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Summary 
 

Since the 1970s, the Efficient Market Hypothesis has dominated financial theory, backed 

by a plethora of empirical research. Yet, the prediction of asset prices continues to be a central focus 

for academics. The introduction of the theory of implicit nonlinear processes in the market has led to 

empirical outcomes that often contradict previous findings. As a result, the quest to identify patterns 

within the stochastic behaviors of short-term and long-term price fluctuations has emerged as a much 

debated and focused area of investigation. 

 

This study primarily employs the "BDS statistic," a concept introduced by Brock, Dechert, 

and Scheinkman in 1987, to investigate the dynamics and traits of the daily closing data of the 

hourly Bitcoin return series and volatility series from January 2021 to December 2021. The goal is to 

determine whether these dynamics align with the phenomenon of nonlinear deterministic chaos. 

Considering the widespread use of the ARMA-GARCH models in the field of finance, this study 

considers the fitting of an ARMA-GARCH model to the return series of Bitcoin, and delves into 

whether said model can adequately account for the fluctuations and dynamics of Bitcoin. 

 

The findings of the study suggest that when the ARMA-GARCH model is fitted to the 

Bitcoin return series, multiple test results indicate a good fit that accounts for autocorrelation and 

heteroskedasticity. Nevertheless, the inaptitude at pinpointing a concrete pattern that elucidates the 

volatility behavior of the time series at hand and the irregularity of the distribution of the dataset 

may have contributed to the inability to fully capture all the characteristics that determine the price 

changes of Bitcoin, indicating the inevitability of the model carrying inherent forecasting risk. From 

the study, we also see that the Bitcoin market does not reflect market efficiency, and the Bitcoin 

volatility series adheres to a nonlinear stochastic process as opposed to a nonlinear deterministic 

process. This indicates that there may be chaotic components that govern the underlying system. 

These findings also show that the price changes of Bitcoin have nonlinear characteristics, while also 

having clustering and long-term memory properties. 

 

 

 

 

 

 

 

 

 



 

 

1. Introduction: 

 

Section 1.1: Research Motivation 

 

Since the 1970s, the efficient market hypothesis has become the mainstream of financial 

theory, supported by numerous empirical studies (Fama, 1970). If the efficient market hypothesis 

holds true, then all models predicting price movements would become ineffective. This is because no 

model can quickly respond to changes in all external variables and achieve efficient predictions. 

However, technical analysis opposing this hypothesis still exists, indicating the presence of 

phenomena that the current hypothesis cannot explain. 

 

With the introduction of new market hypothesis, namely the market's implied nonlinear 

process, the empirical results obtained have diverged significantly from previous findings 

(Scheinkman & LeBaron, 1989; Larrain, 1991; LeBaron, 1991). In these related studies, nonlinear 

dynamics have been found in various financial and economic domains, such as the labor market and 

investment environment in the United States, as highlighted by Brock and Sayers (1988). Therefore, 

attempting to identify the possible regularities embedded in the randomness of market prices in the 

short and long terms has emerged as a much debated and focused area of investigation. The idea of 

testing out this hypothesis has been a recurring theme with each trending financial asset on the 

market, be it the index funds of the 1980s, the exchange-traded funds of the 1990s, or the structured 

products, such as collateralized debt obligations of the early 2000s. 

 

As of the beginning of the 2010s, cryptocurrencies have surfaced as a conspicuous and 

electrifying asset class, commanding substantial scrutiny in the vast expanse of global finance. With 

decentralized digital currencies like Bitcoin and Ethereum skyrocketing in popularity, both 

governments and financial institutions alike have begun to recognize their significance. The 

decentralized essence and potential for substantial gains have enraptured the attention of investors, 

enthusiasts, and speculators alike. The assessment of cryptocurrencies has grown increasingly 

pivotal, given their inherent capriciousness and the myriad of applications they proffer. Scrutinizing 

market trends, regulatory breakthroughs, and technological strides assume a paramount role in 

apprehending the capricious intricacies of the cryptocurrency ecosystem. 

 

Out of the many cryptocurrencies available on the crypto market, Bitcoin, an innovative 

digital currency, has been at the very forefront of the revolution of the financial field ever since its 

inception in 2009. Launched by the enigmatic individual or collective known as Satoshi Nakamoto, 

Bitcoin has the notion of decentralized, peer-to-peer transactions built upon blockchain technology. 

Its multifaceted attributes, momentous historical journey, and profound impact within the financial 

domain have fundamentally transformed our perception and interaction with monetary systems. 

 

Bitcoin operates as a decentralized cryptocurrency, emancipated from the clutches of 

central authorities such as banks or governments. It thrives on the blockchain, which meticulously 

documents all transactions atop it, ensuring unparalleled transparency, impregnability, and 

immutability. The verification of these transactions falls upon a group of network participants, 

known as miners, who harness computational power to decipher and append fresh blocks to the 

blockchain. In recognition of their endeavors, miners are rewarded with freshly minted bitcoins. 

 

The core essence of Bitcoin lies in its unparalleled capacity to transcend the inherent 

boundaries of traditional financial structures. By obliterating the more traditional intermediaries, 

such as banks, Bitcoin empowers direct peer-to-peer transactions, greatly reducing transaction fees 

and processing durations. Furthermore, it affords a modicum of pseudonymity, employing 

cryptographic addresses rather than personal information to identify users. This particular facet has 

attracted privacy-seeking individuals and those ensnared within countries harboring restrictive 

financial systems. 

 

The history of Bitcoin is punctuated by momentous milestones and pivotal events. Initially, 



 

 

it garnered traction predominantly among tech-savvy aficionados. Over time, Bitcoin's popularity 

skyrocketed, engendering volatility in its value and spurring speculative trading. In 2017, its worth 

reached unprecedented heights, with a solitary bitcoin surpassing the $19,000 mark before 

experiencing subsequent corrections. The impact of Bitcoin upon the financial field is momentous 

and far-reaching. As a decentralized currency, it perpetually challenges the orthodox banking system 

by presenting an alternative store of value and medium of exchange. The finite supply of 21 million 

bitcoins has led some to perceive it as a digital equivalent to gold. Consequently, individuals and 

institutions have pondered allocating a fraction of their investment portfolios to Bitcoin, viewing it 

as a bulwark against inflation or economic instability. 

 

Bitcoin has fostered financial inclusion by extending banking services to the unbanked or 

underbanked populations. Through the utilization of smartphones, individuals can actively 

participate in the global economy and partake in cross-border transactions while foregoing the need 

for a conventional bank account. This development holds particular significance for denizens of 

developing nations, where accessibility to financial services remains constricted. The advent of 

Bitcoin has also sparked a surge of innovation in the form of blockchain technology. The underlying 

blockchain infrastructure has transcended the confines of cryptocurrencies, enticing various 

industries to explore its boundless potential. Blockchain promises secure, transparent, and efficient 

record-keeping, supply chain management, smart contracts, and beyond. Its tendrils extend far 

beyond the realm of finance, permeating sectors such as healthcare, logistics, and governance. 

 

Bitcoin confronts a variety of challenges. Its price volatility has instigated concerns 

pertaining to market manipulation and the latent threat of financial instability. Regulatory 

frameworks for cryptocurrencies remain in a state of flux, as governments worldwide grapple with 

the arduous task of classifying and regulating Bitcoin and other digital assets. The energy 

consumption associated with Bitcoin mining has also garnered criticism due to its environmental 

impact, prompting deliberations on the necessity for sustainable alternatives. Bitcoin has emerged as 

a transformative force within the financial arena, introducing the revolutionary concept of 

decentralized currency and blockchain technology. Its attributes of decentralization, transparency, 

and pseudonymity have posed formidable challenges to conventional financial systems, igniting 

discourse on the future trajectory of monetary systems. The significance, historical voyage, and 

pervasive impact of Bitcoin extend has grown and rooted itself as one of the major players of the 

financial sector.  

 

Section 1.2: Research Objectives 

 

Initially, the introduction of cryptocurrencies was aimed at creating decentralized and 

transparent financial systems. However, as reported in the working paper by the Bank of 

International settlements in November 2022, staggering “estimations that 73-81% of global investors 

have likely lost money on their crypto investment” (Raphael, 2022). In addition, in the past couple of 

years, global regulatory bodies have stringently kept the cryptocurrency market capitalization under 

control, predicting the potential cash flow to be directed into the speculative trading of 

cryptocurrencies in the future. These attempted interferences in the forms of regulations and 

monitors within the financial field have caused ripples and shocks throughout the cryptocurrency 

market. Amidst these recent international developments and shifts in the global financial field, this 

study sets out to examine the characteristics of the hourly closing data of Bitcoin. The purpose of 

this paper can be categorized into brief summaries of the research objectives which are discussed in 

the following paragraphs. 

 

The first objective is to understand the properties Bitcoin time series through analyzing the 

trends, seasonality, and volatility clustering. Tests on whether the fluctuations of the hourly Bitcoin 

closing price series conforms to the efficient market hypothesis would also be conducted. If the 

behavior of the hourly Bitcoin closing series were to conform to the efficient market hypothesis, as 

mentioned before in the research motivation in Section 1, any model that aims to predict price 

fluctuations of Bitcoin would be rendered ineffective. If the behavior does not conform to the 



 

 

efficient market hypothesis, it would indicate that the past bitcoin prices hold certain components 

and factors that affect the future price of Bitcoin and its fluctuation, which can assist in formulating a 

prediction model. In this were the case, we will further study the characteristics of the Bitcoin price 

fluctuations. 

 

The second objective is to verify the possible existence of potential non-linear processes in 

the Bitcoin time series. This would be conduct by fitting an appropriate ARMA-GARCH model to 

first capture and eliminate the linear dynamics and volatility patterns in the Bitcoin time series. Also, 

various tests assessing the adequacy of the fit would be conducted. When attempting to dissect a 

time series for its characteristics, it is necessary to distinguish whether the relationship is linear or 

non-linear. This will aid in the fitting of the model and help us better understand the underlying 

processes, reduce the possible chance of overfitting or underfitting, and choosing the most effective 

tool for analyzing the time series. This study would like to analyze if an ARMA-GARCH model has 

effectively captured all the dynamics and accounted for the fluctuations of the time series. 

 

Last, we test for the possibility of chaos phenomenon existing within the residuals and the 

volatility of the hourly Bitcoin return series. The chaos phenomenon can be captured with a 

meticulous series of tests, accounting for whether the series has long-term dependency and 

comparing their diffusion rate to a geometric Brownian motion. If the mentioned time series indeed 

exhibit properties of chaos, an attempt will be made to identify the number of dynamical correlated 

variables for this fluctuation pattern in order to establish an idea of what the underlying system may 

look like. If no chaotic phenomenon can be picked up, then it would indicate that the fluctuating 

behavior of the time series cannot be effectively predicted by a single model or system. 

 

Section 1.3: Data 

 

Before looking at the data chosen, the reasons and significance as to why this particular 

time frame is selected will be explored. Bitcoin, by nature, is a rather young and highly speculative 

asset. Its volatility is driven by various factors including, but not limited to, regulatory news, market 

sentiment, technological advancements, and macroeconomic trends, quite similar with other high 

volatility financial assets on the market. These diverse factors introduce complex, nonlinear 

dynamics into the Bitcoin market, and to a large extent, the overall cryptocurrency market. Studying 

these can highlight the specific conditions or factors that trigger major price swings. The enigmatic 

undulations in Bitcoin's price allude to the possibility that certain pivotal catalysts do not adhere to a 

rudimentary, linear correlation with its value. This enigmatic behavior intimates that the Bitcoin 

market responds to specific stimuli in an exponential or other intricately convoluted mode. The 

intricate dynamics of Bitcoin's price movements imply that the underlying forces at play are far from 

straightforward and call for a deeper understanding of the market. 
 

The hourly data is specifically chosen to capture the intraday volatility of Bitcoin. Given 

the global nature of the Bitcoin market, which operates 24/7, news events or market sentiments can 

shift drastically within a day, leading to rapid changes in prices. Opting for an hourly time series 

presents a vivid and dynamic portrayal of Bitcoin's price fluctuations. By leveraging hourly data, the 

abundance of data points gained allows for a more intricate and nuanced understanding of the 

volatility in Bitcoin prices compared to daily, weekly, or monthly data, potentially providing more 

data points and thus resulting in a richer and more detailed perspective on the fluctuations in Bitcoin 

prices. The utilization of shorter timescales enables the capture of swift shifts in investor sentiment, 

abrupt market responses to news events, and other intraday dynamics which can be better captured 

and analyzed using hourly data while eluding detection in longer timescales. Shorter timescales can 

capture rapid changes in investor sentiment, sudden market reactions to news events, and other quick 

fluctuations that may get smoothed out or unnoticed in longer timescales. 

 

As stated before, a core concept of chaos theory lies in finding order in seemingly random 

data. Financial markets frequently exhibit non-linear properties, signifying that the outcome is not 

simply proportional to the input. Likewise, we can compare these chaotic behaviors, which can be 



 

 

seen as a more complex expression of nonlinearity, of the traditional financial market to that of the 

Bitcoin and cryptocurrency market, further suspecting a similar process to be at play, where minute 

alterations in the initial conditions yield astounding and unforeseeable results. When it comes to 

Bitcoin, comprehending these characteristics becomes pivotal for constructing more precise and 

robust prediction models. Financial time series, akin to the fluctuating movements of Bitcoin prices, 

frequently reveal themselves as non-linear and chaotic. Being able to grasp these signals would be 

the most importance piece in crafting more refined forecasting models. Comprehending the 

dynamics of such turbulent systems can also uncover the underlying processes that lead to the 

changes in the asset's value. 

 

As for the year component, 2021 is a particular interesting year for Bitcoin considering all 

that has happened. The mercurial price of Bitcoin in 2021 exhibited extraordinary fluctuations, with 

numerous momentous surges and plunges. Delving into this year's data could grant unparalleled 

revelations about the intricate interplay between specific occurrences and the broader economic 

events, and their profound influence and implications on the market. The year 2021 was teeming 

with impactful events that left an indelible imprint on Bitcoin's price, ranging from Tesla's 

entanglement to China's crackdown on crypto mining. Scrutinizing the chaos and non-linear 

dynamics in Bitcoin's price during this period could yield invaluable insights into how these external 

events and factors metamorphose into dramatic price gyrations within the cryptocurrency market. 

The year started off with low closing prices of around 30000 in January, which can be in part be 

attributed to the effects of the raging pandemic, then skyrocketing to an all-time high in April, to 

nearly 65000. Bitcoin will later in late May fall all the way back to 35000, and then making a 

comeback in October, successfully breaking through the 65000 mark. These large fluctuations in 

price makes 2021 a prime candidate for studying the more sensitive characteristics of Bitcoin to 

shocks in the environment and how the price of Bitcoin is affected by these shocks. The data 

selected for the analysis of this study are the hourly closing prices of Bitcoin from January 1, 

00:00:00, 2021 to January 1, 00:00:00, 2022, coming to a total of 8760 observations. These 

observations were taken from the database of Bitstamp, the unit in use for the pricing of Bitcoin is 

the US dollar. 

 

2. Prior Research: 

 

This chapter consists of two sections. In the first section, we provide an overview of chaos 

theory, the implications, and sum up the properties of it from prior research. Since the number of 

studies that include the applications of chaos theory to cryptocurrency remain relatively low, the 

second section would focus mainly on reviewing and discussing empirical studies related to chaos 

theory in stock markets, through which we may get a sense of how the techniques can be applied to 

the hourly Bitcoin time series. 

 

Section 2.1: Chaos Theory 

 

Chaos describes a seemingly random non-linear deterministic process that captures the 

behavior of a variable over a period of time. Despite its name and its phenomenon seeming to be 

random, it is actually a deterministic phenomenon, meaning that if all the underlying pattern is 

known, the behavior of the variable in question can be fully explained. Chaos theory got its name 

because it studies these seemingly random or chaotic situations which are, in fact, governed by 

underlying patterns and deterministic laws. To the casual observer, the behavior may appear 

disorderly and unpredictable, but it can be mathematically described by deterministic equations. In 

contrast, values generated by a random variable cannot be accurately predicted. Some crucial aspects 

of chaos theory include high sensitivity to initial conditions, inherent deterministic nature, fractal 

geometrical, and attractors. 

 

High sensitivity to initial conditions is probably the most recognized aspect of chaos theory, also 

frequently known as the butterfly effect. This concept suggests that a small change, such as a 

butterfly flapping its wings in Brazil, can ultimately set off a chain of events leading to a significant 



 

 

occurrence, like a hurricane on the other side of the planet. Such implications when applied to the 

fields of mathematics or physics systems would indicate that minor changes in initial conditions can 

lead to significantly divergent results, rendering long-term prediction impracticable in general terms. 

 

The deterministic nature of chaos phenomenon is presented in the sense that despite their 

seemingly random behavior, they follow deterministic rules that are clearly defined, as stated earlier. 

In other words, the future states of the system at hand, given a certain state, are entirely determined 

by the system's governing laws. The seemingly randomness of the process and outcome is not a 

product of randomness within the system’s governing laws, but of the system's high sensitivity to 

initial conditions. 

 

As for the fractal geometrical properties of the chaos phenomenon would best be 

understood in mathematics, where a fractal is a geometric construct that displays self-similarity, 

meaning it maintains the same appearance regardless of scale. If one were to zoom into a fractal, he 

would observe the repetition of similar patterns at every level of magnification. Many chaotic 

systems display fractal behavior where the system's pattern recurs consistently across various scales. 

 

The attractors of chaos phenomenon refer to a set of numerical values within a dynamic 

system to which a system tends to evolve, irrespective of its initial state. Chaotic systems often 

exhibit what are known as strange attractors, distinct from simple point and periodic attractors. A 

strange attractor possesses a fractal nature, and its fractal dimension does not align with an integer 

value. The above-mentioned characteristics of chaos theory have attracted many a scholar from 

various fields who are interested in applying the theory to their respective domains of expertise. 

 

Within literatures on business cycles, two scenarios are mentioned that may cause 

variations in future values. One is the Box-Jenkins time series model, which assumes stable but 

unbalanced economic conditions. When the economy is subject to external shocks such as wars or 

natural disasters, they are reflected in future values. In this model, certain dynamic economic 

behaviors are a response to these external shocks. The other scenario is chaos growth theory, a 

non-linear dynamic economic theory that suggests economic fluctuations originate from within the 

system itself. Since chaotic dynamics are inherently non-linear processes and exhibit more complex 

patterns compared to linear models, researchers turned to this area of study after the significant price 

volatility in the U.S. stock market on October 19, 1987, to seek explanations for large-scale asset 

price movements (Hsieh, 1991). 

 

In this study, we illustrate the chaos processes using the logistic growth equation, which is 

a representative equation. The equation is as follows: 

 

Xt+1 = kXt ( 1 – Xt ) 

 

0 < Xt <1 , 0 < k < 4 

 

By exploring this equation, we investigate and summarize the properties of chaos. The 

equation as shown above describes the path of the variable X over time, where Xt+1 is a function that 

includes the previous value Xt and the parameter k. The value of X is a real number between 0 and 1. 

The steepness of the parabola is determined by the sole parameter k, referred to as the "tuning 

parameter". A larger value of k leads to a greater absolute rate of change in X. When the tuning 

parameter k is less than or equal to 3, regardless of the initial value, the system reaches a stable 

equilibrium. 

 

To illustrate this, consider the case where k = 3 and the initial value X0 = 0.20. After 500 

time units, the logistic growth curve converges to a stable equilibrium point (see Figure 2-1). In the 

figure, the parabola represents the quadratic equation Xt+1 = 3Xt (1 – Xt), and all values of Xt and 

Xt+1 fall on this curve. The 45-degree line represents the set of points where Xt+1 = Xt, which 

corresponds to the condition of reaching a stable equilibrium. Point B in the figure represents the 



 

 

 

 



 

 

initial value X0 = 0.20, which reacts to the function and yields a response value of 0.48. Point C 

represents the transformation of the response value of X0 to the input value of X1. By applying the 

function again, we obtain another response value of 0.7488, represented by point D. By repeating the 

above process, we obtain points E and F. Through continuous iterations, the equation eventually 

converges to a point in the figure, which has a value of 2/3 and serves as the stable solution for this 

equation. 

 

When k exceeds 3, the solution of the function becomes an unstable equilibrium point. The 

variable oscillates between two points, creating a cyclic pattern. As k increases, the system generates 

more unstable equilibrium points. The trajectory of the function exhibits a cycle of four points, then 

eight points, and continues to increase until it forms a cycle of 2n points where (n = 1, 2, 3, ...). This 

process of increasing cycles is referred to as bifurcation (May, 1976). 

 

When the value of k reaches 3.57, the system enters the range where chaos may occur 

(3.57 < k < 4). Within this range where there may be chaos, the function exhibits two types of 

trajectories. One is a cyclic oscillation with an infinite number of points, and the other is a path 

without periodicity. 

 

Figure 2-2 presents an example of non-periodic chaos. No matter how many times this 

equation is executed, it is impossible to generate the same value of Xt. If these output values are 

plotted in a time series graph, they may be mistaken for values generated by a random process. 

However, this pattern does not include any random components; its coefficients are entirely 

determinable through the underlying equation. Feigenbaum (1983) demonstrated that the value of k 

is independent of the curve's shape. As long as the function curve y = f(x) has a local maximum, 

when k approximates 3.570, the curve's trajectory exhibits chaotic behavior. In other words, the 

value of k serves as a universal constant in nature. 

 

Summarizing what we get from the above, the properties of chaos can be summarized as the 

four following points: 

1. Chaos is a non-linear process. 

2. Chaos is highly sensitive to initial values and tuning parameters. 

3. Chaos cannot produce identical output values and may have numerous stable equilibrium 

points. 

4. The correlation dimension of chaos is not constant (Grassberger & Procaccia, 1983). 

 

Section 2.2: Applications of chaos theory on stock markets 

 

In this section, the main focus is to investigate the empirical results obtained from the 

application of various testing tools related to chaos theory in stock markets and cryptocurrency 

markets, understanding the thought process behind these studies. 

 

Greene and Fielitz (1977): 

This study primarily applied the rescaled range analysis method to examine the existence 

of long-term dependence in daily common stock price returns. The study used data from 200 

common stocks listed on the New York Stock Exchange, specifically analyzing the daily composite 

returns from December 23, 1963, to November 29, 1968. Each stock had approximately 1220 data 

samples. The study estimated the Hurst value of the sample stocks using time lags of 10 and 50 units. 

The number of daily values of stocks with a lag of 10 and 50 units that exceeded 0.5 was 164 and 

132, respectively. Most of the Hurst values were above 0.5, tentatively indicating positive 

dependence in the returns of these 200 stocks. However, when examining the Hurst value calculated 

with a lag of 50 units, approximately two thirds of the stocks had a lower Hurst value compared to 

the Hurst values calculated with a 10 unit lag. This outcome is as expected, where the increase in 
lags will decrease the Hurst value (Mandelbrot, 1971). Furthermore, the study calculated the 



 

 

first-order autocorrelation coefficients for these 200 stocks, and it was found that the absolute values 

of the coefficients for 160 stocks were below 0.1. These results collectively demonstrate the 

presence of positive and long-term dependence in the returns of these 200 stocks, thereby refuting 

the efficient market hypothesis (Hurst, 1951) ; (Mandelbrot, 1971). 

 

Peters (1989): 

This study also employed the rescaled range analysis method to explore the potential 

underlying structures in stock returns, bond returns, and the relative returns between stocks and 

bonds. The study examined the monthly returns of the S&P 500 from January, 1950 to June, 1988, 

along with 30-year treasury bonds, resulting in a total of 463 monthly data points. When compared 

to a random walk whose Hurst value is 0 and has no dependency on past values, the S&P 500 series 

had a Hurst value of 0.611 and a past value dependency of 0.168; the 30-year treasury bond series 

had a Hurst value of 0.614 and a past value dependency of 0.215; the relative returns between stocks 

and bonds series had a Hurst value of 0.658 and a past value dependency of 0.245. The number of 

years past for past effects to dissipate are 38 years, 38 tears, and 6 years for the S&P 500 series, the 

30-year treasury bond series, and the relative returns between stocks and bonds series, respectively. 

The estimated Hurst exponent values for the capital market were all above 0.5, indicating that the 

behavior of these markets deviated from a random walk process. 

 

Blank (1991): 

This study primarily focused on investigating the presence of chaos in the futures market 

by utilizing the correlation dimension and Lyapunov exponent analysis methods. The S&P 500 index 

and soybean prices were chosen as the subjects of analysis. Due to the absence of reference statistics 

for both the correlation dimension analysis and the Lyapunov exponent analysis, the study used 100 

sequences of randomly generated numbers from different distributions as comparative reference 

values for the mean correlation dimension analysis and Lyapunov exponent analysis of the sample 

sequences. The empirical results revealed that the correlation dimension values for the long-term 

S&P 500 index and soybean prices ranged from 2.3 to 2.7 and from 1.7 to 2.2, respectively; for the 

short-term S&P 500 index and soybean prices ranged from 1.5 to 1.7 and from 1.3. We can infer 

from this, as since the correlation dimension does not increase with the embedding dimension, all 

four of these futures support a non-linear process. Additionally, the Lyapunov exponent analysis 

values for both the S&P 500 index and soybean prices were both greater than zero, indicating the 

presence of chaos in these processes. 

 

Hsieh (1991): 

This study aims to investigate whether there is chaos in the volatility of stock returns from 

the beginning of 1963 to the end of 1987. The study initially conducted hypothesis testing assuming 

independent and identical distributions using the BDS statistic. The results provided sufficient 

evidence to reject the null hypothesis, indicating the presence of dependence among the data. 

However, rejecting the assumption of independent and identical distributions does not necessarily 

negate the efficient market hypothesis, as factors other than chaos can contribute to the observed 

dependence. Therefore, the study further analyzed factors such as non-stationarity, chaos, and 

nonlinear stochastic processes that could potentially contribute to the observed dependence. The 

findings indicated that the rejection of the assumption of independent and identical distributions was 

not due to policy changes or chaos but rather the presence of conditional heteroskedasticity in the 

data. 

 

Tong and Chen (2022) 

This study aims to analyze the price volatility of cryptocurrencies, particularly Bitcoin, 

exploring the impact of bullish and bearish information on cryptocurrency price fluctuations while 

also studying the long-term unpredictability and cyclical trends in cryptocurrency prices. It examines 

Bitcoin's daily closing prices from 2013 to 2021 and established that the price volatility of Bitcoin 

and other cryptocurrencies demonstrates non-linear dynamism, and does not conform to the random 

walk hypothesis. The study found that the fluctuations share a positive time correlation, with both 

optimistic (bullish) and pessimistic (bearish) information exerting approximately equal influence on 



 

 

price swings. Prices of cryptocurrencies reflect cyclical patterns, innate long-term unpredictability, 

and exhibit traits of fractals and chaos. The characteristics of clustering and persistence were noted, 

pointing to their inherent unpredictable and fractal traits in the long term. The investigation also 

highlighted a negligible leverage effect in Bitcoin, attributing price variations mainly to fundamental 

transactions and both bullish and bearish news. The dynamics of the price are complex and 

non-linear in nature. The study's findings serve as a warning to prospective investors to avoid 

speculative trades without a comprehensive grasp of the chaotic attributes of the cryptocurrency 

market. It also advises regulators to prudently handle cryptocurrency transactions and strive to 

comprehend the new attributes and laws of the market from a non-linear standpoint. 

There are many other applications of chaos theory, and we have provided just a few relevant 

references that are closely related to this study. It is important to note that the results obtained may 

vary depending on the subject of analysis and the period studied. 

 

3. Research Methods 

 

In this chapter, we will systematically explain the various testing tools employed in this research, 

divided into five sections. The first section provides an introduction to the fundamental 

characteristics and functions of the statistical measures jointly proposed by Brock, Dechert, and 

Scheinkman. The second and third sections elucidate methods for testing stability and 

autocorrelation. The fourth section describes a tool for examining market efficiency, specifically the 

rescaled range analysis method. Lastly, the fifth section introduces a dimensional analysis approach 

for assessing data interrelationships, and extensively discusses the relationship between the results 

obtained from this method and the phenomenon of chaos. 

 

Section 1.1: Brock – Dechert – Scheinkman test 

 

The BDS (Brock, Dechert, Scheinkman) evaluation, titled after its authors, is a methodical 

technique to identify nonlinearity and dependence within a sequence of data points. In essence, it 

investigates whether a data series exhibits any characteristics of chaotic behavior. Typically, the test 

is applied to assess the proposition that the residuals from an ARMA (Autoregressive Moving 

Average) model adhere to the independent and identically distributed (i.i.d.) principle. 

 

The null hypothesis of the BDS test is that the time series is independent and identically 

distributed. If we reject the null hypothesis, this suggests that there is some form of structure in the 

data - this could be linear or nonlinear dependence. 

 

The BDS test is a form of a correlation integral test. It compares the likelihood of pairs of 

points being close in the m-dimensional space at different embedding dimensions. If the data is 

independent, the proportion of close points should not change with the embedding dimension. 

 

To compute for the BDS test, we first define vectors Xt
m and Xs

m with observations of T 

and a given embedding dimension of m: 

 

Xt
m = ( Xt , Xt+1 , . . . , Xt+m-1 ) 

 

Xs
m = ( Xs , Xs+1 , . . . , Xs+m-1 ) 

 

 

We then compute the correlation sum evaluated as the percentage of all vector pairs ( Xt
m , 

Xs
m ) which exist within an ε distance of each other with the following equation: 

 

Cm , T ( ε ) = Xt
m , Xs

m ) * 2 / ( Tm ( Tm – 1)) 

 

In this formula, Iε ( Xt
m , Xs

m ) equals 1 when ||Xt
m – Xs

m|| < ε, and 0 otherwise. ||Xt
m – 

Xs
m|| denotes the Euclidean norm. 



 

 

According to equation above, the overall dimension is a measure of the extent to which the 

distances between data sets are less than a certain value ε. Therefore, the choice of m and ε values 

will affect the magnitude of the overall dimension. For a given m value, a smaller ε value 

corresponds to a smaller number of data points falling within this interval distance, and vice versa 

(Hsieh, 1989). defines the ε value as a multiple of the standard deviation of the sequential data. The 

standard deviation multiples he used are 1.50, 1.25, 1.00, 0.75, and 0.50. This study will refer to 

Hsieh's standard deviation multiples as the criterion for selecting the ε value. 

 

The BDS statistic is calculated as the difference in the natural log of the correlation sums 

for embedding dimensions m and m-1, multiplied by the square root of the number of observations. 

The equation of which looks like this: 

 

BDS = * (log(C(m , ε )) - log(C(m-1 , ε))) 

 

If the time series is i.i.d., then the BDS statistic has an asymptotic standard normal 

distribution under certain conditions. This is used to form a test of the null hypothesis of i.i.d. 

 

Brock et al. (1987) applied Monte Carlo simulation and found that sample distribution can 

provide a better approximation to population distribution under the following conditions: (1) when 

the data size is equal to or greater than 500 observations, (2) when the dimension does not exceed 5, 

and (3) when the value is within the range of 0.5 to 2.0 times the standard deviation. Additionally, 

BDS exhibits increasing test power towards 100% as the sample size increases for seven linear and 

nonlinear models, namely AR(1), MA(1), tent map, threshold autoregression, nonlinear moving 

average, autoregressive conditional heteroscedasticity (ARCH), and generalized autoregressive 

conditional heteroscedasticity (GARCH). Brock et al. further suggest that except for ARCH and 

GARCH models, BDS maintains high testing power regardless of whether the data used are the 

original series or the residual series. Moreover, Hsieh (1991) demonstrates that the BDS test 

possesses good testing power for rejecting the i.i.d assumption in the following four types of 

possible characteristics: linear dependence, non-stationarity, chaos, and nonlinear stochastic process. 

 

Therefore, to test for the presence of nonlinear relationships in the data, Baumol and 

Benhabib (1989) suggest pre-whitening the data by estimating the residuals of a linear model before 

conducting the BDS test. If the BDS statistic rejects the i.i.d. assumption, it indicates the presence of 

nonlinear phenomena in the data. 

 

Regarding nonlinear testing, there are other methods such as Tsay (1986) test and Engle 

(1982) test. Tsay's test exhibits worse results than the BDS test and Engle's test for ARCH and 

GARCH models. Engle's test on the other hand is more suited for testing ARCH models. The BDS 

test yields better results for general types of nonlinear models. Hence, in this study, the BDS test will 

be used to examine the presence of nonlinear relationships in the data. 

 

Section 3.2: Rescaled Range (R/S) method for the Hurst Exponent 

 

Through extensive research on many time series data, it has been observed that higher 

values in the early period tend to be followed by higher values in the later period (Mandelbrot & 

Hallis, 1969), as seen in phenomena such as weather data (Hurts, 1951) and futures contract prices 

(Helns et al., 1984). This phenomenon is commonly referred to as persistence. However, persistence 

is not caused by general sequence correlation but rather by a nonlinear phenomenon characterized as 

"long-term statistical dependence with infinite memory." This concept is indicative of the presence 

of nonlinear phenomena (Mandelbrot, 1972). 

 

The efficiency of a market and the existence of persistence in market volatility are directly 

related. Previous studies generally assume that stock returns exhibit finite memory effects, where 

dependence decreases rapidly as the time lag increases. Under this assumption, coupled with the fact 

that the autocorrelation coefficients of the first several lags are very close to zero, the volatility 



 

 

process of the stock market is approximated as a random walk (Fama, 1970). 

 

To obtain the Hurst exponent through the rescaled range method, we first set a stationary 

timeseries of T observations as such: 

 

Xt = ( Xt , Xt+1 , . . . , XT ) 

 

 

Then we calculate the partial sum of the first d deviations from the mean can be given by 

the following equation 

 

R( t , d ) = max {X*( t + u ) – X* (t) – (u / d) [X*( t + d) – X*( t )]} 

        - min {X*( t + u ) – X* (t) – (u / d) [X*( t + d) – X*( t )]} 

 

Then we compute the standard deviation, which is the S component of the rescaled range, with the 

following equation: 

 

S2 (t , d) = [ 2 (t + u) / d ] – [  (t + u) / d ]2 

 

And thus, we get: 

 

R/S = R(t , d) / S( t , d) ,  3  

 

In the research conducted by Wallis and Matalas (1970), two feasible methods were 

proposed for dealing with time lags and starting periods: F Hurst and G Hurst. F Hurst calculates the 

R/S values for all combinations of different starting points and time lags, while G Hurst calculates 

the R/S values for a specific time lag and starting period of no more than 15 observations. The study 

indicated that although F Hurst provides smaller biases than G Hurst, using G Hurst helps reduce 

computational complexity. When the sample size is 1000 and the minimum time lag is 50 

observations, the calculated H value using G Hurst (GH50) is biased by only approximately 0.02 on 

the upper side. Furthermore, the bias decreases as the sample size increases. In this study, 

considering the total of 8760 observations in the dataset, we follow the G Hurst method in choosing 

the time lag and starting period to reduce computational complexity. It is anticipated that using G 

Hurst to calculate the Hurst value will result in a bias smaller than 0.02 (Mandelbrot, 1972). 

 

The implications of the Hurst value can be summarized into the following: 

1. When the Hurst value = 0.5, the series at hand shows it to be a Geometric Brownian Motion or 

has finite memory. 

2. When the Hurst value > 0.5, the series at hand shows trending behavior with positive long-term 

dependence, or in other words, persistence. 

3. When the Hurst value < 0.5, the series at hand shows signs of either being mean reverting or 

stationary, with negative long-term dependence. 

 

Section 3.3: Correlation Dimension 

 

In section 1, we mentioned that the overall dimension is used to measure the degree to 

which distances between data sets are smaller than a certain value. In this section, we will extend the 

concept of overall dimension and briefly explain the calculation process of correlation dimension, as 

well as the relationship between correlation dimension and chaotic phenomena. 

 

Grassberger and Procaccia (1983) define the correlation dimension of a sequence {Xt} as 
"the general logarithm of the overall dimension divided by the general logarithm of ε," which in 



 

 

equation is as the following: 

 

Vm =  log Cm , T (ε) / log (ε) ] 

 

where Vm represents the correlation dimension of an m dimensional vector. Brock and Sayers (1988) 

state that the term "dimension" is used to measure the complexity of a system. Therefore, the 

correlation dimension can be seen as a measure of the system's degrees of freedom. For example, the 

dimension of a point is zero, the dimension of a line is one, and the dimension of a cube is three. In 

the case of completely unordered white noise processes, the dimension of which would be infinite. 

Thus, if the Vm values of a time series do not increase with the increase in m, indicating the 

existence of a limiting value V for Vm, then it means that the series can be measured with fewer 

variables (approximately equal to V), and it may exhibit chaotic phenomena. A chaotic system must 

have a positive and finite V (Frank et al., 1988). However, Casdagli (1991) points out that a 

high-dimensional deterministic system is indistinguishable from a random system. 

 

Other common detection tools for assessing whether a sequence exhibits chaotic 

phenomena, besides the aforementioned correlation dimension analysis, include the Lyapunov 

exponent (Holf et al., 1985) and the Kolmogorov entropy (Grassberger & Procaccia, 1983). However, 

these methods require prior knowledge or assumptions about the functional form of the sequence's 

trajectory, making practical calculations difficult. Therefore, this study employs the relatively 

simpler method of the correlation dimension analysis. 

 

4. Empirical Analysis: 

 

In this chapter, several testing methods mentioned in the previous chapter will be applied to 

sequentially examine whether the behavior of Bitcoin volatility can be explained by a certain number 

of variables. The entire analytical framework is based on the BDS statistic, with separate sections 

dedicated to each aspect. In Section 1, the BDS statistic is first employed to test whether the raw data 

of the hourly Bitcoin closing price series adheres to the assumption of independent identically 

distributed. If the null hypothesis is rejected, as suggested by Hsieh (1991), this phenomenon could 

be caused by four processes: nonstationary, linear dependence, chaos, and nonlinear stochastic 

processes. Therefore, in the following sections, this study will conduct corresponding tests for the 

aforementioned four potential factors in the hourly Bitcoin closing price. 

 

Section 4.1: Testing for Independent Identically Distributed 

 

This study tests the hourly closing prices of Bitcoin starting from January 1, 00:00, 2021 to 

January 1, 00:00, 2022. First, a test is conducted for the independent identically distributed property 

of the raw data. Let the hourly closing prices of Bitcoin be denoted as series {Xt}, where (X1, X2, ..., 

X8760), X1 represents the first recorded closing price on January 1, 00:00, 2021, and X8760 represents 

the closing price on January 1, 00:00, 2022, which is 46650.66 USD. As for the selection of the ε 

value, we follow the recommendations of Brock et al. (1987), which are 0.5, 1.0, 1.5, and 2.0 times 

the standard deviation of the series. The dimension m ranges from 2 to 5. Under the null hypothesis 

H0, the sequence is independent and identically distributed, while under the alternative hypothesis H1, 

the sequence is non iid. The BDS statistic is calculated based on equations mentioned earlier to test 

the hypothesis, and the results are presented in Table 1. 

 

In Table 1, for each selected m value and ε value, a corresponding BDS value is 

determined. A larger BDS value indicates a higher likelihood of rejecting the iid hypothesis. Since 

the BDS statistic approximates a standard normal distribution, if the absolute value of the BDS value 

exceeds 1.96 at a significance level of 5%, it indicates that the null hypothesis of independent 

identically distributed is rejected, implying that the sequence is non iid. Except for the last column, 

the BDS values generally increase with the increase of embedded dimension. This demonstrates a 

stronger dependence between consecutive trading data of longer hours compared to consecutive 

closing prices of shorter hours. Moreover, when the dimension is fixed, the BDS values decrease 



 

 

with the increase of ε, which is consistent with theoretical expectations. Overall, since all the BDS 

values in the table are much larger than 1.96, and the p values are all less than 0.05, rejecting the null 

hypothesis, there is sufficient evidence to confirm that the sequence is non iid. In other words, the 

hourly Bitcoin closing price series is not white noise, indicating some underlying characteristics 

among the data. Based on the properties of BDS, it is known that these characteristics could be one 

of the following: linear dependence, non-stationarity, chaos, or nonlinear stochastic processes. In the 

next section, this research will first investigate the stationarity of the series {Xt} to understand 

whether rejecting the iid hypothesis is due to the presence of non-stationarity. 

 

 
Table 1 BDS test statistics of the hourly Bitcoin closing price series 

 

 

Section 4.2: Testing for Non-stationarity 

 

In the field of finance and economics, non-stationarity refers to changes in the structure of 

a sequence caused by various factors such as technological or financial innovations, or changes in 

government policies. In the year 2021, the cryptocurrency market experienced massive external 

shocks, raising doubts on whether the sequence structure could remain unchanged. Observing the 

trend chart of the hourly Bitcoin closing price series for this period (Fig.1), it can be seen that the 

whole series exhibits significant fluctuations. Additionally, the autocorrelation function of this 

sequence (see Fig.2) shows a slow decay, indicating that this time series is non-stationary. This study 

utilizes the Augmented Dickey-Fuller unit root test to examine the non-stationarity of the time series. 

The test result shows that the p value is 0.5055 and the F-value is -2.172, which is smaller than the 

critical value of 6.25. This indicates that the null hypothesis cannot be rejected, implying that time 

trend contributes to the non-stationarity of the Bitcoin closing price index, aligning with general 

expectations. 



 

 

 
 

To investigate whether non-stationarity is the main factor causing the rejection of the 

independent identically distributed hypothesis, the data is transformed appropriately to satisfy 

stationarity before conducting the BDS test again, and then the results of which are compared to the 

BDS values of the original time series. We transform the data by taking the first-order difference of 

the data points in the hourly Bitcoin closing price series. The subsequent output series is the hourly 

logarithmic return rate of Bitcoin. Fig.3 is the series diagram of the Bitcoin return series. We can see 

from the graph that there are large instances of fluctuations within the series, while also these 

fluctuations are rather clustered. Again, we test this new series to check it the non-stationarity has 

been accounted for after the transformation. The Augmented Dickey Fuller test and the Phillip 

Perron test are used. Both tests return p values of less than 0.05, indicating that the Bitcoin return 

series is indeed stationary, and the non-stationary characteristics have been accounted for through the 

transformation. We take the Bitcoin return series and perform the BDS test on it. The ε value is set to 

0.5, 1.0, 1.5, and 2.0, and the m value is still selected as 2 to 5. The results are shown in Table 2. 

Comparing Table 1 and Table 2, all the BDS values in Table 2 are lower than those in Table 1, 

indicating that the data, after being transformed by taking the natural logarithm and then first-order 

differencing, can explain some of the non-iid characteristics. However, the absolute values of the 

BDS values in Table 2 are still larger than the critical value of 1.96, with p values all less than 0.05, 

rejecting the null hypothesis, which suggests that non-stationarity is not the main factor causing 

non-iid. In the next section, this study will explore another possible factor contributing to non-iid: 

linear dependency. 

 



 

 

 

 



 

 

 
Table 2 BDS test statistics of the Bitcoin return series 

 

Section 4.3: Autocorrelation, Linear Dependency, and Heteroskedasticity 

 

The focus of this section is on the newly generated series that takes the hourly Bitcoin 

closing price data and applies natural logarithmic transformation and first-order differencing to form 

a new sequence. The autocorrelation coefficient of the sequence is calculated, and its null hypothesis 

is tested. A suitable time series model is then fitted to eliminate linear dependencies in the sequence, 

and the resulting residuals form a new time series. Subsequently, whether the residual series are iid 

or not is tested. 

 

The underlying characteristics can be roughly categorized into either linear or nonlinear 

characteristics. Therefore, this study aims to identify a linear model to account for the linear 

dependency of this stationary time series. When fitting a time series ARMA (p, q) model, the values 

of p and q are determined using the Box-Jenkins methodology, based on the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) of the sequence. In Fig.4, the autocorrelation 

function converges gradually after lag 4, while Fig.5 shows an extremely jagged partial 

autocorrelation function. Taking both figures into account, the preliminary estimation suggests p ≈ 4 

and q ≈ 4. 

 

In fitting the ARMA model, this study attempted several models with a loop in Rstudio for 

p and q values both not exceeding 5. While it is true that the acf seems to have slightly above 

reasonable number of significant lags at higher levels, and the pacf clearly shows many significant 

lags at higher orders and seems to be converging at a very slow lag, we do not see any noticeable 

seasonality within the two graphs. We also constrict the maximum number of both the p and q to 

relax computational stress. The results from the Rstudio loop indicate that the AR(4) process has 

both the lowest AIC  and the lowest BIC. Hence, we fit the AR(4) model to the hourly Bitcoin 

return series, allowing its residuals sequence to be examined for linear dependence, determining if it 

contributes to the rejection of the independent and identically distributed assumption. Table 4-7 

shows the test results of the BDS values on the residual terms after fitting the AR(4) model to the 

Bitcoin return series. Comparing Table 4-3 and Table 4-7, the BDS values of the fitted AR(4) model 

are smaller than those of the Bitcoin return series before fitting the model, indicating that linear 
dependence partially explains the non-i.i.d. outcome of the BDS test. Even though the BDS test 



 

 

 
Fig.4 

 
Fig.5 

 



 

 

results on the residuals of the fitted AR(4) are lower than before fitting, the difference between fitted 

and non-fitted results are relatively small. Also, the observed absolute values of the BDS values in 

Table 3 are larger than the critical value of 1.96 for a standard normal distribution at a 5% 

significance level, the p values are also less than 5%, rejecting the null hypothesis. Therefore, we 

still reject the independent and identically distributed hypothesis. We also conduct tests to see if the 

AR(4) is a good fit. The acf plot of the residuals of the shows no sign of autocorrelation, yet the acf 

plot of the residuals squared show clear terms of volatility, being correlated at most lags.  

 
Table 3 

 

To address this issue of heteroskedasticity, a GARH model is then fitted to the residuals of 

the AR(4). Four different GARCH(p, q) models were constructed, being (1, 1), (1, 2), (2, 1), and (2, 

2). The best model is then selected through comparing the AIC and the BIC. The optimal GARCH 

model selected is the GARCH(1, 2), with an AIC of -6.7250 and a BIC of -6.718, the lowest out of 

the four. From the test results of the Ljung-box test on the standardized residuals, the p value for all 

three lags tested are greater than 5%, failing to reject the null hypothesis, indicating that there is no 

significant evidence of residual autocorrelation in the data and that the residuals are independent and 

not correlated. Test results of the Ljung-box test on the standardized squared residuals also show that 

for all three lags, the p values are greater than 5%, failing to reject the null hypotheses, indicating 

that there is no significant clustering or pattern in the squared residuals, the assumption of no 

autocorrelation in the conditional variance is reasonable, and that the model captures the dynamics 

of volatility. For the last test, the ARCH LM test, all three lags have p values of greater than 5%, 

failing to reject the null hypothesis, indicating that no significant evidence of ARCH effects or 

conditional heteroscedasticity remain in the data and that the model captures these characteristics 

well. These properties indicate a good fitting model. The BDS test is then ran on the residuals and 

the volatility of the fitted GARCH(1, 2) model. We still select the same parameters with ε value set 

to 0.5, 1.0, 1.5, and 2.0, and the m value still selected as 2 to 5. The BDS test results for both the 

residuals (Table 4) and the volatility (Table 5) show that they are non-iid. The results of this test 

implies that the residuals series and the volatility series should be assessed with nonlinear models. 



 

 

 
 

Table 4 

 
Table 5 

 
 



 

 

Section 4.4: Confirmation of nonlinearity 

 

After testing for non-stationarity and linear dependency, the results from the BDS test 

indicate that the both the residuals series of the fitted GARCH(1, 2) and the volatility series of the 

fitted GARCH(1, 2) are likely to have nonlinear characteristics. Therefore, this study employs the 

Rescaled Range (R/S) analysis method to confirm this finding. To get the Hurst exponent, estimating 

the value of R/S for each day requires calculating the corresponding R/S for different starting points 

and time lags. In this study, G Hurst with smallest lags at GH(20) is primarily used, divided into 30 

blocks to calculate the R/S values. The average of the R/S values for each lag difference is then 

obtained, and the corresponding dimensions are determined. 

 

The Hurst exponent for the residuals series of the fitted GARCH(1, 2) is 0.5318611, and 

the Hurst exponent of the volatility series of the fitted GARCH(1, 2) is 0.8272923. Additionally, 

based on the research of Mandelbrot (1972), the data correlation also denoted as Cr, is calculated to 

be approximately 0.04 and 0.58. Unlike sample autocorrelation, data correlation is different because 

the autocorrelation function assumes that the distribution of the sample follows a Gaussian 

distribution, resulting in better measurement of short-term dependence but often underestimating 

long-term dependence for non-Gaussian distributions. Considering the above results, it can be 

determined that the stationary series exhibits positive long-term dependence and does not follow a 

Gaussian distribution and are not random walks. Moreover, due to its persistence, the sequence is 

confirmed to be nonlinear, contradicting the efficient market hypothesis. 

 

Section 4.5: Determining Chaos Characteristics 

 

In this part of the study of time series data, it can be tentatively concluded that Bitcoin 

time series shows the characteristics of a complex and nonlinear system. I would like to further 

expand on the idea that perhaps the Bitcoin time series has chaotic properties. Hence, the 

incorporation of methodologies derived from chaos theory, including phase space reconstruction of 

both the residuals series of the fitted GARCH(1, 2) and the volatility series of the fitted GARCH(1, 

2), calculating the related Takens' vectors, and the calculation of the correlation dimension to 

determine if the Bitcoin has a law that governs the underlying system. 

 

Takens' vectors, or delay vectors, are used to populate the reconstructed phase space. Each 

vector represents a distinct state of the system at a given point in time. Takens' vectors serve as a 

bridge between the time series and its corresponding dynamical system, revealing a geometric 

picture of system dynamics that can assist in identifying signatures of chaos. They are constructed by 

delaying the original time series, effectively capturing the evolution of the system across different 

states.  

 

To build a Takens vector, the time delay denoted as τ, and the embedded dimension 

denoted as d are the utmost important two parameters to estimate. At its most fundamental, the 

Average Mutual Information (AMI) measures the volume of information two random variables 

mutually contain. These variables correspond to the initial time series and its counterpart that has 

been shifted by varying τ levels. As such, the point where the function stabilizes or initially 

intersects zero provides an accurate gauge of the time delay retaining the minimal data on the current 

time point. This approach enjoys widespread use given its capacity to accommodate nonlinear 

correlations. The Average Mutual Information (AMI) for both the residuals series of the fitted 

GARCH(1, 2) and the volatility series of the fitted GARCH(1, 2) are shown in Fig. 6 and Fig.7 . The 

τ for the residuals series would thus be 1, and the τ for the volatility series would be 8. We next look 

for the optimal embedding dimension with Cao’s method. Cao’s method does not rely on parameters 

other than the embedded time delay as calculated from the average moving information method. 

From Fig.8 and Fig.9, The d for the residuals series would thus be 12, and the d for the volatility 

series would be 8. With these parameters, we can construct the Taken’s vector and plot the 

reconstructed phase space diagram. Fig.10 and Fig.11 show the reconstructed phase space plotted on 

two dimensions, the shape of which are both complex, indicating the possibilities of strange 



 

 

attractors. 

 
Fig. 6 

 



 

 

Fig.7 
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Fig.9 



 

 

 
Fig.10 

 
 

Fig.11 



 

 

Now that both the time delay and the optimal embedded dimension are known, I can calculate the 

correlation dimension of the reconstructed phase space. The correlation dimension is a quantitative 

measure of the complexity of a dynamical system, representing the rate of increase of new states or 

points in phase space as the scale of observation changes. For the maximum embedded dimension, I 

tried all combinations until the computer could not estimate the number, which was 102 dimensions 

for the residual series (Fig.12), and 144 dimensions for the volatility series (Fig.). The results 

conflict with the rules a for a chaotic system, in which the correlation dimension had to be 

converging. While the residual series does seem to be slowly declining the point at where the 

correlation dimension plateau’s is beyond the boundaries. The sharp drops in the figures are also 

something to note. This may be due to the complexity of the system, noisiness of the data, and 

perhaps and inadequate approach to the system. 

 
Fig.12 

 



 

 

 
Fig.13 

 

5. Conclusion: 

 

This study examines whether the hourly closing data of Bitcoin from January 2021 to December 

2021 follows an independent and identically distributed (iid) distribution. The results indicate that 

there is sufficient evidence to reject the hypothesis of independent and identically distributed 

behavior of the Bitcoin time series at a significance level of 5%. However, rejecting the hypothesis 

of independent and identically distributed behavior does not necessarily imply the rejection of the 

efficient market hypothesis. It is also important to note that factors other than nonlinear deterministic 

chaos can contribute to the rejection of the iid hypothesis, such as government policies and changes 

in the economic environment. These factors can lead to instability in the hourly data of Bitcoin 

pricing or linear dependence/nonlinear stochastic processes between past and future data, requiring 

the use of more complex models to account for the effects, such as nonlinear moving average 

(NMA), threshold autoregressive (TAR). To investigate these factors, the study conducts tests for 

stationarity, autocorrelation and linear dependence, chaos, and heteroscedasticity and nonlinear 

multiplicative dependence. 

 

First, the stationarity of the hourly data of Bitcoin is tested using the Dickey-Fuller (1979) unit root 

test, which confirms the presence of stationarity in the sequence. To determine if stationarity is the 

main cause of the rejection of the iid assumption in the hourly data of Bitcoin, the data is 

transformed by taking the natural logarithm and then first-order differencing to obtain a stable 

sequence of returns. The BDS test is then performed on the transformed series and compared to the 

original data. Although the BDS values of the stationary series are significantly smaller than those of 

the original data, all of them still exceed the critical values, indicating that factors other than 

stationarity contribute to the rejection of the iid assumption. 
 



 

 

Next, tests for autocorrelation and linear dependence are conducted. To distinguish between linear 

and nonlinear relationships, several possible ARMA (p,q) models are fitted to the stock returns, and 

the best model, AR(4) with zero mean, is selected based on the AIC and BIC. The BDS test is 

performed on the residuals of the selected model. Since the BDS test results before and after fitting 

the linear model are similar, it can be concluded that there is no significant linear relationship in the 

return series. A GARCH(1, 2) is also fitted to the residuals of the AR(4) model, as heteroskedasticity 

was found within the residual squared of the AR(4) model. BDS tests on the residual and volatility 

still indicate the series to be non iid. 

 

However, the absence of a significant linear relationship does not imply the absence of a nonlinear 

relationship. Therefore, the R/S analysis is conducted to confirm the presence of nonlinear behavior 

in the return series of Bitcoin. The analysis results suggest that the Bitcoin trading market does not 

conform to the efficient market hypothesis. To further investigate the presence of chaos in the return 

sequence, correlation dimension analysis is performed by comparing the correlation dimensions of 

the fitted GARCH(1, 2) residual series, and the volatility of the fitted GARCH(1, 2). The results 

indicate that the correlation dimension of the residual series is low, indicating the presence of a 

nonlinear system. However, the lack of convergence in the correlation dimensions of the residuals 

contradicts the characteristic of converging dimensions in chaotic systems. Therefore, it can perhaps 

be concluded that the Bitcoin time series represents a nonlinear stochastic system rather than a 

nonlinear deterministic chaos system. 

 

In summary, the analysis suggests that perhaps the Bitcoin price follows a nonlinear stochastic 

process rather than a nonlinear deterministic process, indicating that classifying it as a chaotic 

system may not be correct. Consequently, it is not possible to find a deterministic model to explain 

the behavior of Bitcoin volatility. 
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