense in [17], while a weakly general-
ized LP minimizing sequence in the above definition is called a generalized minimizing
sequence in [17].

(iii) It is obvious that LP well-posedness in the strongly generalized sense im-
plies LP well-posedness in the generalized sense because a generalized LP minimizing
sequence is a weakly generalized LP minimizing sequence.

(iv) If there exists some δ0 > 0 such that g is uniformly continuous on the set

{x ∈ X1 : dX0(x) ≤ δ0},
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WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 245

then it is not difficult to see that LP well-posedness in the generalized sense implies
LP well-posedness.

(v) Any one type of (generalized) LP well-posedness defined above implies that
the optimal set X̄ of (P) is nonempty and compact.

The paper is organized as follows. In section 2, we investigate characterizations
and criteria for the three types of (generalized) LP well-posednesses. In section 3,
we establish relations among the three types of (generalized) LP well-posednesses. In
section 4, we obtain convergence of a class of penalty methods and a class of augmented
Lagrangian methods under the assumption of strongly generalized LP well-posedness.

2. Necessary and sufficient conditions for three types of (generalized)
LP well-posedness. In this section, we present some criteria and characterizations
for the three types of (generalized) LP well-posedness defined in section 1.

Consider the following statement:

(1)

[X̄ �= ∅ and, for any LP minimizing sequence (resp.,

generalized LP minimizing sequence, weakly generalized LP minimizing sequence)

{xn}, we have dX̄(xn) → 0].

The proof of the following proposition is elementary and thus omitted.
Proposition 2.1. If (P) is LP well-posed (resp., LP well-posed in the generalized

sense and LP well-posed in the strongly generalized sense), then (1) holds. Conversely,
if (1) holds and X̄ is compact, then (P) is LP well-posed (resp., LP well-posed in the
generalized sense and LP well-posed in the strongly generalized sense).

Consider a real-valued function c = c(t, s) defined for t, s ≥ 0 sufficiently small,
such that

c(t, s) ≥ 0 ∀t, s, c(0, 0) = 0,(2)

sk → 0, tk ≥ 0, c(tk, sk) → 0 imply tk → 0.(3)

Theorem 2.1. If (P) is LP well-posed, then there exists a function c satisfying
(2) and (3) such that

|f(x) − v̄| ≥ c(dX̄(x), dX0
(x)) ∀x ∈ X1.(4)

Conversely, suppose that X̄ is nonempty and compact, and (4) holds for some c sat-
isfying (2) and (3). Then (P) is LP well-posed.

Proof. Define

c(t, s) = inf{|f(x) − v̄| : x ∈ X1, dX̄(x) = t, dX0(x) = s}.

It is obvious that c(0, 0) = 0. Moreover, if sn → 0, tn ≥ 0 and c(tn, sn) → 0, then
there exists a sequence {xn} ⊂ X1 with

dX̄(xn) = tn,(5)

dX0(xn) = sn(6)

such that

|f(xn) − v̄| → 0.(7)
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246 X. X. HUANG AND X. Q. YANG

Note that sn → 0. Equations (6) and (7) jointly imply that {xn} is an LP minimizing
sequence. By Proposition 2.1, we have tn → 0. This completes the proof of the first
half of the theorem. Conversely, let {xn} be an LP minimizing sequence. Then, by
(4), we have

|f(xn) − v̄| ≥ c(dX̄(xn), dX0(xn)) ∀x ∈ X1.(8)

Let

tn = dX̄(xn), sn = dX0(xn).

Then sn → 0. In addition, |f(xn) − v̄| → 0. These facts together with (8) as well as
the properties of the function c imply that tn → 0. By Proposition 2.1, we see that
(P) is LP well-posed.

Theorem 2.2. If (P) is LP well-posed in the generalized sense, then there exists
a function c satisfying (2) and (3) such that

|f(x) − v̄| ≥ c(dX̄(x), dK(g(x))) ∀x ∈ X1.(9)

Conversely, suppose that X̄ is nonempty and compact, and (9) holds for some c sat-
isfying (2) and (3). Then (P) is LP well-posed in the generalized sense.

Proof. The proof is almost the same as that of Theorem 2.1. The only difference
lies in the proof of the first part of Theorem 2.1. Here we define

c(t, s) = inf{|f(x) − v̄| : x ∈ X1, dX̄(x) = t, dK(g(x)) = s}.

Next we give a necessary and sufficient condition in the form of Furi and Vignoli
[10] to characterize the LP well-posedness in the strongly generalized sense.

Let

Ω(ε) = {x ∈ X1 : f(x) ≤ v̄ + ε, dK(g(x)) ≤ ε}.

Let (X, d1) be a complete metric space. Recall that the Kuratowski measure of
noncompactness for a subset A of X is defined as

α(A) = inf

⎧⎨
⎩ε > 0 : A ⊂

⋃
1≤i≤n

Ci, for some Ci, diam(Ci) ≤ ε

⎫⎬
⎭ ,

where diam(Ci) is the diameter of Ci defined by

diam(Ci) = sup{d1(x1, x2) : x1, x2 ∈ Ci}.

The next theorem can be proved analogously to [17, Theorem 5.5].
Theorem 2.3. Let (X, d1) be a complete metric space and f be bounded below

on X0. Then (P) is LP well-posed in the strongly generalized sense if and only if

α(Ω(ε))) → 0 as ε → 0.

Definition 2.1. Let Z be a topological space and Z1 ⊂ Z be nonempty. Suppose
that h : Z → R1 ∪ {+∞} is an extended real-valued function. h is said to be level-
compact on Z1 if, for any s ∈ R1, the subset {z ∈ Z1 : h(z) ≤ s} is compact.
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WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 247

For any δ ≥ 0, define

X1(δ) = {x ∈ X1 : dK(g(x)) ≤ δ}.(10)

The following proposition gives sufficient conditions that guarantee LP well-
posedness in the strongly generalized sense.

Proposition 2.2. Let one of the following conditions hold.
(i) There exists δ0 > 0 such that X1(δ0) is compact.
(ii) f is level-compact on X1.
(iii) X is a finite dimensional normed space and

lim
x∈X1,‖x‖→+∞

max{f(x), dK(g(x))} = +∞.(11)

(iv) There exists δ0 > 0 such that f is level-compact on X1(δ0).
Then (P) is LP well-posed in the strongly generalized sense.

Proof. Let {xn} ⊂ X1 be a weakly generalized LP minimizing sequence. Then

lim sup
n→+∞

f(xn) ≤ v̄,(12)

dK(g(xn)) → 0.(13)

The proof of (i) is elementary. It is obvious that condition (ii) implies (iv). Now
we show that (iii) implies (iv). Indeed, we need only to show that for any s ∈ R1 and
any δ > 0, the set

A = {x ∈ X1(δ) : f(x) ≤ s}

is bounded since X is a finite dimensional space. Suppose to the contrary that there
exist δ > 0, s > 0, and {x′

n} ⊂ X1(δ) such that

‖x′
n‖ → +∞ and f(x′

n) ≤ s.

By {x′
n} ⊂ X1(δ), we have {x′

n} ⊂ X1 and

dK(g(x′
n)) ≤ δ.

As a result,

max{f(x′
n), dK(g(x′

n))} ≤ max{s, δ},

contradicting (11).
Thus, we need only to prove that if (iv) holds, then (P) is LP well-posed in the

strongly generalized sense. By (13), it is apparent that we can assume without loss
of generality that {xn} ⊂ X1(δ0). By (12), we can assume without loss of generality
that

{xn} ⊂ {x ∈ X1 : f(x) ≤ v̄ + 1}.

By the level-compactness of f on X1(δ0), we deduce that there exist a subsequence
{xnk

} of {xn} and x̄ ∈ X1 such that xnk
→ x̄. It is obvious from (13) that x̄ ∈ X0.

Furthermore, from (12), we deduce that f(x̄) ≤ v̄. So we have f(x̄) = v̄. That is,
x̄ ∈ X̄. Hence, (P) is LP well-posed in the strongly generalized sense.
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248 X. X. HUANG AND X. Q. YANG

Now we consider the case when Y is a normed space and K is a closed and convex
cone with nonempty interior intK. Arbitrarily fix an e ∈ intK. Let t ≥ 0 and consider
the following perturbed problem of (P):

(Pt) min f(x)

s.t. x ∈ X1, g(x) ∈ K − te.(14)

Let

X2(t) = {x ∈ X1 : g(x) ∈ K − te}.(15)

Proposition 2.3. Let one of the following conditions hold.
(i) There exists t0 > 0 such that X2(t0) is compact.
(ii) f is level-compact on X1.
(iii) X is a finite dimensional normed space and

lim
x∈X1,‖x‖→+∞

max{f(x), dK(g(x))} = +∞.

(iv) There exists t0 > 0 such that f is level-compact on X2(t0).
Then (P) is LP well-posed in the strongly generalized sense.
Proof. The proof is similar to that of Proposition 2.2.
Now we make the following assumption.
Assumption 2.1. X is a finite dimensional normed space, Y is a normed space,

X1 ⊂ X is a nonempty, closed, and convex set, K ⊂ Y is a closed, and convex cone
with nonempty interior intK and e ∈ intK, f and g are continuous on X1, f is a
convex function on X1, and g is K-concave on X1 (namely, for any x1, x2 ∈ X1 and
any θ ∈ (0, 1), there holds that g(θx1 + (1 − θ)x2) − θg(x1) − (1 − θ)g(x2) ∈ K).

It is obvious that under Assumption 2.1, (P) is a convex program.
The next lemma can be proved similarly to that of [16, Proposition 2.4].
Lemma 2.1. Let Assumption 2.1 hold. Then the following two statements are

equivalent.
(i) The optimal set X̄ of (P) is nonempty and compact.
(ii) For any t ≥ 0, f is level-compact on the set X2(t).
Theorem 2.4. Let Assumption 2.1 hold. Then (P) is LP well-posed in the

strongly generalized sense if and only if the optimal set X̄ of (P) is nonempty and
compact.

Proof. The sufficiency part follows directly from Lemma 2.1 and Proposition 2.3,
while the necessity part is obvious by Remark 1.1.

The next two lemmas will be used to derive Theorem 2.5.
Lemma 2.2 (see [1]). Let (Z, d) be a complete metric space and h : Z → R1 ∪

{+∞} be lower semicontinuous and bounded below. Let ε > 0. Suppose that z0 ∈ Z
satisfies h(z0) ≤ inf{h(z) : z ∈ Z} + ε. Then there exists zε ∈ Z such that

(i) h(zε) ≤ h(z0);
(ii) d(zε, z0) ≤

√
ε;

(iii) h(zε) < h(z) +
√
εd(z, zε) ∀z ∈ Z\{zε}.

Lemma 2.3. Let Y be a normed space and K ⊂ Y be a closed and convex cone
with intK �= ∅ and e ∈ intK. Suppose that {yn} ⊂ Y . Then dK(yn) → 0 if and only
if there exists a sequence {tn} ⊂ R1

+ with tn → 0 such that yn ∈ K − tne.
Proof. For the necessity part, from dK(yn) → 0, we have {un} ⊂ K such that

‖yn−un‖ → 0. Let y′n = yn−un. Then ‖y′n‖ → 0. Let tn =
√
‖y′n‖. Then {tn} ⊂ R1

+,
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WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 249

tn → 0 and y′n/tn → 0. Since e ∈ intK, it follows that e + y′n/tn ∈ K when n is
sufficiently large. Consequently, y′n ∈ K − tne. Hence, yn = un + y′n ∈ K − tne.

For the sufficiency part, as yn ∈ K − tne, we have yn + tne ∈ K. Thus,

dK(yn) ≤ ‖yn − (yn + tne)‖ = tn‖e‖.

Hence, dK(yn) → 0.
Suppose that K is a cone. We denote by K∗ the positive polar cone of K, i.e.,

K∗ = {μ ∈ Y ∗ : μ(u) ≥ 0 ∀u ∈ K}.

Theorem 2.5. Assume that X is a Banach space, Y is a normed space, and
X1 ⊂ X is nonempty, closed, and convex. K ⊂ Y is a closed and convex cone with
intK �= ∅ and e ∈ intK. Suppose that f : X → R1 is convex and continuously
differentiable on X1 and g : X → Y is K-concave and continuously differentiable on
X1. Let Slater constraint qualification for (P) hold: there exists x0 ∈ X1 such that
g(x0) ∈ intK. Assume that the optimal set X̄ of (P) is nonempty. Further assume
that there exists a convergent subsequence of {xn} for any sequences {xn} ⊂ X1 and
{μn} ⊂ K∗ satisfying the following.

(i) limn→+∞ dK(g(xn)) = 0.
(ii) There exists a subsequence {μnk

} such that μnk
= 0 ∀k or limn→+∞ μn(g(xn))/

‖μn‖ = 0.
(iii) limn→+∞ d(−NX1

(xn))(�f(xn) − μn(�g(xn))) = 0, where NX1
(xn) is the

normal cone of X1 at xn.
Then, (P) is LP well-posed in the strongly generalized sense.
Proof. Suppose that x̄ ∈ X̄. Since Slater constraint qualification holds, we have

μ̄ ∈ K∗ such that

f(x̄) ≤ f(x) − μ̄(g(x)) ∀x ∈ X1(16)

and

μ̄(g(x̄)) = 0.(17)

Let {xn} ⊂ X1 be a weakly generalized LP minimizing sequence for (P). Then, by
Lemma 2.3,

lim sup
n→+∞

f(xn) ≤ v̄(18)

and

g(xn) ∈ K − tne(19)

for some {tn} ⊂ R1
+ with tn → 0. From (16), we have

f(x̄) ≤ f(x) − μ̄(g(x)) ∀x ∈ X2(tn).

Note that

−μ̄(g(x)) ≤ tnμ̄(e) ∀x ∈ X2(tn).

Thus,

f(x̄) ≤ f(x) + tnμ̄(e) ∀x ∈ X2(tn).(20)
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250 X. X. HUANG AND X. Q. YANG

Hence,

inf
x∈X2(tn)

f(x) > −∞.(21)

The combination of (19) and (20) gives

f(x̄) ≤ f(xn) + tnμ̄(e).

Consequently,

f(x̄) ≤ lim inf
n→+∞

f(xn).

This together with (18) yields

lim
n→+∞

f(xn) = f(x̄).(22)

This combined with (20) implies that there exists εn → 0+ such that

f(xn) ≤ f(x) + εn ∀x ∈ X2(tn).

Note that X2(tn) ⊂ X is nonempty and closed. (X2(tn), ‖ · ‖) can be seen as a
complete (metric) subspace of X. Applying Lemma 2.2, we obtain

x′
n ∈ X2(tn)(23)

such that

‖xn − x′
n‖ ≤ √

εn(24)

and

f(x′
n) ≤ f(x) +

√
εn‖x− x′

n‖ ∀x ∈ X2(tn).(25)

Note that Slater constraint qualification also holds for the following constrained op-
timization problem:

(Pn) min f(x) +
√
εn‖x− x′

n‖
s.t. x ∈ X1, g(x) ∈ K − tne,

and by (25), x′
n is an optimal solution of (Pn). Hence, there exists μn ∈ K∗ such that

0 ∈ �f(x′
n) − μn(�g(x′

n)) +
√
εnB

∗ + NX1
(x′

n)(26)

and

μn(g(x′
n) + tne) = μn(g(x′

n)) + tnμn(e) = 0,(27)

where B∗ is the closed unit ball of X∗. Equation (26) implies that

lim
n→+∞

d(−NX1
(x′

n))(�f(x′
n) − μn(�g(x′

n))) = 0.(28)

From (27), we see that if there does not exist a subsequence {μnk
} such that μnk

=
0 ∀k, then

lim
n→+∞

μn(g(xn))/‖μn‖ = 0.(29)

The combination of (24), (28), and (29) implies that {x′
n} and {μn} satisfy conditions

(i)–(iii) of the theorem. Thus, {x′
n} has a subsequence {x′

nk
} which converges to some

x̄′ ∈ X0. From (24), we deduce that xnk
→ x̄′ ∈ X0. This combined with (22) implies

x̄′ ∈ X̄. Hence, (P) is LP well-posed in the strongly generalized sense.
Remark 2.1. Conditions (i)–(iii) of Theorem 2.5 can be seen as the well-known

Palais–Smale condition (C) [1] in the case of constrained optimization.
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WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 251

3. Relations among three types of (generalized) LP well-posedness.
Simple relationships among the three types of LP well-posedness were mentioned in
Remark 1.1. Now we investigate further relationships among them.

The proof of next theorem is elementary and is omitted.
Theorem 3.1. Suppose that there exist δ > 0, α > 0, and c > 0 such that

dX0
(x) ≤ cdαK(g(x)) ∀x ∈ X1(δ),(30)

where X1(δ) is defined by (10). If (P) is LP well-posed, then (P) is LP well-posed in
the generalized sense.

Remark 3.1. Equation (30) is an error bound condition for the set X0 in terms
of the residual function

r(x) = dK(g(x)) ∀x ∈ X1.

When X = Rl, Y = Rm, X1 = X, and X0 �= ∅, by Theorem 5 of [23], (30) holds
if and only if, for any y ∈ Rm with ‖y‖ ≤ δ,

Ψ(y) ⊂ Ψ(0) + c‖y‖αB,

where

Ψ(y) = {x ∈ Rl : g(x) ∈ K + y}, y ∈ Rm,

and B is the closed unit ball of Y . Sufficient conditions guaranteeing (30) were given
in numerous papers on error bounds for systems of inequalities and metric regularity of
set-valued maps (when (30) holds locally with α = 1) in finite and infinite dimensional
spaces (see, e.g., [5, 8, 18] and the references therein).

Definition 3.1 (see [4]). Let W be a topological space and F : W → 2X be a
set-valued map. F is said to be upper Hausdorff semicontinuous (u.H.c.) at w ∈ W
if, for any ε > 0, there exists a neighborhood U of w such that F (U) ⊂ B(F (w), ε),
where, for Z ⊂ X and r > 0,

B(Z, r) = {x ∈ X : dZ(x) ≤ r}.

Definition 3.2 (see [1]). Let W be a topological space and F : W → 2X be a
set-valued map. F is said to be upper semicontinuous (u.s.c.) in the Berge’s sense at
w ∈ W if, for any neighborhood Ω of F (w), there exists a neighborhood U of w such
that F (U) ⊂ Ω.

It is obvious that the notion of u.s.c. (in Berge’s sense) is stronger than u.H.c.
Clearly, X1(δ) given by (10) can be seen as a set-valued map from R1

+ to X. The
next two theorems use conditions similar to those for the general stability results pre-
sented in section 3 of [4], where the uniform continuity of the objective function around
the feasible set and the u.H.c. of the perturbation set-valued map were considered.

Theorem 3.2. Assume that the set-valued map X1(δ) defined by (10) is u.H.c. at
0 ∈ R1

+. If (P) is LP well-posed, then (P) is LP well-posed in the generalized sense.
Proof. Let {xn} ⊂ X1 be a generalized LP minimizing sequence. That is,

f(xn) → v̄,(31)

dK(g(xn)) → 0.(32)

Equation (32), together with the u.H.c. of X1(δ) at 0, implies that dX0(xn) → 0.
This fact combined with (31) implies that {xn} is an LP minimizing sequence. Thus,
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252 X. X. HUANG AND X. Q. YANG

there exist a subsequence {xnk
} of {xn} and some x̄ ∈ X̄ such that xnk

→ x̄. Hence,
(P) is LP well-posed in the generalized sense.

Theorem 3.3. Assume that there exists ε0 > 0 such that f is uniformly continu-
ous on B(X0, ε0) and the set-valued map X1(δ) is u.H.c. at 0. If (P ) is LP well-posed,
then it is LP well-posed in the strongly generalized sense.

Proof. Let {xn} be a weakly generalized LP minimizing sequence. That is,

lim sup
n→+∞

f(xn) ≤ v̄,(33)

dK(g(xn)) → 0.(34)

Note that X1(δ) is u.H.c. at 0. This fact together with (34) implies that dX0(xn) → 0.
Note that f is uniformly continuous on B(X0, ε0). It follows that

lim inf
n→+∞

f(xn) ≥ v̄.(35)

The combination of (33) and (35) yields that

f(xn) → v̄.

Hence, {xn} is an LP minimizing sequence. Thus, there exist a subsequence {xnk
} of

{xn} and some x̄ ∈ X̄ such that xnk
→ x̄. So, (P) is LP well-posed in the strongly

generalized sense.
Let δ ≥ 0. Consider the perturbed problem of (P):

(Pδ) min f(x)

s.t. x ∈ X1, dK(g(x)) ≤ δ.

Denote by v1(δ) the optimal value of (Pδ). Clearly, v1(0) = v̄.
Theorem 3.4. Consider problems (P) and (Pδ). Suppose that (P) is LP well-

posed in the generalized sense and

lim inf
δ→0+

v1(δ) = v̄.(36)

Then (P) is LP well-posed in the strongly generalized sense.
Proof. Let {xn} ⊂ X1 be a weakly generalized LP minimizing sequence. Then

lim sup
n→+∞

f(xn) ≤ v̄(37)

and

lim
n→+∞

dK(g(xn)) = 0.

Let δn = dK(g(xn)). Then xn is feasible for (Pδn). Thus,

v1(δn) ≤ f(xn).

Passing to the lower limit, we get

lim inf
n→+∞

v1(δn) ≤ lim inf
n→+∞

f(xn).

D
ow

nl
oa

de
d 

10
/2

9/
12

 to
 1

58
.1

32
.1

61
.5

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 253

This together with (37) and (36) yields

lim
n→+∞

f(xn) = v̄.

It follows that {xn} is a generalized LP minimizing sequence. Thus, there exist a
subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄. So, (P) is LP

well-posed in the strongly generalized sense.
Remark 3.2. If the set-valued map X1(δ) defined by (10) is u.s.c. at 0 ∈ R1

+, by
Theorem 4.2.3 (1) of [2], (36) holds. In this case, the generalized LP well-posedness
of (P) implies the strongly generalized LP well-posedness of (P).

Now let Y be a normed space and y ∈ Y . Consider the following perturbed
problem of (P):

(Py) min f(x)

s.t. x ∈ X1, g(x) ∈ K + y.

Denote by

X3(y) = {x ∈ X1 : g(x) ∈ K + y}(38)

the feasible set of (Py) and v3(y) the optimal value of (Py). Here we note that if
X3(y) = ∅, we set v3(y) = +∞. It is obvious that X3(y) can be seen as a set-valued
map from Y to X. Corresponding to Theorems 3.2–3.4, respectively, we have the
following theorems.

Theorem 3.5. Assume that Y is a normed space and that the set-valued map
X3(y) is u.H.c. at 0 ∈ Y . If (P) is LP well-posed, then (P) is LP well-posed in the
generalized sense.

Theorem 3.6. Assume that Y is a normed space and that there exists ε0 > 0
such that f is uniformly continuous on B(X0, ε0) and the set-valued map X3(y) is
u.H.c. at 0 ∈ Y . If (P) is LP well-posed, then it is LP well-posed in the strongly
generalized sense.

Theorem 3.7. Assume that Y is a normed space. Consider problems (P) and
(Py). Suppose that (P) is LP well-posed in the generalized sense and

lim inf
y→0

v3(y) = v̄.(39)

Then (P) is LP well-posed in the strongly generalized sense.
Similar to Remark 3.2, when the set-valued map X3 is u.s.c. at 0 ∈ Y , then (39)

holds. Thus, the generalized LP well-posedness of (P) implies its strongly generalized
LP well-posedness.

In the special case when K is a closed and convex cone with nonempty interior
intK, arbitrarily fix an e ∈ intK. It is obvious that X2(t) defined by (15) can be seen
as a set-valued map from R1

+ to X. Denote by v2(t) the optimal value of (Pt).
Theorem 3.8. Assume that K is a closed and convex cone with nonempty in-

terior intK and that the set-valued map X2(t) is u.H.c. at 0 ∈ R1
+. If (P) is LP

well-posed, then (P) is LP well-posed in the generalized sense.
Theorem 3.9. Assume that K is a closed and convex cone with nonempty inte-

rior intK and that there exists ε0 > 0 such that f is uniformly continuous on B(X0, ε0)
and the set-valued map X2(t) is u.H.c. at 0 ∈ R1

+. If (P) is LP well-posed, then it is
LP well-posed in the strongly generalized sense.
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254 X. X. HUANG AND X. Q. YANG

Theorem 3.10. Assume that K is a closed and convex cone with nonempty
interior intK. Consider problems (P) and (Pt). Suppose that (P) is LP well-posed in
the generalized sense and

lim inf
t→0+

v2(t) = v̄.(40)

Then (P) is LP well-posed in the strongly generalized sense.
Again, as noted in Remark 3.2, when the set-valued map X2 is u.s.c. at 0 ∈ R1

+,
then (39) holds. Thus, the generalized LP well-posedness of (P) implies its strongly
generalized LP well-posedness.

4. Applications to penalty-type methods. In this section, we consider the
convergence of a class of penalty methods and a class of augmented Lagrangian meth-
ods under the assumption of strongly generalized LP well-posedness of (P).

4.1. Penalty methods. Let α > 0. Consider the following penalty problem:

(PPα(r)) min
x∈X1

f(x) + rdαK(g(x)), r > 0.

Denote by v4(r) the optimal value of (PPα(r)). It is clear that

v4(r) ≤ v̄ ∀r > 0.(41)

Remark 4.1. When α ∈ (0, 1), X = Rl, Y = Rm, K = Rm1
− × {0m−m1}, where

m ≥ m1 and 0m−m1 is the origin of the space Rm−m1 , this class of penalty functions
was applied to the study of mathematical programs with equilibrium constraints [19].
Necessary and sufficient conditions for the exact penalization of this class of penalty
functions were derived in [14]. This class of penalty methods was also applied to math-
ematical programs with complementarity constraints [27] and nonlinear semidefinite
programs [15]. An important advantage of this class of penalty methods is that it
requires weaker conditions to guarantee its exact penalization property than the usual
l1 penalty function method (see [19]).

Theorem 4.1. Let 0 < rn → +∞. Consider problems (P) and (PPα(rn)).
Assume that there exist r̄ > 0 and m0 ∈ R1 such that

f(x) + r̄dαK(g(x)) ≥ m0 ∀x ∈ X1.(42)

Let 0 < εn → 0. Suppose that each xn ∈ X1 satisfies

f(xn) + rnd
α
K(g(xn)) ≤ v4(rn) + εn.(43)

Further assume that (P) is LP well-posed in the strongly generalized sense. Then
there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.

Proof. From (41) and (43), we have

f(xn) ≤ v̄ + εn.

Thus,

lim sup
n→+∞

f(xn) ≤ v̄.(44)

Moreover, from (41)–(43), we deduce that

f(xn) + r̄dαK(g(xn)) + (rn − r̄)dαK(g(xn)) ≤ v̄ + εn.
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WELL-POSEDNESS IN CONSTRAINED OPTIMIZATION 255

Thus,

m0 + (rn − r̄)dαK(g(xn)) ≤ v̄ + εn,

implying

dK(g(xn)) ≤
[
v̄ + εn −m0

rn − r̄

]1/α

.

Passing to the limit, we get

lim
n→+∞

dK(g(xn)) = 0.(45)

It follows from (44) and (45) that {xn} is a weakly generalized LP minimizing se-
quence. Hence, there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that
xnk

→ x̄.

4.2. Augmented Lagrangian methods. Let (X, d1) be a metric space, let
Y = Rm, and let K ⊂ Y be a nonempty, closed, and convex set. Let σ : Rm →
R1 ∪ {+∞} be an augmenting function; namely, it is a lower semicontinuous, convex
function satisfying

min
y∈Rm

σ(y) = 0 and σ attains its unique minimum at y = 0.

Following Example 11.46 in [25], we define the dualizing parametrization function by
setting X = X1 and θ = δK :

f̄(x, u) = f(x) + δX1(x) + δK(g(x) + u),

where δA is the indicator function of a subset A of a space Z, i.e.,

δA(a) =

{
0 if a ∈ A,
+∞ if a ∈ Z\A.

Constructing the augmented Lagrangian as in Definition 11.55 of [25], we obtain the
augmented Lagrangian:

l̄(x, y, r) = inf
u∈Rm

{
f̄(x, u) + rσ(u) − 〈y, u〉

}
, x ∈ X, y ∈ Rm, r > 0.

The augmented Lagrangian problem is

(ALP (y, r)) min
x∈X

l̄(x, y, r), y ∈ Rm, r > 0.

Denote by v5(y, r) the optimal value of (ALP (y, r)).
We have the following result.
Theorem 4.2. Let {yn} ⊂ Rm be bounded and 0 < rn → +∞. Consider (P)

and (ALP (yn, rn)). Assume that there exist (ȳ, r̄) ∈ Rm× (0,+∞) and m0 ∈ R1 such
that

l̄(x, ȳ, r̄) ≥ m0 ∀x ∈ X.(46)

Let 0 < εn → 0. Suppose that each xn satisfies

l̄(xn, yn, rn) ≤ v5(yn, rn) + εn,(47)

v5(yn, rn) > −∞ ∀n, and (P) is LP well-posed in the strongly generalized sense. Then
there exist a subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.
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256 X. X. HUANG AND X. Q. YANG

Proof. By the definition of l̄(x, y, r), it is easy to see that

l̄(x, y, r) = f(x) ∀x ∈ X0.

It follows that

v5(y, r) ≤ v̄ ∀y ∈ Rm, r > 0.

Thus,

v5(yn, rn) ≤ v̄ ∀n.(48)

By the definition of l̄(xn, yn, rn) and (47), {xn} ⊂ X1 and there exists {un} ⊂ Rm

satisfying

g(xn) + un ∈ K ∀n(49)

such that

f(xn) + rnσ(un) − 〈yn, un〉 ≤ v5(yn, rn) + 2εn.(50)

This combined with (46) and (48) implies that

(rn − r̄)σ(un) − 〈yn − ȳ, un〉 ≤ v̄ + 2εn −m0.(51)

We assert that {un} is bounded. Otherwise, we assume without loss of general-
ity that ‖un‖ → +∞. Since the lower semicontinuous and convex function σ has
a unique minimum, by Proposition 3.2.5 in IV of [11] and Corollary 3.27 of [25],
lim infn→+∞ σ(un)/‖un‖ > 0. As {yn} is bounded, (51) cannot hold. So, {un}
should be bounded. Assume without loss of generality that un → u0. We deduce
from (51) that

σ(u0) ≤ lim inf
n→+∞

σ(un) = 0.

It follows that u0 = 0. We deduce from (48) and (50) that

f(xn) − 〈yn, un〉 ≤ v̄ + 2εn.

Passing to the limit, we get

lim sup
n→+∞

f(xn) ≤ v̄.

From (49) and the fact that un → 0, we obtain

lim
n→+∞

dK(g(xn)) = 0.

Thus, {xn} is a weakly generalized LP minimizing sequence. Hence, there exist a
subsequence {xnk

} of {xn} and some x̄ ∈ X̄ such that xnk
→ x̄.
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