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Abstract 

 

This paper is an extension to a paper previously published in the journal Building and 

Environment. Having determined an optimal recovery time in a controlled climatic 

environment, this paper aims to investigate the real impact on construction rebar workers by 

replicating the clinical experimentation to a series of field studies. Field studies were 

conducted during the summer time in Hong Kong. Nineteen rebar workers performed tasks of 

fixing and bending steel reinforcement bars on two building construction sites until voluntary 

exhaustion and were allowed to recover on site until their physiological conditions returned to 

the pre-work level or lower. Physiological Strain Index (PSI) was used as a yardstick to 

determine the rate of recovery. A total of 411 sets of meteorological and physiological data 

collected over fourteen working days between July and August of 2011 were collated to derive 

the optimal recovery time. It was found that on average a rebar worker could achieve 94% 

recovery in 40 min; 93% in 35 min; 92% in 30 min; 88% in 25 min; 84% in 20 min; 78% in 15 

min; 68% in 10 min; and 58% in 5 min. Curve estimation results showed that recovery time is a 

significant variable to predict the rate of recovery (R
2
 = 0.99, P < 0.05). Additional rest times 

should be introduced between works in extreme hot weather to enable workers to recover from 

heat stress.  Frequency and duration of each rest time should be agreed among different 

stakeholders based on the cumulative recovery curve.  

 

Keywords: Heat stress; Physiological strain index (PSI); Heat tolerance time; Field studies; 

Rebar workers; Rest time 
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1. Introduction 

 

Heat stress, having physiological effects on workers, can lead to reduction of work 

enthusiasm and productivity, increased accident rate [1], heat illness, and death [2-4]. Such 

extreme conditions are commonly encountered in many occupational settings such as steel and 

iron manufacturing, glass factories, mining, textiles, ceramics, food canneries, and outdoor 

operations [5]. Construction industry is a priority area for research and interventions because of 

its high number of work-related fatal and non-fatal injuries [6]. Employees engaged in the 

construction industry account for a small proportion, but have a higher risk of work-related 

illnesses and accidents than workers in other branches of industry and the public sector [7-8]. 

The construction industry is found to be more hazardous than most other sectors [9] because it 

involves highly demanding physical tasks with various types of stresses resulted from 

awkward posture, excessive force demands, highly repetitive actions and excessive energy 

expenditure [10]. Physically demanding works combined with the exposure to high 

temperature, humidity, solar radiation but poor air ventilation can further increase the physical 

stress of workers during the daylong operation [11]. Time integrated fatigue accompanied by 

heat incurred disorders may lead to different types of injuries and accidents [12]. Such fatigue 

stretched over a period of months and years may cause physical, physiological and 

musculoskeletal disorders in the long run [13]. 

 

In Hong Kong, the construction industry recorded the highest number of fatalities and 

accident rate among different major industry sectors [14]. The incidence of heat stress within 

the construction industry has been alarming and caused a number of verifiable reported deaths 

[2, 4]. The Hong Kong SAR Government and the construction industry have expressed 

concerns over working in hot weather and promulgated a series of fundamental practice notes 

and effective guidelines on working in hot weather [15-17]. In addition, the Hong Kong 

Observatory issues very hot weather warnings when Hong Kong is threatened by very hot 

weather, to alert the general public to the risk of heat stroke and sunburn due to very hot 

weather [18]. Preventive measures on work arrangement, work-break cycle, cool down 

facilities were advocated to protect site personnel working in hot weather. The purpose of 

work-rest scheduling is to balance productivity demands with safety concerns and the physical 

workload of the personnel [19]. A proper design of a work-rest schedule is an effective means 

in improving a worker's comfort, health, and productivity [20]. Zhao et al. established a heat 

tolerance time model to determine safe work time in hot and humid environment [21]. Earlier 

research work by Chan et al. [22] has computed the maximum duration (Heat Tolerance Time) 

that a rebar worker could work continuously without jeopardizing his health. Naturally workers 

should be allowed to take a rest before or when such a threshold is reached. However, how long 

the workers should be allowed to recover in hot weather after working to voluntary exhaustion 

remains to be a question yet to be answered.  

 

Recovery can play a considerable role to the well-being of rebar workers as well as in their 

productivity [23]. Sufficient rest can prevent the accumulation of fatigue and a loss of 

productivity. A key consideration of a rest is its recovery value [24]. Many studies focus on the 
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recovery value in term of the response of physiological parameters in extreme hot environment 

[23, 25-26]. Limited studies considered recovery value in perspective of the length of rest at 

heat exposure. Chan et al. [27] adopted the physiological strain index (PSI) as a yardstick to 

determine an optimal energetic recovery time after a participant has exercised to exhaustion in 

a controlled hot (30°C) and humid (75% relative humidity) environment. The purpose of this 

paper is to examine the real impact on rebar workers by replicating the clinical experimentation 

to a series of field studies. 

 

2. Materials and methods 

 

2.1 Participants  

 

Nineteen apparently healthy and experienced rebar workers participated in this research 

study. Exclusion criteria included: flu in the week prior to participation, and history of 

diagnosed major health problems including diabetes, hypertension, cardiovascular disease, 

neurological problem and regular medication intake. The physical characteristics of the 

participants were as follows (mean ± SE): age 45.0 ± 8.3 years old; height 169.2 ± 5.6 cm; body 

weight before work 65.0 ± 7.2 kg; body weight after work 64.0 ± 7.2 kg; percentage of body fat 

16.5 ± 6.4%; resting heart rate 78.3 ± 8.5 beats per minute; resting diastolic blood pressure 82.0 

± 10.5 mmHg; resting systolic blood pressure 117.3 ± 9.4 mmHg. Participants were clearly 

informed of the purposes and the procedures of the study before starting any tests. Written 

consent was obtained from all participants prior to the study. Their participation was on a 

voluntary basis and participants could withdraw at any time without penalty. Data collected 

from the study was password-protected and kept centrally in a stand-alone server and was used 

for this study only. The study was conducted according to the Declaration of Helsinki and the 

protocol was fully approved by the Research Committee of the authors’ host institution. 

 

2.2 Measurements 

 

A series of physiological parameters such as energy expenditure, breath frequency, METs, 

minute ventilation, heart rate, oxygen consumption, and respiratory exchange ratio were 

monitored by a metabolic cart during experimentation. In order to evaluate the feeling of 

fatigue during exercise, ratings of perceived exertion (RPE) scale were used which has been 

considered as a practical and cost-effective approach to quantifying the 

psychological-physiological effects [28-31]. The scales use both verbal anchors and numbers 

that have been reported to possess both categorical and interval properties [32]. The Borg 

CR10 Scale (a 10-point single-item scale) was employed in this study, with anchors ranging 

from 1 “very very easy” to 10 “maximal exertion” [33]. 

 

In order to estimate the level of strain and to initiate appropriate actions at an early stage, 

Moran et al. [34] introduced a Physiological Strain Index (PSI), which is based on heart rate 

and core temperature records in humans, to describe heat strain in quantitative terms during 

continuous exercise [35]. PSI is therefore applied in this study to measure how rest breaks 

influence the recovery of the heat strain process. PSI has been shown to effectively 
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differentiate the heat strain associated with different climatic conditions, hydration levels, 

types of clothing including protective clothing, different exercise intensities, gender and the 

effects of aging [36-38]. It is an algorithm combining data from the heart rate and core 

temperature, in which output is scaled from 0 to 10 where 0 represents “no strain” and 10 “very 

high physiological strain”. The mathematical expression of PSI can be found in Eq. (1).  

 

PSI = 5 * (Tri - Tr0)/ (39.5 - Tr0) + 5 * (HRi - HRo) / (180-HR0)      (1) 

 

Where Tri and HRi are simultaneous measurements taken at any time whilst the participant 

is under the controlled heat exposure; and Tr0 and HR0 are the resting values in the chamber 

prior to the exercise, and 39.5 and 180 represent maximal core temperature and heart rate 

respectively. 

 

2.3 Standard procedures 

 

Field studies were conducted during the summer time in Hong Kong (from July to August 

of 2011). Different stages of a construction process from foundation works to core 

superstructure structural works were studied to capture a wide spectrum of empirical data. 

Locations where the participants worked were recorded to ascertain the effects of heat stress 

under shade or direct sunlight. The study protocol is illustrated in Fig.1. 

 

Prior to the study, participants were asked to rest at room temperature of approximately 

23°C for 20 minutes to stabilize their body temperature and heart rates. During this period, the 

testing procedures were explained to each participant. Whilst taking the rest, participants were 

requested to complete a pre-study data collection sheet which includes questions on age, height, 

smoking habit, alcohol drinking habit, sleeping hours and other personal information. Smoking 

and alcohol drinking habits were recorded in 6 categories according to the amount of their 

alcohol intake and cigarette consumption [39-40].  

 

Before the commencement of rebar work, heart rate (Heart rate monitor, Polar, Finland), 

blood pressure (HEM-712C, OMRON, Japan), and percentage of body fat (InBody 230, 

Biospace Co., Ltd., USA) of the participants were measured. The physiological parameters of 

the participants were measured by the portable metabolic cart (K4b2, COSMED, Rome, Italy). 

The weight of the metabolic cart is 1.5 kg including the battery and a specially designed 

harness. Wearing the portable gas analyzer during the work does not significantly alter the 

participants’ energy demands [41]. In addition, a heat stress monitor (QUESTempº 36, 

Australia) was deployed to measure the prevailing environmental data such as the dry bulb 

temperature, wet bulb temperature, globe temperature, relative humidity, and air velocity 

(wind speed) through an additional detachable air-probe.  

 

When the participants arrived at their working place, they were asked to rest in seated 

posture for another 20 minutes to calm down and acclimatize themselves to the hot and humid 

environment. Four sets of PSI were measured (at 5 minute interval) in these 20 minutes. The 

minimum PSI (PSI min) was taken as a yardstick for comparison after the participants had 
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worked to exhaustion to determine the necessary recovery time. During the work, participants 

performed steel bar bending and fixing tasks as per their usual daily work routine. They were 

permitted to drink water when they desired. The volume of water drunk was recorded. A train 

of objective physiological parameters were continuously monitored and recorded every 5 

seconds during the test via a telemetry system (K4b
2
, COSMED, Rome, Italy). Without 

disturbing participants’ normal operation, participants were asked to report on a RPE value and 

their ear temperatures were measured every 5 minutes, to monitor the amount of strain or level 

of exhaustion from both subjective and objective perspectives. Ear temperature was routinely 

used to estimate core temperature. The ear-based measurement was obtained by using the 

infrared tympanic electronic thermometer (Genius TM 
2
, COVIDIEN, USA), which was 

proved to be an accurate and precise way [42] and was used to measure body temperature in 

less than 2 seconds, hence disturbance to their normal duty was negligible [43]. The 

thermometer has a temperature range of 33.0 °C to 42.0 °C, with an accuracy of ± 0.1°C. Ear 

temperature was then adjusted to display the core temperature equivalent (Eq. (2)). 

 

Core Mode = Ear Mode + 1.04 °C               (2) 

 

Alongside with the measurement of physiological data, the heat stress monitor measures 

four environmental parameters simultaneously at 1 minute interval: ambient or dry bulb 

temperature, natural wet bulb temperature, globe temperature, relative humidity from which 

the corresponding WBGT index can be computed. In total 411 sets of meteorological and 

physiological data were collected from 19 rebar workers on two construction sites over 

fourteen working days between July and August of 2011 in Hong Kong. Fig.2 exhibits the 

frequency distribution of WBGT (N = 411).  

 

Voluntary exhaustion is defined as a state of self-awareness when one starts to feel a 

general inability to physically continue to perform at the desired level due to all energy stores 

having been consumed [44]. It was measured by Rating of Perceived Exertion (RPE-10 point 

scale) in the current study. Voluntary exhaustion was reached when the participants reported a 

RPE of 10 or stopped working voluntarily, whatever come first, indicated that they could not 

continue working anymore. The time when the participants stopped working was recorded and 

was taken as the participants’ heat tolerance time. The participants were then allowed to 

recover on site until their physiological conditions fully recovered. Full recovery was reached 

when the post-work PSI returned to the minimum level or lower, and the corresponding 

duration was defined as the recovery time. Blood pressure, heart rate and body weight were 

measured at the end of the recovery.  

 

2.4 Statistical analysis 

    

A descriptive statistical analysis on the physiological variables was conducted, followed by 

t-test and one-way analysis of variance (ANOVA). Extrapolation method was applied to 

estimate the rate of recovery beyond the upper range of the observed data [45] since it has been 

widely used for estimating physiological parameters [46-49].  Rate of recovery is defined as the 

percentage of recovery with respect to participant’s PSI min and is expressed mathematically as 
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Eq. (3). 

 

Rate of recovery = PSI min / PSI i     (3) 

 

where PSI i are 5-minute interval measurements taken whilst the participant rested for 

recovery on site; and PSI min is the minimum value whilst the participant rested on site prior to 

work. 

 

   Curve estimation was employed to determine the relationship between recovery time and rate 

of recovery. Linear, quadratic, cubic and compound estimation were conducted to find the 

most suitable model of recovery rate. All statistical analyses were performed at a level of 95% 

statistical significance (p < 0.05). These analyses were performed using the statistical software 

program SPSS 17.0. 

 

3. Results 

 

The statistical results (Mean ± Standard Deviation) of the percentage of body fat, resting 

heart rate, resting blood pressure, RPE before and after test are presented in Table 1. In this 

experiment, heat tolerance time is 73.7 ± 11.8 min (range 60 -110 min), and recovery time is 

22.1 ± 4.8 min (range 15-35 min). 

 

3.1 Objective physiological indices 

 

It can be seen in Fig.3 that core temperature of the participants increased when they 

exposure to hot and humid environment. In the first 35-min exercise period, core temperature 

increased rapidly, and the increment of the core temperature is large. After the first 35 min, 

core temperature of most participants started to decrease and then maintained at a relative 

stable condition. It should be noted that core temperature close to 38.4°C may reach heat 

tolerance limit and possibly result in collapse. The trend of heart rate change of 19 participants 

is similar (Fig.4). Significant differences in core temperature at exhaustion (p < 0.05) were 

found between different fitness groups (Table 2). The average core temperature at exhaustion 

for workers with lower PBF (8%-14%) was 0.3°C higher than that of workers with higher PBF 

(15%- 27%) (Table 2). 

 

During the rest time, the heart rate decreased slightly during the first 5 min and then 

maintained stably. During the period of rebar work, the heart rate increased gradually. The 

mean heart rate of the participants increased by 40 beats /min. Exhaustion is accompanied by a 

rapid heart rate. It should be noted that heat exposure limits and heat disorders may appear 

when heart rate soared or the heart rate overtake 138 bpm [50]. Average heart rate was 12 bpm 

lower for participants without alcohol intake in comparison to the occasional alcohol drinking 

participants, and 19 bpm lower than the average heart rate for usual alcohol drinking 

participants. As for the recovery time, heart rate dropped by 17, 25, and 27 bpm for non 

alcohol drinking, occasional alcohol drinking and usual alcohol drinking participants 

respectively (Table 3). Fig.5 shows that oxygen consumption of participants increased from 
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2-6 ml/min/kg at rest condition to 5-17 ml/min/kg while work. After the bending and fixing 

work, oxygen consumption decreased sharply during the first 5 min recovery time and then 

decreased slowly until approaching the baseline. Respiratory exchange ratio (RER) fluctuates 

between 0.9 and 1.3 during exercise and fluctuates between 0.6 and 0.9 during rest (Fig.6).  

 

3.2 Ratings of Perceived Exertion (RPE) 

 

Heat strain upon entering the hot and humid environment was 1.9 ± 0.7 which corresponds 

to “Easy”. It continued to increase (p<0.05) at each 5 min interval reaching 6.8 ± 0.9 which 

corresponds to “Very hard”. (Fig.7) 

 

3.3 Recovery time 

 

Table 4 shows the pre-work PSI and post-work PSI of the 19 participants. The minimum 

PSI of participants rest on site is identified as a baseline physiological strain. Table 5 shows the 

summary of recovery rate for the 19 participants. It can be seen that 42% of the participants 

achieved 100% recovery within the first 35 minutes. Table 6 shows the summary of 

extrapolated recovery rate and highlights the average rate of recovery at the corresponding time. 

Average PSI values at 5-minute intervals are calculated to construct a model for the rate of 

recovery. Fig. 8 illustrates the relationship of the rate of recovery and the corresponding 

recovery time. It is noted that R-square is a statistical measure of how well a regression 

line/curve approximates real data points [51]. Since R-square of cubic model reaches the 

highest value of 0.997, cubic curve is adopted as the best curve-fitting model and is expressed 

as Eq. (4). 

 

R = 0.001T
3 

- 0.069T
2 

+ 3.174T + 43.764     (4) 

 

where R is rate of recovery (%); T is recovery time (min). 

 

Finally a cumulative curve for determining an optimal recovery time for a rebar worker 

performing tasks in hot weather (WBGT = 30.81 ± 2.07°C) to exhaustion is constructed as 

shown in Fig.8. It can be seen that on average a rebar worker could achieve 94% recovery in 40 

min; 93% in 35 min; 92% in 30 min; 88% in 25 min; 84% in 20 min; 78% in 15 min; 68% in 10 

min; and 58% in 5 min.  

 

4. Discussions 

 

Core temperature may increase when one carries out physically demanding work under a 

hot and humid environment [52]. On the contrary, core temperature may decrease due to the 

sweating effect which brings down the body temperature to a tolerable level [53]. Metabolic 

heat production and the heat environment provoke aggravate physiological strain to exhaustion 

[53]. The current findings of core temperature at exhaustion at 38.4 ± 0.3 °C (range 38.2–38.7 

°C) reinforce the results of previous studies which documented that heat exhaustion is 

associated with the attainment of a critically high core temperature approaching 38.5 °C 
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[54-56]. The great influence of aerobic fitness on heat tolerance time is mediated through the 

core temperature tolerated at exhaustion. A significant difference of 0.3°C between 

participants with different fitness levels in this study echoes the findings of previous studies for 

exercising in heat stress [57]. 

 

Heart rate is a general indicator of stress on the body [52]. Heart rate is the safest index 

because it is the earliest response of physiological strain [58]. Earlier research reported that the 

normal heart rates for performing heavy work in a hot and humid environment were in the 

range of 120-160 beat/min [50, 52]. Our findings of heart rate limits are in agreement with 

these studies. The effects of alcohol on heart rate have been examined by many researchers 

[59-60]. Our study also demonstrated that alcohol-drinking habit results in accelerated heart 

rate when working at a hot and humid environment. This finding provides convincing evidence 

to limit alcohol consumption when working in hot weather. It is recommended that 

construction workers should not consume any alcoholic drink during lunch time as it will lead 

to dehydration and make the workers prone to heat stress.  

 

Observed increase in oxygen consumption is primarily due to prolonged heat exposure 

time and high work intensities. Respiratory exchange ratio (RER) is an index of effort 

adequacy [61]. RER is about 0.7 at rest in room temperature and is approximately 0.9 at rest on 

construction site. This value; however, can exceed 1 during intense exercise as CO2 production 

by the working muscles becomes greater and more of the inhaled O2 gets used rather than being 

expelled [62]. RER between 1.10 and 1.20 is considered to be a good descriptor of maximal 

effort in healthy subjects because an RER increment higher than the value of 1 is related to 

anaerobic metabolism activation [61]. 

 

Clinical experimental studies (with university students) [27] and field studies (with rebar 

workers) were conducted to monitor the physiological response and determine the optimal 

recovery time in hot and humid environment. Both studies provide a reliable safety limit to 

minimize the incidence of exhaustion during exercise/work-heat strain. The current findings 

reveal that  participants reached exhaustion at a core temperature of 38.4 ± 0.3 °C (range 

38.2–38.7 °C) is similar to those of 38.3 ± 0.3 °C (range 38.1–39.0 °C) measured in clinical 

experimental studies [27]. Our findings reveal that heart rate limit of rebar workers (138 ± 4.9 

beat /min) is significantly higher than those of the participants when measured in clinical 

experimental studies (126 ± 3.6 beat /min) [27]. Humans adapt to environmental stressors 

through complex interactions between physiological and psychological factors [63]. 

Differences in individual characteristics affect an individual’s ability to heat stress [64-65]. A 

high level of aerobic fitness or physiological treatments, such as aerobic training and heat 

acclimation, may be less effective in decreasing physiological strain or prolonging tolerance 

during exercise-heat stress [65].  

 

Comparison of recovery rate between clinical experiment and field studies is illustrated in 

Table 7. A statistical technique comparing the population means of two samples indicate that 

they are correlated [66], however, paired sample t-test further illustrates that there is a 

significant difference of recovery rate between clinical experiment and field studies. The 
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results show there is a strong positive correlation of 0.95, P <0.001 (Table 8) and a significant 

difference at t = 4.105, P < 0.005 (Table 9) between the clinical study and the field study. The 

trend of energetic recovery for rebar workers and university students after working to 

exhaustion in a hot and humid environment is similar. However, rebar workers recovered 

considerably faster than university students in a hot and humid environment. Previous study 

suggests that there are many individual differences in the speed of physiological recovery [67]. 

Many studies suggest age, obesity, medication, and anxiety may negatively affect recovery 

[68-70]. Acknowledging that the sample size is limited in the current study, further research 

work should be done to increase the sample size and to identify the fundamental factors 

impacting on one’s recovery ability. 

 

An optimal recovery time can be determined based on the cumulative curve as shown in 

Fig.9, depending on how much percentage of recovery that the rebar workers intend to achieve, 

and how long the recovery time that can be afforded to the rebar workers. Measurement of the 

subjective feeling of fatigue by methods adopted in this study was used to evaluate the level of 

discomfort felt in the physical activity. The RPE of participants remained relatively constant at 

rest. As the high work intensities and prolonged heat exposure time, the RPE of participants 

increased at different pace because of their different physique. 

 

5. Conclusions and recommendations 

 

This study has demonstrated how to determine an optimal recovery time for construction 

rebar workers through monitoring physiological parameters. Physiological strain index (PSI) 

was used as a yardstick or an indicator to determine the rate of recovery. Nineteen rebar 

workers were asked to perform steel reinforcement bar bending and fixing tasks until 

exhaustion and to recover until their PSI returned to the minimum level at start. The average 

PSI values at 5-minute intervals were calculated to construct a curve for the rate of recovery. 

The energetic recovery trend of subjects after exhaustion in hot and humid environment is 

rapidly slowing curve. Earlier research [22] indicated that a 45-year old rebar worker who 

smokes and consumes alcohol occasionally and works at moderate work load intensity and at 

WBGT of 30°C and API of 30 will reach exhaustion in 72 minutes.  To protect the health and 

safety of the worker, adequate rest time should be given to enable the worker to recover from 

the stressed physiological condition. The current study has contributed in providing an 

objective and scientific mechanism to determine an optimal recovery time.  

 

The research team concurs with the recommendations of the prevailing guidelines and 

good practices [15-17] that contractors should: (a) take heed of weather reports; schedule 

regular breaks and rotate duties and worksites for workers; (b) provide shade/shelter and 

cooling device such as cooling fans with atomized water spray; (c) provide sufficient cool 

(10-15°C) drinking water at easily accessible drinking points.  Meanwhile, workers should: (a) 

wear light-coloured, loose fitting, long-sleeved clothing and ventilated helmets; (b) avoid 

working under direct sunlight for prolonged periods of time and working in enclosed area with 

poor ventilation; (c) refrain from consuming alcoholic drinks or drinks containing caffeine 

during a working day and not take excessive alcoholic drinks prior to a working day as these 
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will lead to dehydration and make them prone to heat stress. 

 

It is recommended that (a) workers should not consume alcoholic and caffeinated drink on 

a working day; (b) supervisors and workers should be better educated to enhance their 

awareness of signs and symptoms of heat-related injuries, (c) Additional rest times should be 

introduced in extreme hot weather, frequency and duration of each rest time should be agreed 

among different stakeholders based on the cumulative recovery curve as defined in Figure 9; 

and (d) elderly workers (age > 60) should be refrained from working in extreme hot weather.  

 

Construction management research, unlike other well defined and established disciplines, 

is very often being criticized of having an inappropriate research design and adopting an 

improper methodology. It is generally acknowledged that there is no best way of data collection 

[71]. This study has illustrated how experimentation can be designed and applied in 

construction management research. Although the current study is limited in sample size, 

further research work with enlarged sample size should be launched to verify the current 

findings. 

 

The current study was conducted in normal work time (8:00 am-12:00 noon and 1:00 

pm-6:00 pm). The likelihood of underestimating recovery time at sun peak hours or 

overestimating recovery time in the morning/evening has been noted and recognised as a 

potential limitation. Further studies to capture specific recovery time at certain times of the day 

and modeling work-rest schedules for construction workers working in hot weather are 

envisaged to be conducted. 

 

In the light of the recovery model as well as the heat stress model [22], a set of good 

practices and indices, such as rest time and heat tolerance time, can be developed to ensure the 

health and safety of site personnel working in hot weather. Hence, it is recommended that 

further research on optimizing work-rest schedule for construction workers should be 

performed. This would be of tremendous value in better safeguarding workers’ health and 

safety by reducing the occurrences of heat stress on site.  

 

Workers engaged in different trade activities may have different degrees of susceptibility to 

heat stress. A trade by trade study would better reflect the real situation. Although this study 

applies specifically to the rebar trade, the same research methodology could be extended to 

other trades and to other countries in order to provide a holistic assessment of different trades 

of construction workers in future studies. 
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Table 1 Pre- work and post-work physiological indices (Mean ± SD) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 T-test of core temperature at exhaustion by different fitness groups 

 

PBF Mean St. Dev. t Sig. 

(2-tailed) 

8%-14% 38.6 0.037 

Core temperature 

at exhaustion 

15%- 27% 38.3 0.095 
-5.323 .000 

 

 

 

 

Table 3 ANOVA test of heart rate at different levels of alcohol drinking intake 

 

Heart rate Alcohol drinking 

habit 

Mean St. Dev. F Sig. 

None 80 3.12 

Occasionally 84 2.21 Rest 

Usually 87 4.12 

27.25 .000 

None 103 2.16 

Occasionally 115 2.78 Work 

Usually 122 3.16 

29.12 .000 

None 86 1.99 

Occasionally 90 3.15 Recovery 

Usually 95 3.26 

28.23 .000 

 

Parameter Pre-work Post-work 

Percentage of body fat (%) 17.3 ± 6.1 16.4 ± 5.9 

Resting heart rate (bpm) 71.1 ± 5.7 77.7 ± 7.8 

Resting diastolic blood pressure 

(mmHg) 
74.2 ± 8.7 79.9 ± 5.6 

Resting systolic blood pressure (mmHg) 118.2 ± 7.3 122.8 ± 7.2 

Ratings of perceived exertion (RPE) 1.3 ± 0.6 2.9 ± 0.5 
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Table 4 Pre-work PSI and post-work PSI (each at 5 minutes interval) 

 

Table 5 Rate of recovery (%) for construction rebar workers 

Rate of recovery (%) 
No. 

5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min 

1 73.9% 66.5% 72.4% 77.8%     

2 85.4% 95.5% 89.0% 86.1%     

3 69.5% 76.0% 99.1% 95.5% 86.4%    

4 60.8% 67.6% 71.8% 75.0% 86.5% 92.3% 100.0%  

5 81.0% 82.8% 100.0%      

6 29.9% 41.2% 60.9% 100.0%     

7 32.5% 25.1% 50.7% 78.8%     

8 33.2% 41.8% 66.7% 89.2% 100.0%    

9 58.5% 56.9% 64.2% 67.3%     

10 73.2% 74.9% 89.4% 85.5%     

11 88.2% 100.0%       

12 55.2% 52.9% 57.9% 59.7%     

13 44.1% 52.4% 57.8% 54.8% 69.7% 80.1%   

14 55.7% 60.7%       

15 85.0% 100.0%       

16 42.0% 66.7% 73.4% 71.5% 74.6%    

17 69.3% 100.0%       

18 37.4% 57.0% 76.2%      

19 36.5% 68.8% 100.0%      

Pre-work PSI  

(or PSI min) 
Post-work PSI 

No 

 5 min 
10 

min 

15 

min 

20 

min 

25 

min 

30 

min 

35 

min 

40 

min 

1 1.05 1.42 1.58 1.45 1.35     

2 2.11 2.47 2.21 2.37 2.45     

3 3.19 4.59 4.20  3.22 3.34 3.69    

4 1.86 3.06 2.75 2.59 2.48 2.15 2.02 1.79 1.5 

5 1.49 1.84 1.8 0.62 0.49 0.68    

6 0.49 1.64 1.19 0.80 0.40     

7 1.15 3.54 4.59 2.27 1.46     

8 0.74 2.23 1.8 1.11 0.83 0.56 0.71   

9 2.47 4.22 4.34 3.85 3.67     

10 2.54 3.47 3.39 2.84 2.97     

11 3.21 3.64 2.57 2.62 2.71     

12 2.59 4.69 4.9 4.47 4.34     

13 2.41 5.46 4.6 4.17 4.4 3.46 3.01   

14 1.08 1.94 1.78       

15 3.69 4.34 2.07 3.2 3.21 2.96    

16 2.26 3.47 3.39 3.08 3.16 3.03    

17 2.01 2.9 1.73 1.85 0.67 0.5    

18 0.67 1.79 1.2 0.88      

19 1.13 3.1 1.64 1.09      
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Table 6 Extrapolated rate of recovery (%) for construction rebar workers 

 

Rate of recovery (%) 
No. 

5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min 

1 73.9% 66.5% 72.4% 77.8% 77.0% 78.8% 80.5% 82.3% 

2 85.4% 95.5% 89.0% 86.1% 87.9% 87.5% 87.1% 86.6% 

3 69.5% 76.0% 99.1% 95.5% 86.4% 100.0% 100.0% 100.0% 

4 60.8% 67.6% 71.8% 75.0% 86.5% 92.3% 100.0% 100.0% 

5 81.0% 82.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

6 29.9% 41.2% 60.9% 100.0% 100.0% 100.0% 100.0% 100.0% 

7 32.5% 25.1% 50.7% 78.8% 87.9% 100.0% 100.0% 100.0% 

8 33.2% 41.8% 66.7% 89.2% 100.0% 100.0% 100.0% 100.0% 

9 58.5% 56.9% 64.2% 67.3% 70.1% 73.5% 76.8% 80.2% 

10 73.2% 74.9% 89.4% 85.5% 93.6% 98.8% 100.0% 100.0% 

11 88.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

12 55.2% 52.9% 57.9% 59.7% 61.0% 62.9% 64.7% 66.6% 

13 44.1% 52.4% 57.8% 54.8% 69.7% 80.1% 90.5% 100.0% 

14 55.7% 60.7% 65.7% 70.7% 75.7% 80.7% 85.7% 90.7% 

15 85.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

16 42.0% 66.7% 73.4% 71.5% 74.6% 86.6% 93.6% 100.0% 

17 69.3% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

18 37.4% 57.0% 76.2% 95.7% 100.0% 100.0% 100.0% 100.0% 

19 36.5% 68.8% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Average 58.5% 67.7% 78.7% 84.6% 87.9% 91.6% 93.6% 95.1% 

 

 

 

Table 7 Comparison of recovery rates between clinical experiment and field studies 

 

Recovery rate 
 

5 min 10 min 15 min 20 min 25 min 30 min 35 min 40 min 

Clinical 

experiment 
46.3% 52.9% 60.1% 68.3% 75.7% 82.3% 90.4% 97.1% 

Field studies 58.8% 68.8% 78.1% 84.4% 88.2% 92.1% 93.0% 94.1% 

Difference 12.5% 15.9% 18.0% 16.1% 12.5% 9.8% 2.6% -3.0% 

 

 

 

Table 8 Paired correlations of recovery rates between field studies and clinical experiment 

 

Pair N Correlation Sig. 

Rate of recovery (field studies) & Rate 

of recovery (clinical experiment) 
8 .945 .000 
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Table 9 Paired samples test of recovery rates between field studies and clinical experiment 

 

Paired Differences 

Pair 
Mean 

Std. 

Deviation 

Std. 

Error 

Mean 

t df 
Sig. 

(2-tailed) 

Rate of recovery (field 

studies) - Rate of 

recovery (clinical 

experiment) 

10.550 7.269 2.570 4.105 7 .005 

 

 

 

 

 

Figure 1 Protocol of the research study 

 

 

 

 

 

 

 

 

 

The participant rested in seated posture at room 

temperature of 23°C for 20 minutes 

The participant rested in seated posture at workplace on 

site for 20 minutes 

The participant performed steel bar bending and fixing 

tasks as usual daily work routine until exhaustion 

The participant rested in seated posture on site until their 

physiological conditions fully recovered 
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Figure 2 Frequency distribution diagram of WBGT (°C) 
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Figure 3 Core temperature at different levels of physiological conditions 

 

 

 

 

 

 

Figure 4 Heart rate at different levels of physiological conditions 
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Figure 5 Oxygen consumption at different levels of physiological conditions 

 

 
 

 

 

 

Figure 6 Respiratory exchange ratio (RER) at different levels of physiological conditions 
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Figure 7 Rating of perceived exertion (RPE) at different levels of physiological conditions 
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Figure 8 Curve estimation for the rate of recovery for construction rebar workers 

 

 

Figure 9 Cumulative curve for determining the optimal recovery time of construction rebar workers 

 

 




