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Abstract

In recent years, the deep neural network has emerged as the core technology in automatic speech

recognition (ASR). The advent of end-to-end ASR has revolutionized the field by consolidating the

traditional components, namely acoustic, pronunciation, and language models, into a single deep

neural network. This integration has played a crucial role in simplifying ASR development and

enhancing its accuracy. While accuracy remains paramount, the real-time processing capabilities,

known as streaming properties, are of utmost importance in applications such as conversational

systems and online speech translations. Streaming ASR has the ability to transcribe speech

synchronously by generating outputs based on partial speech sequences. However, a major

challenge arises in streaming ASR due to the lack of future contexts, which are crucial for

accurate predictions in the current recognition frame. This leads to performance degradation.

To address this challenge, we introduce two novel methods for constructing streaming ASR

models that achieve both high accuracy and low latency. Our first method involves a Mask-

CTC-based pre-training approach aimed at reducing latency while maintaining high accuracy.

The Mask-CTC framework combines conditional masked language models (CMLM) and CTC

objectives to train an encoder network. This enables the network to extract acoustic feature

representations that capture long-term dependencies by anticipating future contexts. By conduct-

ing supervised pre-training with the Mask-CTC objective on the streaming ASR encoder, the

encoder becomes proficient in capturing more long-term contexts within a limited look-ahead

range, thereby reducing latency requirements. We evaluate the effectiveness of this method across

various streaming ASR architectures.

The second method we propose is a multi-look-ahead model architecture for streaming ASR,

which aims to mitigate latency increments associated with the use of look-ahead frames. Unlike

the previous method that focuses on improving feature extraction within a limited look-ahead

range, the multi-look-ahead architecture emphasizes recognizing the look-ahead frames without

introducing further delay. This approach involves operating two encoders in parallel: a primary

encoder that recognizes the target frames using look-ahead frames to achieve high accuracy, and

1



an auxiliary encoder that conducts early recognition on the look-ahead frames to avoid latency

increments. We present various implementation methods for the multi-look-ahead architecture

and demonstrate through experimental results on different datasets that this method significantly

reduces recognition latency without compromising accuracy.
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1 Introduction

1.1 Background

The development of deep neural networks has simplified automatic speech recognition (ASR)

by integrating the various components of speech recognition systems into a single sequence-to-

sequence network [1, 2, 3]. Attention-based encoder-decoder architecture [2, 3] is one of the

major types of architectures for implementation, which contains an encoder module that extracts

features and a decoder module that maps the encoder output to the text sequence using the attention

mechanism. Such architecture could be implemented with various types of neural networks,

including long short-term memory (LSTM) networks [3, 4, 5] and Transformer [6, 7, 8, 9, 10, 11].

Connectionist temporal classification (CTC) is another choice for realizing end-to-end ASR,

which generates monotonic alignments between the input and output sequences with Markov

assumption and dynamic programming [1]. The combined CTC-attention model is often trained

to further improve the model training and inference processes [9, 12, 13]. Other than those,

the Transducer [14] framework has been proposed for constructing end-to-end ASR models,

incorporating an acoustic encoder, a label encoder and a joint network to achieve high speed

in decoding. Transducer models have also achieved high accuracy in speech recognition by

utilizing the Transformer neural network [15, 16]. Detailed formulations of each end-to-end ASR

architecture are provided in Sect. 1.2.

In addition to recognition accuracy, the streaming property of ASR has garnered considerable

research attention [17, 18, 19]. Streaming ASR processes input audio in real-time, enabling

synchronous output generation and facilitating various ASR applications, including transcribing

input speeches in conversational systems [20, 21, 22]. However, the trade-off between recognition

accuracy and latency poses a challenge for streaming ASR, particularly in real-world applications,

such as conversational systems, where accurately recognizing all input frames without any delay

is crucial. As shown in Fig. 1.1, streaming ASR deals with partial input sequences, where

future contexts are usually missing, and therefore, faces challenges in achieving high recognition
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Chapter 1. Introduction

accuracy. The example shows that to recognize part of a word, such as the letter "n" within the

word "snow", correctly, attending to the rest of the word (i.e., "ow") is of great importance. For

such a reason, during streaming speech recognition, look-ahead frames are often used to provide

the speech recognizer with more future contexts to achieve high accuracy, but since the look-ahead

frames cannot be recognized promptly, it inevitably increases the latency and harms real-time

performance. While attention masks can be applied to the look-ahead part to reduce latency in

streaming ASR [23, 24, 25], employing them results in a notable reduction in accuracy compared

to full context implementations that allow look-ahead [26]. Therefore, developing highly accurate

streaming ASR models with low latency requirements has become an area of great interest.

Non-streaming ASR

the  _s  n o w  _will  _m e l t

Streaming ASR

the  _s  n

Speech Input

Text output Real-time text output

Real-time speech Input

current frame 
for recognition

extra input frames 
for look-ahead

Figure 1.1 Comparisons of non-streaming and streaming ASR. Non-streaming ASR requires the
entire speech sequence input to generate text output. While streaming ASR is able to recognize
partial sequence (real-time speech input), where look-ahead frames (extra input frames ahead of
the current analytic point) are usually used to ensure accuracy.

1.2 End-to-end speech recognition

End-to-end ASR aims to formulate the mapping between input sequence 𝑋 = (x𝑡 ∈ R𝐷 |𝑡 =

1, ..., 𝑇) and output sequence𝑌 = (𝑦𝑙 ∈ V|𝑙 = 1, ..., 𝐿). Here, 𝑋 is a𝑇-length sequence of speech

features such as MFCCs and log-Mel filterbanks, where x𝑡 represents the 𝐷-dimensional feature

vector at the 𝑡-th frame. 𝑌 is an 𝐿-length sequence of output tokens such as characters, sub-words
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Chapter 1. Introduction

and words, where 𝑦𝑙 represents the token at the 𝑙-th position in the vocabularyV. Various types

of architectures for implementing the end-to-end ASR are formulated below.

1.2.1 Attention-based encoder-decoder

The attention-based encoder-decoder architecture processes speech feature sequences through

an encoder-decoder module and maps the input speech sequence 𝑋 to the output text sequences

𝑌 . The encoder module, which works as an acoustic model, generates hidden states from the

audio sequence and the decoder module finds the alignment between the hidden states and the

text sequences by using the attention mechanism [3].

For each output token, the attention-based encoder-decoder architecture estimates the posterior

probability in chain rule based on the input sequence 𝑋 and the previous outputs, which is

𝑝(𝑌 |𝑋) =
𝐿∏
𝑙=1
𝑝(𝑦𝑙 |𝑦1, ..., 𝑦𝑙−1, 𝑋) (1.1)

The posterior probability (r.h.s of the equation) is calculated with approximation to the attention-

based objective function, formulated as follows

h𝑡 = Encoder(X) (1.2)

𝑎𝑙𝑡 = ContextAttention(q𝑙−1, h𝑡) (1.3)

𝑎𝑙𝑡 = LocationAttention(
{
𝑎𝑙𝑡

}𝑇
𝑡−1, q𝑙−1, h𝑡) (1.4)

r𝑙 =
𝑇∑
𝑡=1
𝑎𝑙𝑡h𝑡 (1.5)

𝑝(𝑦𝑙 |𝑦1, ..., 𝑦𝑙−1, 𝑋) = Decoder(r𝑙 , q𝑙−1, 𝑦𝑙−1) (1.6)

Here h𝑡 stands for the hidden states obtained from the encoder module. While r𝑙 stands for the

token-wise hidden vector derived from h𝑡 and attention weights 𝑎𝑙𝑡 . The posterior probability is

yielded from the decoder module with r𝑙 , q𝑙−1 and previous output 𝑦𝑙−1 [27].

1.2.2 Connectionist temporal classification (CTC)

Connectionist temporal classification (CTC) leverages dynamic programming to efficiently

compute a strictly monotonic alignment between sequences [27]. Given the input sequence 𝑋 ,

5



Chapter 1. Introduction

CTC generates a character sequence of length T using the complete set of alphabets, including a

’blank symbol’ ⟨𝑏⟩ used for separating repeated letters.

Using this set of labels, CTC constructs augmented token sequences called paths. These paths

can be converted into a single sequence by removing blank and repeated labels [28]. When

presented with an input speech sequence, CTC introduces a letter sequence Z of length T, which

contains labels from the setV ∪ ⟨𝑏⟩ and allows for frame-wise predictions.

The formulations of CTC are shown as follows.

𝑝(𝑌 |𝑋) =
∑
𝑍

𝑝(𝑌 |𝑍, 𝑋)𝑝(𝑍 |𝑋) (1.7)

Since CTC assumes that the probabilities of the outputs at different timestamps are conditionally

independent, the equation can be further simplified into

𝑝(𝑌 |𝑋) =
∑
𝑍

𝑝(𝑌 |𝑍)𝑝(𝑍 |𝑋) (1.8)

Applying Bayes’ rule yields

𝑝(𝑌 |𝑋) =
∑
𝑍

𝑝(𝑧𝑡 |𝑧𝑡−1, 𝑌 )𝑝(𝑧𝑡 |𝑋)
𝑝(𝑌 )
𝑝(𝑍) (1.9)

In the given context, 𝑝(𝑧𝑡 |𝑧𝑡−1, 𝑌 ) represents the frame-wise posterior, 𝑝(𝑧𝑡 |𝑋) represents the

transition probability, and 𝑝(𝑌 ) represents a letter model. CTC efficiently computes the posterior

distribution using the forward-backward algorithm implemented via dynamic programming based

on this objective function [27, 28].

1.2.3 Transducer

A Transducer-based ASR model comprises three components: an acoustic encoder, a label

encoder, and a joint network. The acoustic encoder generates acoustic features for the input

speech, the label encoder handles the features of the previous output token sequence, and the joint

network combines these features to predict the next output token.

Similar to CTC, the Transducer model captures token alignment for the input at each timestamp.

However, the inclusion of the label encoder empowers the Transducer to make predictions based

on previous token outputs, thereby strengthening the conditional dependency among the output

tokens.
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Given an input to a time index 𝑡, the output probability of the 𝑙-th token is formulated as follows:

hAE
𝑡 = AcousticEncoder(X1:𝑡), (1.10)

hLE
𝑙−1 = LabelEncoder(𝑌1:𝑙−1), (1.11)

h = Tanh(Linear(hAE
𝑡 ) + Linear(hLE

𝑙−1)), (1.12)

𝑃(𝑦𝑢 |𝑦1:𝑙−1, x1:𝑡) = SoftMax(h). (1.13)

First, the acoustic encoder embeds the input sequence x1:𝑡 into vector hAE
𝑡 (Eq. (1.10)). Meanwhile,

the label encoder generates hLE
𝑙−1 from the previous output token sequence 𝑦1:𝑙−1 (Eq. (1.11)). The

two outputs are then sent to the joint network, projected to the same dimension, and added up

(Eq. (1.12)). Finally, the output probabilities against tokens in a vocabulary V are calculated

based on the previous result (Eq. (1.13)).

1.3 Objective

The primary objective of this thesis is to develop streaming end-to-end ASR models that offer

both high accuracy and low latency. Specifically, our goal is to address the trade-off between

recognition accuracy and look-ahead delay increments. To achieve this objective, we propose two

distinct approaches that target different aspects of reducing latency in streaming ASR.

Our first approach revolves around enhancing the encoder network to enable implicit modeling

of long-term dependencies and capturing global contexts. This enhancement facilitates achieving

high recognition accuracy even with limited look-ahead lengths. On the other hand, our second

approach focuses on eliminating the recognition delay caused by the use of look-ahead by enabling

early recognition of the look-ahead frames. We explore various implementation methods to

effectively and efficiently realize this proposal.

We examine the proposed methods on various end-to-end ASR architectures mentioned above.

By presenting these proposals and the experimental results in this thesis, we aim to make contri-

butions to the application of streaming ASR across diverse industries.
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1.4 Overview

The structure of this thesis is as follows: Chapter 2 provides an overview of various existing

streaming end-to-end ASR models that serve as baselines for our work. These include the

triggered attention-based encoder-decoder model (TA-E/D), streaming Transformer Transducer

(T-T) with chunk-wise attention mask, contextual block streaming encoder-decoder (CBS-E/D),

and contextual block streaming Transducer (CBS-T). This chapter focuses on the streaming

processing techniques employed in these models and highlights their unique characteristics.

Chapter 3 introduces our first proposal: the Mask-CTC-based pre-training method for achiev-

ing high accuracy and low latency in streaming ASR. We begin by presenting the Mask-CTC

framework and its advantages, followed by a detailed explanation of our proposed pre-training

method. The chapter concludes with experimental results that validate the effectiveness of the

method across various model types and datasets. Additionally, we discuss the latency reduction

effects by measuring the output spike timing of the streaming ASR models.

In Chapter 4, we present our second proposal: multi-look-ahead streaming ASR. We introduce

the general concept behind this proposal, which involves utilizing two encoders with different

look-ahead settings operating in parallel to mitigate latency increments. Various implementation

methods are discussed, and experimental results are presented, including recognition accuracy

and real-time frame-wise latency analysis, to examine the impact of latency reduction.

Finally, Chapter 5 provides a comprehensive review of the thesis and discusses future applica-

tions based on the proposed methods.
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2 Existing streaming end-to-end ASR

2.1 Introduction

The ability to process audio input in real-time and compute outputs synchronously makes the

streaming property highly desirable for various real-world applications. However, incorporating

the streaming property into end-to-end ASR models presents several challenges.

As discussed in Sect. 1.2, end-to-end ASR architectures include attention-based encoder-

decoder, CTC, and Transducer models, with Transformer-based neural networks delivering state-

of-the-art performance. Streaming processing poses difficulties for both the encoder and decoder

modules in attention-based encoder-decoder networks. In the encoder module, the self-attention

layers of the Transformer network require the entire input sequence to initiate computation.

Similarly, in the decoder module, the Transformer layers depend on the complete sequence of

acoustic features from the encoder to begin text generation.

Compared to the encoder-decoder architecture, achieving the streaming property is more fea-

sible in the Transducer framework, as it naturally enables streaming decoding. However, when

a Transformer neural network is utilized as the acoustic encoder in a Transducer model, it faces

the same challenge of requiring global context due to the self-attention layers.

Considerable research has been dedicated to achieving streaming properties in both encoder-

decoder and Transducer ASR models [16, 19, 29, 30, 31, 32, 33]. Dealing with the global context

requirement of self-attention layers in the encoder involves two primary solutions: applying

attention masks [24, 25, 16] and implementing block processing [31, 32]. For streaming decod-

ing in the encoder-decoder model, various algorithms have been proposed, such as the trigger

mechanism [19] and block boundary detection [33].

In this thesis, we have selected four existing streaming ASR models as our baselines. These

include the Trigger attention-based streaming encoder-decoder [19], Streaming Transformer-

Transducer [16], Contextual block streaming encoder-decoder [33] and Contextual block stream-

ing Transducer [32, 34]. The chosen baseline models cover both encoder-decoder and Transducer

9



Chapter 2. Existing streaming end-to-end ASR

architectures, as well as attention-mask-based and block processing streaming methods. By

competing with these baselines, we aim to provide a comprehensive and robust validation of the

proposals presented in this thesis.

2.2 Trigger attention-based streaming encoder-decoder (TA-
E/D)

The overview of the TA-E/D model is provided in Fig. 2.1. Based on the attention-based

encoder-decoder architecture, the TA-E/D model utilizes Transformer neural network in both en-

coder and decoder modules. An additional CTC module is also included for hybrid CTC/attention

training and joint decoding [27]. To enable streaming processing in the entire ASR model, atten-

tion masks are introduced to the encoder module to realize streaming feature extraction, whereas

a trigger attention mechanism is applied to the decoder module to enable streaming decoding,

with the CTC module serving as the trigger generator.

Encoder

CTC Decoder

X1  X2  X3  …  Xt 

y1  y2 … yl-1  yl 

Figure 2.1 Overview of the trigger attention-based streaming encoder-decoder model.
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2.2.1 Streaming encoder with attention masks

Following the conventional Transformer-based ASR system [8, 9], the encoder module contains

two convolutional neural network (CNN) layers and an 𝑁 stack of self-attention layers. The

requirement of global attention in the self-attention layers hinders the ASR model’s ability to

perform stream processing. To address this limitation, attention masks [24, 25] are employed to

regulate the past and future contexts attended by the self-attention mechanism. The conventional

self-attention layer calculates attention scores using the scaled dot-product. In this work, we

introduce a span mask𝑊 of fixed size, which is added to the result of the scaled dot-product prior

to the softmax operation, as follows:

Attention(𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘
𝑊

)
𝑉, (2.1)

where 𝑄 ∈ R𝑛𝑞×𝑑𝑞 , 𝐾 ∈ R𝑛𝑘×𝑑𝑘 , and 𝑉 ∈ R𝑛𝑣×𝑑𝑣 denote query, key, and value matrices respec-

tively, with 𝑛∗ as sequence length and 𝑑∗ as feature dimension. Since a controllable latency of the

system is aimed for, restrictions are only set on the range of the future contexts, while attending

to the past contexts is always allowed.

2.2.2 Trigger attention-based streaming decoder

For introducing the streaming property into the decoder module, a triggered attention mech-

anism was adopted in the decoding. The encoder transforms an input feature sequence into

an encoded feature sequence, while the CTC module computes spike-like posteriors (triggers)

based on the encoder outputs. These spike-like posteriors allow us to dynamically divide pause-

delimited speech utterances into smaller sub-sequences according to the input.

At the beginning of each sub-sequence, the attention mechanism is triggered, and the encoded

feature frames following the trigger event, along with some look-ahead frames, are decoded. This

approach, denoted as triggered attention [19], enables frame-synchronous decoding.

To facilitate the triggered attention-based decoder, we need to establish alignment between

the encoded feature sequence 𝐻 and the output label sequence 𝑌 . This alignment information

is crucial for training the decoder effectively. In practice, we utilize Viterbi decoding with a

CTC-based trigger network to generate the alignment information. This alignment is then used
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to condition the attention-based decoder solely on the past encoded frames and past outputs,

ensuring accurate decoding. The formulation is shown as follows.

𝑃ta(𝑌 |𝐻) =
𝐿∏
𝑙=1

𝑃(𝑦𝑙 |𝑦1:𝑙−1, h1:𝑛𝑙 ), (2.2)

where 𝑛𝑙 denotes the first occurring position of the symbol 𝑦𝑙 in the CTC alignment. This

formulation is specifically designed for streaming ASR and offers the advantage of not requiring

explicit feature extraction on future inputs.

During the training phase, we initialize all modules with a pre-trained non-streaming Trans-

former model, and then fine-tune them to adapt to the streaming scenario. In particular, the

encoder module is trained with attention spans as described in Sect. 2.2.1. During the run-time

phase, joint CTC-attention decoding is performed, combining the CTC module and the attention

mechanism to generate accurate transcriptions in real-time.

2.3 Streaming Transformer-Transducer (T-T)

Acoustic
Encoder

Label
Encoder

X1  X2  X3  …  Xt y1  y2 … yl-1  

Joint Network

SoftMax

yl  

Figure 2.2 Overview of the Transducer framework, consisting of an acoustic encoder, a label
encoder and a joint network.

Another type of streaming ASR model is the streaming Transformer-Transducer, which is based

12
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Figure 2.3 Chunk-wise attention mask in the streaming Transformer-Transducer model repre-
sented as a matrix.

on the Transducer framework, as shown in Fig. 2.2. Compared to encoder-decoder architecture, the

Transducer framework possesses the advantage of natural streaming decoding, as the Transducer

framework predicts the current symbol for each input frame based on only the past output tokens.

Various neural network types can be applied to implement the acoustic and label encoders [4,

14, 29]. In the work of [16], Transformer [6] is applied to the acoustic encoder to achieve high

accuracy and LSTM [4] for the label encoder in consideration of the model size control. To enable

streaming processing in the Transformer-based acoustic encoder, chunk-wise attention masks are

applied to the self-attention layers, which will be introduced in details below.

2.3.1 Streaming acoustic encoder with chunk-wise attention masks

Similar to the attention mask in 2.2.1, the chunk-wise attention mask in the T-T model is

directly applied to the attention calculation. Different from the former, chunk-wise attention

mask is designed to group the input frames into chunks.

In Fig. 2.3, the chunk-wise attention mask is represented as a matrix used to compute the

attention weights in the self-attention mechanism. In this matrix, frames with a value of 1 are

used in the calculation of attention weights, while frames with a value of 0 are not utilized.
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Figure 2.4 The perception range of history frames and look-ahead frames in each self-attention
layer of the acoustic encoder in streaming Transformer-Transducer.

With the chunk-wise attention mask, the input sequence is divided into fixed-width chunks

(sub-sequences), and attention weights are computed for each frame within the chunk. When two

frames are within the same chunk, they can attend to each other. However, if two frames are in

different chunks, regardless of the offset, the frame on the left cannot attend to the frame on the

right. Thus, the look-ahead range is controlled by the width of the chunk.

When stacking Transformer layers, as shown in Fig. 2.4, the range of past frames increases

with the number of layers, but the look-ahead is always limited to the chunk size.

When processing each input frame, the self-attention layer can only attend to the frames within

the current chunk and the previous chunk, which limits the look-ahead range to the chunk size.

When multiple Transformer layers are applied to the acoustic encoder, the reception range for

past frames grows by the number of layers. In contrast, the look-ahead range is always limited to

the chunk size, regardless of the layers.

2.4 Contextual block streaming encoder-decoder (CBS-E/D)

The previous streaming ASR models adopted attention masks in the self-attention layers to

limit the range of accessible future contexts in model training and inference. Meanwhile, leverage
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block processing is another approach to enabling streaming processing. By dividing the input

sequence into small blocks of frames, streaming processing can be realized as the input block

shifts over the entire sequence. In this case, attention masks are not required, as there are no more

accessible frames outside the input block.

CBS-E/D [33] was proposed as a streaming ASR based on block-processing, following the

attention-based encoder-decoder architecture. For streaming encoding, a contextual block stream-

ing (CBS) encoder [32] was adopted. For decoding, a block boundary detection algorithm was

proposed to enable block-wise synchronous beam search.

2.4.1 Contextual block streaming encoder

The structure of the CBS encoder is shown in Fig. 2.5, which utilizes block processing with a

context inheritance mechanism to enable streaming feature extraction. During streaming speech

recognition, the speech input is segmented into blocks containing history, target, and look-ahead

frames with the numbers of 𝑁𝑙 , 𝑁𝑐, and 𝑁𝑟 . Streaming encoding can be conducted by processing

each single block, however, the lack of global contexts may hurt the recognition performance

of each local block. In order to capture long-term contexts from the past blocks, the context

inheritance mechanism is introduced by utilizing an additional contextual embedding vector,

which is computed in each encoder layer for the input block and passed on to the next layer to be

used in the processing of the next input block. In such a way, the contexts in the past blocks can

be used for the current block processing efficiently with low computational costs.

When an input block is passed on to the encoder layer, the CBS encoder processes the target

frames for the output with future contexts provided by the look-ahead frames, as well as history

contexts provided by history frames and the contextual embedding vector inherited from the

previous block. Since only the target frames can be recognized in one encoding pass, latency is

induced accordingly with the number of look-ahead frames. The block settings (i.e., 𝑁𝑙-𝑁𝑐-𝑁𝑟)

of the CBS encoder can be easily adjusted to control the look-ahead latency of the streaming

ASR. The block-wise streaming encoding can be formulated as follows:

𝑍𝑏, c𝑏 = BlockEncoder(𝑋𝑏, c𝑏−1) (2.3)

where the 𝑏-th input block 𝑋𝑏 with |𝑋𝑏 | = 𝑁𝑙 +𝑁𝑐 +𝑁𝑟 and a contextual vector from the previous
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block c𝑏−1 are processed to output the acoustic feature 𝑍𝑏 and current contextual vector c𝑏.

input block

outputs 𝑍

encoder layer 

× 𝑁

encoder layer

encoder layer

encoder layer

encoder layer

encoder layer

encoder layer

𝑁𝑐 𝑁𝑟𝑁𝑙

contextual vector

𝑿𝒃
𝑋𝑏−1

𝑋𝑏+1

Figure 2.5 Overview of the contextual block streaming (CBS) encoder. In the CBS encoder,
each input block consists of history frames (𝑁𝑙), target frames (𝑁𝑐) and look-ahead frames (𝑁𝑟).
During encoding, a contextual vector is inherited from the previous block in the previous encoder
layer to leverage past contexts. Only features of the target frames are output at the final encoder
layer.

2.4.2 Streaming decoding with block-wise synchronous beam search

Although the CBS encoder manages to conduct acoustic feature extraction in a streaming

fashion, the ASR model still faces the challenge of enabling streaming decoding in the Transformer

decoder. Similar to the trigger attention mechanism introduced in Sect. 2.2.2, a block boundary

detection (BBD) algorithm is proposed to detect the boundary for decoding in a streaming fashion.

The objective of the BBD algorithm is to find the length of a hypothesis supported by the

encoded block. During the decoding process, if a hypothesis exceeds the length that can be

accommodated by the available encoded data, it becomes unreliable. In such situations, the

decoder often encounters two typical errors [35], including prematurely predicting the "<eos>"

token (representing sentence ending) and predicting a repeated token. The former is caused as
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the attention mechanism reaches the end of inadequate encoder blocks, while the latter happens

when the model attends to a position that has already been attended to. The BBD algorithm is

designed based on such observations and the block boundary 𝐼𝑏 is determined by comparing the

reliability scores of each hypothesis on-the-fly.

Once the block boundary 𝐼𝑏 is determined, block-wise synchronous beam search can be con-

ducted to yield the outputs. The score of the partial hypothesis 𝑦0:𝑖 during streaming beam search

decoding can be formulated as follows:

𝛼(𝑦0:𝑖, 𝑍1:𝐵) ≈
𝐵∑
𝑏=1

𝐼𝑏∑
𝑗=𝐼𝑏−1+1

log 𝑝(𝑦𝑖 |𝑦0: 𝑗−1, 𝑍1:𝑏). (2.4)

where where 𝑦0 is the start-of-sequence token. 𝐼𝑏 denotes the index boundary of the 𝑏-th input

block derived from the BBD algorithm.

2.5 Contextual block streaming Transducer (CBS-T)

Incorporating both CBS encoder and the BBD algorithm, the CBS-E/D model manages to

enable both streaming encoding and decoding. However, the computational cost of the BBD

algorithm largely impedes the real-world application of the ASR model. Based on such a

shortcoming of the CBS-E/D model, a CBS-T model was proposed [34] utilizing the CBS encoder

as the acoustic encoder of a Transducer framework to realize streaming feature extraction and

decoding. Compared to the CBS-E/D model, the CBS-T model is well-suited for streaming ASR

scenarios, as it achieves significant computational complexity reduction. Meanwhile, the graceful

block processing implemented in the CBS encoder persists in the CBS-T model, supporting the

achievement of high recognition accuracy with high-level acoustic feature extraction on each

input block.

The structure of the CBS-T model is shown by Fig. 2.6, where the acoustic feature output

possesses the length of the number of target frames (𝑁𝑐). The Transducer framework further

conducts frame-wise decoding with such acoustic features. The recognition latency of the CBS-T

model is induced by the look-ahead frame setting of the input blocks.
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CBS
Encoder
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y1  y2 … yl-1  
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yl  

Look-ahead
Latency

Figure 2.6 Overview of the contextual block streaming Transducer (CBS-T). A CBS encoder
is introduced to the Transducer framework as the acoustic encoder to perform streaming speech
recognition based on block processing.

18



3 Mask-CTC-based encoder pre-training for
streaming ASR

3.1 Introduction

The aim of this chapter is to introduce our first proposed method for constructing streaming

ASR models with low latency and high accuracy. As shown in the previous chapter, there

are many types of existing streaming ASR models, with various architectures and streaming

algorithms. However, one consistent characteristic among them is that to achieve high accuracy,

the encoder needs to attend to look-ahead frames in order to acquire future contexts and support

the predictions in the current recognition frames. For streaming ASR models like TA-E/D and

T-T, the look-ahead is determined by the attention masks applied to the self-attention layers in

the encoder. In the case of CBS-E/D and CBS-T, the look-ahead range is adjusted using the

block setting parameter, denoted as 𝑁𝑙 . Increasing the look-ahead range improves recognition

accuracy but increases latency. Conversely, reducing the look-ahead range limits the global

contexts available to the encoder, resulting in a degradation of accuracy.

To address this issue, a logical approach to reducing the latency requirements of streaming

ASR models is to develop encoder modules that can anticipate the future, taking into account

dependencies on long-term future contexts. If the encoder can model these dependencies during

current processing, the number of required look-ahead frames can be minimized, enabling high

accuracy with low latency settings. Many approaches have been proposed to construct streaming

ASR models with encoders that consider long-term dependencies [36, 37]. In the work of [36],

contrastive learning [38] was applied to bridge the gap between the acoustic features generated

by streaming and non-streaming modes in order to reduce the latency requirements. In [37],

dynamic latency settings were applied to the encoder training to enable the streaming ASR to

consider long-term dependencies while operating in low latency mode. Similarly, our proposal

is also focused on improving the feature representations generated by the encoder to achieve high

accuracy with low latency settings.

This chapter is structured as follows. In Sect. 3.2, the Mask-CTC framework, which is the key
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of this proposed approach, is introduced. In Sect. 3.3, the encoder pre-training method based

on Mask-CTC is proposed. Experiment settings and results are summarized in Sect. 3.4 and

Sect. 3.5 concludes the chapter.

3.2 Mask-CTC framework

CMLM
Decoder

X1  X2  X3  …  Xt 

y1  y2  y3                    y5 

CTC

y1  y2  y3  y4  y5

<mask>

y1    y2    y3    y4    y5 

Encoder

Figure 3.1 Mask-CTC framework with joint CTC and CMLM training objectives.

Mask-CTC [11, 39] is a framework for learning feature representations to achieve high accuracy

and fast inference speed, and is the cornerstone of this proposal.

As shown in Fig. 3.1, the Mask-CTC framework follows the hybrid CTC/attention encoder-

decoder architecture. The training of the Mask-CTC model contains two objectives: the CTC

objective and the conditional masked language model (CMLM) objective [40, 41]. Specifically,

during training, a portion of the ground truth data is randomly substituted with a mask token.

This is done to train the Transformer decoder as a conditional masked language model (CMLM),

which is responsible for resolving the masked tokens 𝑌mask based on observed tokens 𝑌obs and

encoder sequence 𝑋 .
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The CMLM decoder is formulated as follows:

𝑃cmlm(𝑌mask |𝑌obs, 𝑋) =
∏
𝑦∈𝑌mask

𝑃cmlm(𝑦 |𝑌obs, 𝑋). (3.1)

During inference, the Mask-CTC model leverages a two-pass approach, as shown in Fig. 3.2.

In the first pass, the CTC output is used to generate an initial inference output from the encoded

speech feature sequence. In this step, tokens that have lower confidence are masked and then

refined in the second pass through mask prediction performed by the Transformer decoder.

CMLM
Decoder

X1  X2  X3  …  Xt 

CTC

<mask>

   
n

Encoder

the _s l o w

Po
st

er
io

r

Pthres

_s othe w

Figure 3.2 Two-pass inference in Mask-CTC framework with the utterance "the snow". In the
first pass, the CTC output is generated based on the encoded acoustic features, where the posterior
probability of each token is calculated. Tokens below the probability threshold are masked. In
the second pass, the CMLM decoder is used to resolve the masked tokens with reliable outputs.

Using both CTC and CMLM objectives during training, the encoder-CTC network of the

Mask-CTC model is improved by incorporating contextual information captured in the CMLM

decoder. Specifically, through CMLM decoder objective, where the bidirectional dependencies
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among output tokens are modelled to resolve masked tokens, the encoder is also reinforced to

consider long-term dependencies while generating the acoustic feature sequence. As the encoder

model is enhanced to extract features from future contexts more effectively, the CTC model also

facilitates better alignment between the encoded feature sequence and the output label sequence.

This improvement results in comparable accuracy in the generated output when compared to

autoregressive decoding outcomes. When focusing solely on CTC prediction, the framework

outperforms greedy CTC prediction in hybrid CTC-attention models and achieves similar results

to autoregressive Transformer decoding.

3.3 Mask-CTC-based pre-training

Through Mask-CTC training, the encoder network is enhanced to conduct feature extraction that

considers long-term dependencies of the output tokens, which leads to performance improvements

in CTC inference with non-streaming settings. Such feature extraction characteristics can be of

great importance in streaming settings as well. In order to introduce the enhanced feature

extraction capability of the encoder network in Mask-CTC model into a streaming ASR model,

we propose a Mask-CTC-based encoder pre-training method, containing two steps as follows:

• Stage 1 (Feature representation learning): The Mask-CTC model is pre-trained to

obtain an encoder network that can consider long-term dependencies and anticipate future

information.

• Stage 2 (Streaming ASR training): The pre-trained Mask-CTC model is exploited to

initialize the streaming ASR models. For Transducer-based streaming ASR models, the

acoustic encoders are initialized with the Mask-CTC encoder. For streaming ASR models

with hybrid CTC/attention encoder-decoder architecture, both the Mask-CTC encoder and

CTC networks are used to initialize the corresponding components.

To examine the general effectiveness of the proposed method, this 2-step training method

is designed to suit different types of streaming ASR models introduced in Sect. 2, including

attention-based encoder-decoder models: TA-E/D and CSB-E/D, as well as Transducer-based
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models: streaming T-T. However, due to the specific training procedures as well as the character-

istics of each model, some specifications have been made in the 2-step training method.

3.3.1 Mask-CTC-based pre-training for TA-E/D

Firstly, for the TA-E/D model, since the streaming ASR model itself requires a pre-training

stage to be constructed, the 2-step method is expanded into the following 3-steps, as shown in

Fig. 3.3:

• Stage 0 (Feature representation learning) aims to pre-train a Mask-CTC model to obtain

an encoder-CTC network that can consider long-term dependencies and anticipate future

information.

• Stage 1 (Pre-training for reliable streaming ASR) aims to acquire a pre-trained model that

enables the efficient development of low-latency streaming ASR models in the subsequent

stage. In this stage, a CTC-attention model is constructed, which utilizes autoregressive

Transformer-based decoding. This approach deviates from the conventional method as it

initializes the encoder and CTC modules with those from Mask-CTC to enhance feature

representations.

• Stage 2 (Streaming ASR model learning) aims to construct the triggered attention-based

streaming model using the reliable alignment information and initial parameters, all of

which are transferred from the pre-trained CTC-attention model built in Stage 1.

It should be noted that the impacts of Mask-CTC are directly utilized during the pre-training

phase (Stage 1) and indirectly transferred to the final streaming ASR model during its construction

phase (Stage 2). Attempts were made to initialize Mask-CTC components directly in the creation

of the streaming ASR model, bypassing Stage 1. However, this approach proved unsuitable for

autoregressive decoding, resulting in inferior performance compared to the conventional model.

In Stage 1, a pre-training process is performed for the TA-E/D model using a CTC-attention

model. This model consists of a Transformer encoder module, a CTC module, and an autore-

gressive Transformer decoder module. In the proposed method, the encoder and CTC modules
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Figure 3.3 Procedure of building enhanced triggered attention-based streaming model (TA-E/D)
for low latency and high accuracy streaming ASR: Stage 0 (left) for anticipatory feature learning,
Stage 1 (center) for pre-training, and Stage 2 (right) for streaming model learning.

are initialized with the corresponding modules obtained from Mask-CTC in Stage 0. These ini-

tialized modules, along with the autoregressive Transformer decoder, are trained using the hybrid

CTC-attention objective. The enhanced Transformer encoder, thanks to the initialization from

Mask-CTC, is expected to produce more accurate CTC outputs compared to the Transformer

encoder in the traditional CTC-attention model. Since Mask-CTC is originally designed for

non-autoregressive and non-streaming ASR, Stage 1 remains in a non-streaming manner. The

focus here is to obtain the initial values for the encoder and CTC modules that constitute the

triggered attention-based streaming mechanism, as well as the reliable alignments required to

train the decoder module.

During Stage 2, a triggered attention-based streaming model is constructed, which deviates

from the conventional approach. The key difference is that an enhanced CTC-attention model,

built in Stage 1, is utilized to generate alignment information and serves as a pre-trained model for

the streaming model. As streaming ASR is designed for real-time audio processing, it requires

a high capability for feature representation extraction, even when only a limited number of

look-ahead frames are available to achieve low latency.

The pre-trained CTC-attention model incorporates the advantages of Mask-CTC in extracting

better features from future contexts. Consequently, it is expected to generate reliable alignments

even with low latency and provide improved guidance to the triggered attention mechanism.

Moreover, training a streaming model using such a pre-trained model is anticipated to result
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in more accurate recognition compared to existing streaming ASR models, particularly when

operating at low latency.

3.3.2 Mask-CTC-based pre-training for streaming T-T

For streaming T-T, the Mask-CTC-based encoder pre-training procedure is shown in Fig. 3.4,

where the pre-trained Mask-CTC encoder network is initialized in the acoustic encoder of the

streaming T-T model.

Acoustic 

Encoder
Label 

Encoder

Joint network

Mask-CTC Transformer-Transducer

Module Initialization

Encoder

CTC
CMLM 

Decoder 

Stage 1: Feature representation learning Stage 2: Streaming ASR training

Figure 3.4 Procedure of Mask-CTC-based pre-training using Transformer-Transducer model.
In stage 1, encoder is trained with Mask-CTC framework. In stage 2, Transformer-Transducer
model is initialized with pre-trained encoder and fine-tuned with streaming objective.

The Transformer-based acoustic encoder in the streaming T-T is implemented with chunk-wise

attention masks (Sect. 2.3.1) to limit the perception range in each self-attention layer. However,

the attention mask is not applied to the self-attention layers in the Mask-CTC encoder. By

setting the attention to global during pre-training phase, the Mask-CTC encoder is provided with

more long-range contexts and achieves higher efficiency in the feature representation pre-training.

When initialized in the streaming T-T model, the attention masks are applied and the encoder

layer adapts to the new setting through the training stage of the streaming ASR model. In such a

way, we expect to inherit the characteristics of Mask-CTC to a streaming ASR model to capture

long-term contextual information in maximum and reduce the latency dependency.
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3.3.3 Mask-CTC-based pre-training for CBS-E/D

The pre-training method for CBS-E/D differs from the method for TA-E/D as no pre-training

is required for the training of a conventional CBS-E/D model. Therefore, the Mask-CTC-based

pre-training method for CBS-E/D consists of only stage 1 (Feature representation learning) and

stage 2 (Streaming ASR training). The Mask-CTC encoder network in stage 1 is set to full-context

and both encoder and CTC networks from the Mask-CTC models are initialized in the CBS-E/D

model with block settings applied in the encoder.

3.4 Speech recognition experiments

Speech recognition experiments were conducted using using ESPnet [42] and ESPnet2 [43],

to examine the effectiveness of the proposed Mask-CTC-based pre-training method on each

streaming ASR model type. The recognition accuracy was evaluated based on word error rates

(WERs) without the usage of any external language model. Recognition latency was calculated

as the delay caused by the look-ahead frames. Experimental results for three different types of

streaming ASR models: TA-E/D, streaming T-T and CBS-E/D, are reported.

3.4.1 Experiment of TA-E/D

Datasets

In the experiments of TA-E/D, the models were trained using the 81-hour Wall Street Journal

(WSJ) corpus [44], which includes English utterances from read news articles. We used the

standard test sets Eval92 and Dev93 from the WSJ corpus for model evaluations. As input

speech features, we used 80-dimensional log-Mel spectral energies plus three extra pitch features

using [45]. We used characters (i.e., Latin alphabets) for tokenizing output texts.

Model settings

All the models were constructed using the same Transformer-based encoder-decoder architec-

ture as in [9], where the encoder and decoder modules contained 12 and 6 self-attention layers,

respectively. Each self-attention layer was implemented with 256 hidden units, 2048 feed-forward
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inner dimensions, and 4 attention heads. For training non-streaming models, the learning rate was

set to 10.0 and the training converged at around 50 through 100 epochs. For training streaming

models, the learning rate was set to 1.0 and the number of training epochs was set to 120. The

final models were obtained by averaging model parameters from the last five snapshots. For

decoding with CTC only, we used the best path decoding algorithm [46], where a greedy output is

obtained by suppressing repeated tokens and removing blank symbols. For joint CTC-triggered

attention decoding, we utilized the frame-synchronous one-pass decoding algorithm [26], which

integrated triggered attention decoding with the frame-synchronous prefix beam search algorithm

from [47]. The CTC-attention weight for the joint decoding was set to 0.5 and the beam search

was conducted with the beam size of 10.

Compared models

we investigated the effectiveness of the proposed triggered attention-based streaming ASR

model, which was constructed based on Mask-CTC-based feature learning in Stage 2. The

evaluation of streaming performance focused on two key aspects: recognition accuracy and

latency. To facilitate this evaluation, we compared the proposed streaming ASR model with the

following models:

• TA-E/D: Conventional triggered attention-based streaming ASR model trained with the

CTC-attention objective [26].

• Enhanced TA-E/D: Enhanced triggered attention-based streaming model, whose feature

representation learning implicitly utilizes Mask-CTC.

Experimental results

Table 3.1 shows the experimental results. This table lists the WERs (%) of the conventional

and enhanced TA-E/D along with the encoder latency values (ms) computed on the WSJ dataset.

This result demonstrates that the proposed enhancement of the TA-E/D model reduced the WERs

of the existing model (e.g., 2.1% to 8.6%), regardless of the encoder latency values. In addition,

the results demonstrate that the proposed pre-training can achieve low latency processing while
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Table 3.1 Effectiveness of using Mask-CTC in pre-training of TA-E/D. Existing and enhanced
TA-E/D models were compared in terms of word error rates (%) along with encoder latency (ms)
on WSJ dataset.

WER [%] (↓)

Model Latency [ms] eval92 dev93

TA-E/D

160 28.2 34.5
320 22.4 27.5
480 18.9 24.1
640 17.0 20.2

Enhanced TA-E/D

160 21.3 25.9
320 15.5 19.5
480 14.3 19.1
640 14.1 18.1

maintaining recognition accuracy in the triggered attention-based streaming ASR.

The results presented in Table 3.1 demonstrate that, in both systems, the word error rates

(WERs) increased as the encoder latency values decreased. It is important to note that the

degradation in recognition accuracy was primarily due to the limited number of future contexts

provided to the encoder for feature extraction.

In the case of the conventional streaming ASR model, the change in latency had a significant

impact on recognition accuracy, resulting in performance degradation. However, when the

proposed learning method was applied, this performance degradation was mitigated. Specifically,

when the encoder latency value was reduced from 640 ms to 320 ms, the enhanced model

maintained almost the same accuracy level, with only a slight degradation of approximately

1.4%. In contrast, the existing model experienced a 7.3% increase in WER.

Moreover, the proposed learning method achieved higher recognition accuracy with lower la-

tency compared to the existing models. For instance, the performance of the proposed model with

a latency of 320 ms (e.g., 15.5% for eval92 and 19.5% for dev93) outperformed the performance

of the existing model with a latency of 640 ms (e.g., 17.0% for eval92 and 20.2% for dev93). This

increased resilience towards latency reduction indicates that our proposal contributes to better

feature extraction and alignment generation, even with a reduced amount of future context from
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the input sequence.

However, it should be noted that the proposed method still exhibited a sharp decline in perfor-

mance when the latency value decreased from 320 ms to 160 ms, suggesting the presence of a

minimum latency requirement below which performance is significantly compromised.

3.4.2 Experiment of streaming T-T

Datasets

The experiments of streaming T-T adopted the same dataset: the 81-hour WSJ corpus, as in

the previous subsection. We used SentencePiece [48] to construct a 80 sub-word vocabulary.

Model settings

For the streaming T-T model, the acoustic encoder was implemented with 12 Transformer

encoder layers and a single LSTM layer for the label encoder. Each self-attention layer was

implemented with 256 hidden units, 2048 feed-forward inner dimensions, and 4 attention heads.

For streaming feature extraction, a chunk-wise attention mask was implemented and applied to

the encoder layers as in [16]. The latency value was calculated as the product of the maximum

look-ahead range (i.e., chunk size − 1) and a frame rate of 40ms. All the models were trained by

150 epochs, and the final models were obtained by averaging the snapshots of the 10 epochs of

the minimal loss. For Transducer decoding, a beam search was conducted with the beam size of

10.

Compared models

We compared the streaming ASR models including Streaming T-T, an existing streaming

Transformer-Transducer model [16], and Enhanced streaming T-T, an enhanced streaming

Transformer-Transducer, whose acoustic encoder was initialized from a pre-trained Mask-CTC

model with an identical encoder architecture. Various latency settings were carried out in the

experiment, including a non-streaming (latency is ∞) T-T model, serving as the upper-bound of

this experiment.

29



Chapter 3. Mask-CTC-based encoder pre-training for streaming ASR

Table 3.2 Effectiveness of using Mask-CTC in pre-training of streaming T-T. Existing and
enhanced streaming T-T models were compared in terms of word error rates (%) along with
encoder latency (ms) on WSJ dataset.

WER [%] (↓)

Model Latency [ms] eval92 dev93

Streaming T-T

120 19.5 23.3
160 16.8 20.9
200 15.1 18.9
∞ 14.7 17.3

Enhanced streaming T-T

120 16.6 20.8
160 15.0 19.0
200 14.8 18.5

Experimental results

The experimental results of streaming T-T are summarized in Table 3.2. Non-streaming T-T

was used as upper bounds in the experiments.

Results in Table 3.2 shows that for streaming T-T, the enhanced models outperformed the

baseline models by achieving lower WERs under all latency settings, suggesting the accuracy

enhancements introduced by the Mask-CTC-based pre-training method. Furthermore, 40ms

latency reduction was reached for streaming T-T, while achieving better or equal recognition

accuracy than the baseline models. For instance, the enhanced streaming T-T with 120ms latency

achieved lower WERs (16.6% for eval92 and 20.8% for dev93) than the WERs of the baseline

with 160ms latency (16.8% for eval92 and 20.9% for dev93). The enhanced model with 200ms

even achieved comparable accuracy to the non-streaming upper bound for eval92.

3.4.3 Experiment of CBS-E/D

Datasets

In the experiment of CBS-E/D, the models were trained and evaluated using both the WSJ

dataset, and the TED-LIUM2 (TED2) [49] dataset, which contains 207h English spontaneous

speech. For the output tokens, we used SentencePiece [48] to construct a 80 subword vocabulary
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for WSJ and a 500 subword vocabulary for TED2, respectively. For robust model training, we

applied SpecAugment [50] to the input data.

Model settings

For WSJ experiments, the CBS-E/D model consisted of 6 Conformer encoder layers [7] and 6

Transformer decoder layers. The input block settings followed 𝑁𝑙 as 8, 𝑁𝑐 as 4, and 𝑁𝑟 varying

from 0 to 6. The latency for CBS-E/D was calculated as the product of the maximum look-ahead

range in the block (i.e., 𝑁𝑐 + 𝑁𝑟 − 1) and a frame rate of 40ms. For TED2 experiments, the

CBS-E/D model consisted of 12 Conformer encoder layers and 6 Transformer decoder layers.

The 𝑁𝑟 was set to 6. For the pre-trained Mask-CTC model, the encoder was constructed with the

identical setting as the target streaming model. The CMLM decoder was built with 6 Transformer

decoder layers.

All the models were trained by 150 epochs, and the final models were obtained by averaging

the snapshots of the 10 epochs of the best accuracy. For decoding, a beam search was conducted

with a beam size of 10 for all.

Compared models

We compared the streaming ASR models including CBS-E/D, an existing contextual block

streaming encoder-decoder model [33], and Enhanced CBS-E/D, whose encoder and CTC mod-

ules were initialized from a pre-trained Mask-CTC model with an identical encoder architecture.

Experimental results

The experimental results of CBS-E/D are summarized in Table 3.3 and Table 3.4 for WSJ and

TED2 datasets, respectively. CBS-E/D models with 1240ms latency were used as upper bounds

in the experiments.

The results on WSJ show that for CBS-ASR, the enhanced models achieved lower WERs than

the baselines under all latency settings, confirming the effectiveness of the Mask-CTC-based

pre-training method. The enhanced CBS-ASR model with 280ms latency managed to achieve

the same level of accuracy as the baseline model with 360ms latency, suggesting an 80ms latency
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Table 3.3 Effectiveness of using Mask-CTC in pre-training of CBS-E/D evaluated on WSJ
dataset.

WER [%] (↓)

Model Latency [ms] eval92 dev93

CBS-E/D

200 14.4 18.1
280 13.2 16.2
360 12.9 16.1
1240 11.2 14.2

Enhanced CBS-E/D

200 13.5 17.2
280 12.9 16.0
360 12.2 16.1

Table 3.4 Effectiveness of using Mask-CTC in pre-training of CBS-E/D evaluated on the test
set of the TED2 dataset.

Model Latency [ms] WER[%] (↓)

CBS-E/D
280 11.3
1240 9.8

Enhanced CBS-E/D 280 11.1

reduction. Such results demonstrated that our method contributed to the construction of streaming

ASR models with low latency and high accuracy.

For TED2 dataset, the enhanced CBS-ASR model also achieved 0.2 percentage point of WER

reduction compared to the baseline model, which proves the general effectiveness of the proposed

method regardless of the dataset.

3.4.4 Analysis of output token alignments

As an additional experiment, we also examined the effect of the Mask-CTC-based pre-training

method by studying the output token spikes of some baseline and enhanced streaming ASR

models.

According to the findings of [51], the streaming model aims to shift token boundaries towards
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the future side to gather more contextual information. However, this approach causes a delay

in the occurrence of posterior probability spikes for output tokens compared to non-streaming

models. On the other hand, if the encoder network learns to anticipate future information

and incorporates it into the feature representations, the output tokens can be confirmed earlier,

potentially resolving the issue of token boundary shifting in certain cases. To investigate this

further, we conducted measurements to compare the delay in spike occurrences between streaming

models and alignments obtained from a non-streaming model. We anticipate that the use of the

Mask-CTC-based pre-training method will help reduce this delay.

We performed measurements on the dev93 validation set of WSJ. Specifically, we evaluated the

baseline and enhanced models using a latency setting of 200ms for the streaming T-T architecture.

To assess their performance, we compared the alignments generated by these models with those

obtained from a non-streaming T-T model. The alignments were derived from the output of the

joint network. Additionally, for CBS-E/D, we set the latency to 200ms and compared the token

boundaries of the output between the baseline and enhanced models. The ASR alignments were

obtained from the CTC predictions of CBS-E/D in the same manner as [51] and the reference

alignments were obtained with the Montreal Forced Aligner [52].

Figure 3.5 illustrates one example of output token alignments given by streaming T-T. Here,

the color in the background represents the reference alignment to the speech input. The non-

streaming ASR (top) managed to predict accurate token alignments. However, the baseline

streaming ASR (bottom) showed a significant delay in the alignments, indicating token boundary

shifting due to the lack of contexts. Meanwhile, our enhanced streaming ASR (middle), with a

Mask-CTC-based pre-trained encoder network, largely improved the alignments of the streaming

ASR. We calculated the average output delay reduction across the dev93 validation set for both

streaming T-T and CBS-E/D. For streaming T-T, the spike output delay was reduced by 44ms,

and for CBS-E/D, 46ms. Such results help us to understand the knowledge learned from the

Mask-CTC-based pre-training method and the reason for the latency reduction capability.
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Figure 3.5 Output token alignments of non-streaming and streaming Transformer-Transducer
models. Color in background represents ground-truth alignment. Solid lines in top, middle, and
bottom figures illustrate alignments obtained from non-stream ASR model, streaming model with
Mask-CTC-based pre-training, and baseline streaming model, respectively.

3.5 Summary

In this chapter, we presented the Mask-CTC-based encoder pre-training method, aimed at im-

proving the encoder feature representation of streaming ASR models for achieving high accuracy

with minimal latency. We conducted speech recognition experiments on various streaming ASR

models, namely TA-E/D, streaming T-T, and CBS-E/D, using both the WSJ and TED2 datasets

to assess the overall effectiveness of the proposed method.

The experimental results showcased the effectiveness of the Mask-CTC-based pre-training,

regardless of the underlying model architecture. Moreover, through the analysis of output token

alignments, we visually demonstrated the reduction in latency achieved by the proposed method.
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4 Multi-look-ahead architecture for zero
look-ahead streaming ASR

4.1 Introduction

In this chapter, we propose a streaming ASR model with zero look-ahead latency to meet the

requirements for applications in conversational systems.

As human beings, we possess the remarkable ability to infer a speaker’s intention during a

conversation, even in the midst of their utterance, and prepare our subsequent actions accordingly.

This capability enables us to respond with impeccable timing, at times without waiting for the

completion of the speaker’s utterance, resulting in a fluid and natural conversation. To imbue

conversational systems with this same functionality, it is crucial for the system’s speech recognizer

to accurately transcribe the input speech instantaneously, without any delays.

By employing look-ahead techniques, streaming ASR can attain impressive levels of accuracy.

However, the drawback of utilizing look-ahead is the resulting latency, which significantly in-

creases the delay in speech recognition. The objective of this research is to design and develop a

highly accurate speech recognizer that operates without the need for any look-ahead. This entails

creating a system that can achieve exceptional accuracy in real-time, without introducing any

additional delays.

One approach to achieve high accuracy without any additional delay is the multi-latency

approach, which combines a short look-ahead ASR and a long look-ahead one [53, 54, 55, 56].

In [53], the beam search results of a low-latency encoder that utilizes a short look-ahead are

corrected by utilizing a high-latency encoder, which employs a long look-ahead. In [55], a

second-pass non-streaming recognition is conducted to refine the first-pass streaming outputs.

One common characteristic among them is the adoption of a cascaded configuration, where

high-latency, high-precision recognizers are utilized to compensate for the results obtained from

low-latency recognizers.

In a similar vein, the system proposed in this thesis is a multi-latency Automatic Speech

Recognition (ASR) system that integrates both a high-latency, high-accuracy encoder and a low-
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latency encoder. However, what sets this system apart is its unique approach of operating both

encoders in parallel and utilizing the CBS encoder [32, 33] as the foundational system. The

CBS encoder has a strong compatibility with multi-latency architecture, further enhancing the

system’s capabilities. The proposed method incorporates a decoder that predominantly utilizes

the output from the primary encoder, which incorporates look-ahead frames. Meanwhile, the

look-ahead frames, which the primary encoder cannot generate output features for, is recognized

by the auxiliary encoder, which operates without any look-ahead. Consequently, the entire system

forms a recognizer that operates with utmost precision and efficiency, without causing look-ahead

latency.

The chapter is structured as follows. In Sect. 4.2, the proposed multi-look-ahead streaming

ASR architecture is introduced. Various implementation methods for the system are explained in

Sect. 4.3. Sect. 4.4 reports the experimental results of the proposal and Sect. 4.5 concludes the

chapter.

4.2 Multi-look-ahead streaming ASR

Fig. 4.1 shows the proposed multi-look-ahead architecture. As shown in Fig. 4.1, the proposed

streaming ASR system features the simultaneous operation of two encoders. The primary encoder

captures precise recognition results for the target frames by utilizing look-ahead frames. Mean-

while, the auxiliary encoder focuses specifically on recognizing the look-ahead portion of the

primary encoder, employing a zero look-ahead approach to prevent any increase in latency. The

proposed multi-look-ahead architecture is based on the CBS encoder. Therefore, our proposal

can be applied to both CBS-E/D and CBS-T streaming ASR models. However, considering the

real-time performance of the streaming ASR in application, we adopted the CBS-T model in our

experiments, which outperforms CBS-E/D in terms of computational speed.

Algorithm 1 demonstrate the working system of the proposed method, where ⟨/𝑠⟩ denotes

the end-of-utterance (EoU) speech event. In this scenario, the proposed system is expected to

detect the EoU output without delay. The system contains two CBS encoders with the same

block size, where the primary encoder is configured with 𝑁𝑙 history frames, 𝑁𝑐 target frames, and

𝑁𝑟 look-ahead frames, and the auxiliary encoder is configured with 𝑁𝑙 + 𝑁𝑐 history frames, 𝑁𝑟
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Figure 4.1 Overview of the multi-look-ahead CBS encoder architecture for streaming ASR.
The input block consists of 𝑁𝑙 history frames, 𝑁𝑐 target frames and 𝑁𝑟 look-ahead frames. A
primary encoder recognizes the target frames utilizing the look-ahead frames, while an auxiliary
encoder recognizes the look-ahead frames without further look-ahead. The two encoders operate
in parallel and have all the parameters shared.

target frames and 0 look-ahead frames. When an input block is passed on to the streaming ASR,

the primary encoder processes the target frames of the input block and outputs acoustic feature

z𝑐. Simultaneously, the auxiliary encoder processes the look-ahead frames of the input block

and yields acoustic feature z𝑟 . Beam search is first conducted with feature z𝑐 and the previous

hypothesis y to extend y with the recognition results of the target frames in this block. Based on

the extended hypothesis, beam search is further conducted with feature z𝑟 to obtain a recognition

result y𝑟 of all input frames including the look-ahead portion. The speech recognition process

will be terminated if y𝑟 contains the EoU token ⟨/𝑠⟩. Otherwise, the beam search results for the

auxiliary encoder output are discarded, and streaming ASR moves on to the next input block.

In the case of single latency streaming ASR, when the frame containing the ⟨/𝑠⟩ token is

input to the speech recognizer, it will first be treated as a look-ahead frame and hence, cannot be

recognized promptly and the EoU detection will be delayed. On the other hand, in the proposed
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multiple latency streaming ASR, once the frame containing the ⟨/𝑠⟩ token is passed on to the

speech recognizer, it will first be recognized by the auxiliary encoder and EoU can be detected

without delay.

Algorithm 1 Multiple latency streaming ASR
1: // Primary encoder block setting: (𝑁𝑙 , 𝑁𝑐, 𝑁𝑟)
2: // Auxiliary encoder block setting: (𝑁𝑙 + 𝑁𝑐, 𝑁𝑟 , 0)
3: 𝑇𝐵 = 𝑁𝑙 + 𝑁𝑐 + 𝑁𝑟
4: y← ∅
5: for 𝑡 = 𝑇𝐵 to 𝑇 by 𝑇𝐵 do
6: z𝑐 = PrimaryEncoder(𝑋 [𝑡 − 𝑇𝐵, 𝑡])
7: z𝑟 = AuxiliaryEncoder(𝑋 [𝑡 − 𝑇𝐵, 𝑡])
8: y← 𝐵𝑒𝑎𝑚𝑆𝑒𝑎𝑟𝑐ℎ(y, z𝑐)
9: y𝑟 ← 𝐵𝑒𝑎𝑚𝑆𝑒𝑎𝑟𝑐ℎ(y, z𝑟)

10: if ⟨/𝑠⟩ in y𝑟 then ⊲ appropriate timing for ending
11: break
12: end if
13: end for
14: return y𝑟 ⊲ output final recognition result

4.3 Implementation methods of the multi-look-ahead archi-
tecture

To realize the proposed multi-look-ahead CBS encoder architecture in Sect. 4.2, three different

implementation methods are proposed, namely Gangi model, Unity model and Bifurcation model.

4.3.1 Gangi model

Gangi ("雁木") is a term in Japanese architecture that refers to a specific type of decorative

wooden ornamentation found at the ridge of a traditional hipped roof. Gangi consists of a

paralleled series of identical wooden boards or tiles placed vertically along the ridge of the roof.

Our first implementation method is named as the Gangi model due to its similarity to the Gangi

structure, as plotted in Fig. 4.2.

In the Gangi model, the system contains 𝑁𝑟/𝑁𝑐 auxiliary encoders in parallel, each of which

shares exactly the same structure and parameters as the primary encoder. The length of target
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Figure 4.2 Encoder structure of the Gangi model. In the Gangi model, the same set of parameters
is used for all CBS encoders plotted. The look-ahead frames are recognized as the encoder shifts
to the right.

frames (𝑁𝑐) in the input block of each encoder is consistent, while the length of look-ahead frames

(𝑁𝑙) varies for each encoder. To recognize the look-ahead frames, the auxiliary encoder shifts

forward (to the right side) to place the look-ahead frames as its target frames. Specifically, the

𝑖-th auxiliary encoder uses the input of the primary encoder shifted forward by 𝑖 × 𝑁𝑐 frames.

Consequently, the look-ahead frames for the 𝑖-th auxiliary encoder are shortened by 𝑖×𝑁𝑐 frames.

As shown in Fig. 4.2, when 𝑁𝑟/𝑁𝑐 equals 2, the system contains 2 auxiliary encoders. The

primary encoder (CBS at bottom) extracts features from the 𝑁𝑐 target frames using all 𝑁𝑙 look-

ahead frames. The first auxiliary encoder (CBS in middle) is shifted to the right by 𝑁𝑐 frames

and takes the first half of the look-ahead frames as its target frames using the second half as

look-ahead frames. Blank frame padding is applied since the look-ahead frame is shortened. The

second auxiliary encoder (CBS on top) is further shifted to the right and takes the second part of

the look-ahead portion as its target frames, while no look-ahead is attended to (all blank frame
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padding). In such a way, both target and look-ahead frames of the input block are recognized

utilizing 𝑁𝑟/𝑁𝑐 + 1 encoding passes.

In the training phase, the primary encoder and all the auxiliary encoders are simultaneously

trained by masking the last 𝑁𝑐, 2 × 𝑁𝑐, · · · , (𝑁𝑟/𝑁𝑐) × 𝑁𝑐 look-ahead frames with a certain

probability. Therefore, all the encoders are expected to be sufficiently trained and capable of

achieving high accuracy during inference. However, the increment of computational cost remains

a limitation of the Gangi model.

4.3.2 Unity model

Figure 4.3 Encoder structure of the Unity model. In the Unity model, the outputs of both target
frames and look-ahead frames are generated with one encoding pass.

The Unity model is proposed to remedy the high computational cost required in the Gangi

model. As shown in Fig. 4.3, a single network is utilized to recognize both target frames and

look-ahead frames in one encoding pass. With the block setting of 𝑁𝑙-𝑁𝑐-𝑁𝑟 , the model is trained

with a multi-task objective, where the main task is set to recognize 𝑁𝑐 only and the auxiliary task
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is to recognize 𝑁𝑐 and 𝑁𝑟 together. The loss function can be formulated as follows:

Lunity = Lmain + 𝜆Laux, (4.1)

where the losses for the main task and for the auxiliary task are denoted by Lmain and Laux,

respectively. A weight 𝜆 is introduced to control the parameter updating rate with respect to the

auxiliary task.

During inference, the CBS encoder is able to output acoustic features for both 𝑁𝑐 and 𝑁𝑟 in

one encoding pass. The results for 𝑁𝑐 are treated as the primary encoder outputs. The results for

𝑁𝑟 are regarded as the auxiliary encoder outputs.

Compared to the Gangi model, whose computational cost grows as the look-ahead frame length

extends, the computation in Unity model is always consistent and therefore, is expected to achieve

higher inference speed. On the other hand, the training of a Unity model is more challenging

than the Gangi model due to a large number of output frames. The difficulty in training increases

as the length of 𝑁𝑟 is extended in the block setting.

4.3.3 Bifurcation model

The Bifurcation model was proposed as an improvement to the Unity model. The training

of the Unity model faces challenges when the two tasks possess large difference. Specifically,

when the number of look-ahead frames 𝑁𝑟 is significantly larger than the number of target frames

𝑁𝑐, it poses difficulty to generate accurate features for both tasks with all the parameters shared.

Therefore, to improve the performance of the Unity model, partial parameter sharing mechanism

was applied between the primary encoder and the auxiliary encoder in the Bifurcation model.

As shown in Fig. 4.4, the two encoders share parameters in the first layers and use separated

parameters in the last layers. We limit the parameter-sharing mechanism to only the first half of

the layers (i.e., share the first 6 layers when 12 layers are in total). The remaining half of the

layers, however, operate independently, ensuring a clear separation.

By adopting this approach, the common layers effectively extract features that are utilized by

both the primary and auxiliary encoders. These shared features then proceed to the latter half of

the layers, where they undergo separate processing: the primary encoding exclusively handles the
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Figure 4.4 Encoder structure of the Bifurcation model. Similar to the Unity model, the outputs
of both target frames and look-ahead frames are generated with one encoding pass. In the
Bifurcation model, the top encoder layers are separated.

target frames, while the auxiliary encoding is dedicated to the look-ahead frames. This segregation

enables the last layers to focus on generating accurate outputs for their respective tasks, preventing

any potential decline in performance while leveraging the shared features obtained from the initial

layers.

Similar to Unity model, during model training, we incorporate loss functions of both primary

encoding and auxiliary encoding. The loss of primary encoding is used to update the common

encoder layers, the primary-encoder-only layers as well as the label encoder and the joint network.

Similarly, the loss of auxiliary encoding updates the common encoder layers, the auxiliary-

encoder-only layers, and other Transducer components. We also introduce the hyper-parameter 𝜆

to the loss of auxiliary encoding such that the model training can be focused more on the primary

encoding training, as the primary encoder contributes to most part of the output results.
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4.4 Speech recognition experiments

To assess the accuracy and latency reduction performance of the proposed multi-look-ahead

streaming ASR, we conducted speech recognition experiments utilizing ESPnet2 [42, 43]. For

the evaluation of recognition accuracy, we used word error rates (WERs) and character error

rates (CERs). Additionally, we introduced a novel frame-wise delay metric to evaluate the

latency reduction performance of the multi-look-ahead models. For single look-ahead models

(i.e., conventional CBS-T models), the frame-wise delay was composed of the look-ahead delay,

block-wise encoding time, and block-wise decoding time, where the look-ahead delay was induced

by the look-ahead frames and the target frames in the block setting ((𝑁𝑟 + 𝑁𝑐/2) × 𝐹𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒).

For multi-look-ahead models, since the look-ahead portions were recognized without delay, the

frame-wise delay was only induced by the target frames, the block-wise encoding time, and the

block-wise decoding time. For all the models under the block setting of 8-3-12 with a frame rate

of 33ms, the inference process was conducted using 32 cores of Intel(R) Xeon(R) Gold 6148

CPU operating at the speed of 2.40GHz. We recorded the frame-wise delay measurements under

the same inference conditions and calculated the 50th percentile (P50) and 90th percentile (P90)

results by averaging them over 10 repetitions. In the experimental results section, we report the

overall frame-wise delay result, which is the sum of the look-ahead delay, block-wise encoding

time, and block-wise decoding time. Detailed information on the composition of the frame-wise

delay results can be found in the appendix section of this chapter.

All three implementation methods were examined and compared with each other. Additionally,

we investigated to find the optimal sharing structure in the Bifurcation model by varying the

number of shared encoder layers between the primary and auxiliary encoder.

4.4.1 Datasets

We conducted streaming ASR experiments on both English and Japanese datasets. For En-

glish datasets, we adopted both the 81-hour WSJ [44] dataset, and the 207-hour TED-LIUM2

(TED2) [49] dataset. For Japanese dataset, we used the 581-hour Corpus of Spontaneous Japanese

(CSJ) [57] dataset.

For the output tokens, we used SentencePiece [48] to construct a 80 sub-word vocabulary for

43



Chapter 4. Multi-look-ahead architecture for zero look-ahead streaming ASR

WSJ and a 500 sub-word vocabulary for TED2, respectively. For CSJ dataset, we constructed

a 500 sub-word vocabulary based on only Katakana characters in Japanese. For robust model

training, we applied SpecAugment [50] to the input data. For the experiments of WSJ, the

frame rate was set to 32ms, following the default settings of ESPNet2. Similarly, for the TED2

experiments, the frame rate was initially set to 40ms, following the recipe’s settings. We also

conducted experiments with a frame rate of 33ms for both TED2 and CSJ datasets.

For evaluation on the WSJ dataset, we used the averaged word error rates (WER) (averaged

over dev93 and eval92 of WSJ). For TED2, we used the WER result on standard test set. For

CSJ, we reported the averaged character error rates (CER) (averaged over eval1, eval2 and eval3

of CSJ).

4.4.2 Model settings

The CBS-T model was used in all experiments. In the experiments of the WSJ dataset, the

CBS-T models were constructed with a CBS encoder with 6 Conformer [7] layers for the acoustic

encoder and one layer of long short-term memory (LSTM) network [4] for the label encoder. For

the TED2 dataset, the CBS encoders were constructed with 12 Conformer layers. For the CSJ

dataset, CBS encoders with both 12 layers and 18 layers were examined. The label encoders were

configured identically to the settings for the WSJ dataset. A CTC [46] objective was introduced

to the training on the TED2 and CSJ dataset for better performance.

In the experiments of WSJ, three CBS blocks configurations were examined, with the history

frame number 𝑁𝑙 as 8, the future frame number 𝑁𝑟 as 12 and the target frame number 𝑁𝑐 varying

among 3,4 and 6 (i.e., 8-3-12, 8-4-12 and 8-6-12 in the format of 𝑁𝑙-𝑁𝑐-𝑁𝑟).

For Japanese ASR models trained on CSJ dataset, in order to suit the requirements of their

applications in the conversational system, where the block shift (i.e., target length) should be

under 100ms, we set the target frame number 𝑁𝑐 as 3 (i.e., 8-3-12 in the format of 𝑁𝑙-𝑁𝑐-𝑁𝑟).

With the frame rate of 33ms, we managed to control the block shift to around 100ms.

For TED2 experiments, we used both 8-4-12 block setting with 40ms frame rate and 8-3-12

block setting with 33ms frame rate (identical to CSJ setting).

All the models were trained by 150 epochs for WSJ and 25 epochs for both TED2 and CSJ. The
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final models were obtained by averaging the snapshots of the 10 epochs with minimal losses. An

auxiliary CTC loss with a weight of 0.3 was added to the experiments of TED2 and CSJ for better

training effectiveness following the ESPNet2 recipes. For the multi-look-ahead CBS-T models,

the weight 𝜆 for auxiliary encoder training was set to 0.2. For decoding, modified adaptive

expansion beam search [58] was conducted with a beam size of 10 for all.

4.4.3 Compared models

The following CBS-T models were evaluated in the experiments.

• Single: Conventional single-look-ahead CBS-T model. Always access look-ahead frames,

which guarantees high recognition accuracy but induces large frame-wise delay.

• Multi-look-ahead (Gangi): Proposed multi-look-ahead CBS-T model implemented with

the Gangi method.

• Multi-look-ahead (Unity): Proposed multi-look-ahead CBS-T model implemented with

the Unity method.

• Multi-look-ahead (Bif): Proposed multi-look-ahead CBS-T model implemented with the

Bifurcation method. By default, the parameter sharing was conducted on the first half of

the encoder layers. For example, when each CBS encoder consists of 12 layers, the first 6

layers are shared and the top 6 layers are separated, resulting in a total number of 18 layers

in the encoder architecture.

The increase in the total number of layers is unavoidable in the Bifurcation model. However,

to maintain consistency in the overall layer count, the number of layers within each encoder

can be decreased. For instance, if each encoder consists of 8 layers and the first 4 layers

are shared, the Bifurcation model would have a total of 12 layers, aligning with the Single

baseline model. Experiments were performed to assess the impact of the total number of

layers.

45



Chapter 4. Multi-look-ahead architecture for zero look-ahead streaming ASR

Table 4.1 Experimental results of multi-look-ahead CBS-T on WSJ dataset.

Frame-wise Delay

Model Block WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Single 8-3-0 15.7 82.7 86.0
Single 8-3-12 13.4 469.8 473.6

Multi-look-ahead (Gangi) 8-3-12 13.6 174.8 185.1
Multi-look-ahead (Unity) 8-3-12 14.1 102.3 107.7
Multi-look-ahead (Bif) 8-3-12 12.8 118.9 122.3

Single 8-4-0 15.4 86.5 89.7
Single 8-4-12 13.4 468.4 472.5

Multi-look-ahead (Gangi) 8-4-12 13.4 193.5 207.1
Multi-look-ahead (Unity) 8-4-12 13.8 104.7 109.3
Multi-look-ahead (Bif) 8-4-12 13.1 120.6 124.7

Single 8-6-0 15.6 87.4 94.0
Single 8-6-12 13.0 467.4 508.8

Multi-look-ahead (Gangi) 8-6-12 13.0 125.0 140.2
Multi-look-ahead (Unity) 8-6-12 13.5 106.4 112.4
Multi-look-ahead (Bif) 8-6-12 13.0 123.2 127.7

4.4.4 Experimental results

Results on WSJ dataset

The experimental results on WSJ dataset are summarized in Table 4.1. The proposed method

was examined under three different CBS block settings, including 8-3-12, 8-4-12 and 8-6-12,

to show the general effectiveness. Results of Single baseline models with no look-ahead were

provided as the lower bounds of accuracy. First, we compare our proposal with the baseline

models. When comparing the proposed multi-look-ahead models to the single-look-ahead models,

we can see that across all block settings, the Gangi model and the Bifurcation model managed to

maintain the recognition accuracy, while the Unity model suffered from performance degradation.

On the other hand, the Unity model achieved the lowest numbers on frame-wise delay among

the proposed methods, with up to 460ms reduction when compared to the single-look-ahead

model. Although with heavier computational cost, both the Gangi model and the Bifurcation
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model managed to reduce the frame-wise delay largely, with up to 300ms reduction compared

to the single-look-ahead baseline. Such results demonstrated the effectiveness of the proposed

multi-look-ahead in terms of reducing look-ahead latency without any performance degradation.

Furthermore, we compare the performance between the Gangi model and the Bifurcation

model. When comparing the recognition accuracy results of the Bifurcation model and the Gangi

model, we can see that better performance was achieved by the Bifurcation model, with even

higher recognition accuracy than the baseline models under 8-3-12 and 8-4-12 block settings.

Such results showed that the Bifurcation model not only is capable of maintaining the accuracy

of the single latency models but also provides varieties in the look-ahead settings during training

that can improve the model training performances [37]. Meanwhile, the Bifurcation model

achieved up to 80ms lower frame-wise delay compared to the Gangi models, due to relatively

lower computational costs.

Results on TED2 dataset

The experimental results on TED2 dataset are summarized in Table 4.2, Table 4.3 and Table 4.4.

As a larger dataset for spontaneous speech, experimental results on TED2 help examining the

performance of our method in a case close to the applications in conversational systems. The

results are majorly following two different settings: 8-4-12 CBS setting with 40ms frame rate and

8-3-12 CBS setting with 33ms frame rate, where results of the former are recorded in Table 4.2

and the latter in Table 4.3 and Table 4.4.

From the results in Table 4.2 we can see that our proposed methods performed similarly to the

results on WSJ dataset, showing the general effectiveness of the proposal. The Gangi model and

the Bifurcation model achieved the same recognition accuracy with the baseline model, while the

Unity model suffered from accuracy degradation. The lowest frame-wise delay was achieved by

the Unity model, followed by the Bifurcation model and the Gangi model.

Table 4.3 shows the experimental results when the block setting was adjusted to 8-3-12 and

frame rate set to 33ms. In this table, a column of Total layers was added, indicating the total

number of layers in the encoder. When the Single baseline model contains 12 layers in the encoder,

both the Gangi model and the Unity model contain 12 layers as well. However, for the Bifurcation
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model with default setting, the number of total layers become 18 layers, indicating the increments

of total number of parameters. In this table, we also included the result of Bifurcation model with

12 total encoder layers (i.e., 8 layers for each encoder) for the performance comparison.

From Table 4.3 we can see that the Gangi model managed to maintain the same recognition

accuracy as the baseline model. However, due to the large number of model shifting required (4

times in the case of 8-3-12), the frame-wise delay was largely affected and did not show significant

reduction compared to the baseline model. On the other hand, the Unity model managed to keep

low frame-wise delay but suffered from accuracy degradation with 0.8% higher WER result. For

the Bifurcation model with 18 encoder layers in total, the recognition accuracy was maintained

and the frame-wise delay was kept to a low level. However, for the Bifurcation model with 12

encoder layers in total, 0.4% WER increment occurred, indicating the insufficiency of layers in

each encoder to maintain high accuracy.

To address the large computational cost in the Gangi model under the block setting of 8-3-12,

we considered adopting the block setting of 8-5-10 and operating the model with 3 frame shifting.

With the CBS block setting of 8-5-10, only two times of model shifting are required in the Gangi

model, which largely reduces the computational costs. When operating the model with 8-5-10

block setting in a block shift of 3 frames, it is expected to achieve the same effect of 8-3-12 but

with lower computational costs. The results of such setting are shown in Table 4.4, where we

can see that with the CBS block setting of 8-5-10, the model even achieved higher recognition

accuracy than the 8-3-12 model and maintained the same accuracy when operated under 3 frame

shifting. Furthermore, the Gangi model with block setting of 8-5-10 achieved up to 150ms

lower frame-wise delay compared to the Gangi model with block setting of 8-3-12. Such results

showed that the issue of high computational cost in the Gangi model can be effectively remedied

by adjusting the block settings and frame shifting.

Results on CSJ dataset

The experimental results on CSJ dataset are summarized in Table 4.5 and Table 4.6. As a com-

prehensive Japanese spontaneous speech dataset, the results on the CSJ dataset provide insights

into the performance of a production streaming ASR model within a Japanese conversational
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Table 4.2 Experimental results on TED2 dataset with a frame rate of 40ms.

Frame-wise Delay

Model Block Total layers WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Single 8-4-12 12 10.8 594.3 602.8

Multi-look-ahead (Gangi) 8-4-12 12 10.8 214.6 224.0
Multi-look-ahead (Unity) 8-4-12 12 11.4 124.2 138.2
Multi-look-ahead (Bif) 8-4-12 18 10.8 149.3 177.7

Table 4.3 Experimental results on TED2 dataset with a frame rate of 33ms.

Frame-wise Delay

Model Block Total layers WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Single 8-3-0 12 13.3 117.4 122.4
Single 8-3-12 12 11.5 517.6 523.1

Multi-look-ahead (Gangi) 8-3-12 12 11.5 318.3 335.9
Multi-look-ahead (Unity) 8-3-12 12 12.3 133.3 150.0
Multi-look-ahead (Bif) 8-3-12 18 11.5 181.1 199.8
Multi-look-ahead (Bif)* 8-3-12 12 11.9 163.1 176.5

system.

The upper part of Table 4.5 contains the experimental results with the identical settings as

in Table 4.3, where the Single baseline model with 12 total encoder layers was compared with

the Gangi model of 12 total encoder layers, the Unity model of 12 total encoder layers, and

Bifurcation models with 18 and 12 total encoder layers, respectively. The Gangi model achieved

the same recognition accuracy as the baseline model but did not manage to improve the frame-

Table 4.4 Improvements of Gangi model on TED2 dataset with a frame rate of 33ms.

Frame-wise Delay

Model Block Frame shift WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Multi-look-ahead (Gangi) 8-3-12 3 11.5 318.3 335.9
Multi-look-ahead (Gangi) 8-5-10 5 11.3 175.3 248.2
Multi-look-ahead (Gangi) 8-5-10 3 11.3 179.8 250.2

49



Chapter 4. Multi-look-ahead architecture for zero look-ahead streaming ASR

wise delay significantly, due to the increasing computational costs. The Unity model showed

severe accuracy degradation, with even higher CER results than the lower bound baseline model

with no look-ahead. For the Bifurcation model with 18 encoder layers in total, the recognition

accuracy was maintained and the frame-wise delay was kept to a low level. However, for the

Bifurcation model with 12 encoder layers in total, 0.2% CER increment occurred, indicating

the insufficiency of layers in each encoder to maintain high accuracy. Based on the results in

the upper part of Table 4.5 and the results in Table 4.3, we can see that the proposed method

performed consistently in both English and Japanese streaming ASR tasks.

We also conducted experiments with 18 encoder layers, as shown in the lower part of Table 4.5.

Here we can see that for all the evaluated models, no improvements in CER were achieved when

increasing the encoder layers from 12 to 18. The results indicate that the model’s performance

has reached saturation point when using 12 encoder layers. As a result, the Bifurcation model,

with a total of 18 encoder layers, achieved the same performance as the baseline model, which

also had 18 encoder layers. This demonstrates that the enhancements achieved by the Bifurcation

model are not solely attributed to a higher number of parameters.

Similar to Table 4.4 in the TED2 experiments, we examined the improvements of the Gangi

model by adjusting the CBS block setting to 8-5-10 and shifting the block by 3 frames. As

shown in Table 4.6, with the block setting of 8-5-10 and shifting by 3 frames, the Gangi model

achieved the same accuracy with the Gangi model under 8-3-12 block setting, while achieving

lower frame-wise delay due to the reduction of computational costs.

In conclusion, our experiments on three datasets encompassing different speech styles and

languages demonstrate the effectiveness of the proposed multi-look-ahead method in reducing

recognition latency caused by the use of look-ahead frames, while maintaining the same accuracy

as the baseline model. Among the three implementation methods tested, the Gangi model and

the Bifurcation model exhibited superior performance. Notably, the Gangi model can be further

enhanced with lower computational costs by adjusting the block settings. In the case of the

Bifurcation model, it was found that increasing the total number of encoder layers was necessary

for optimal performance. However, in these experiments, we only utilized half of the total layers

in each encoder as shared layers. By incorporating more shared layers, the total number of layers
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Table 4.5 Experimental results of multi-look-ahead CBS-T on CSJ dataset.

Frame-wise Delay

Model Block Total layers CER [%](↓) P50 [ms](↓) P90 [ms](↓)
Single 8-3-0 12 5.8 111.5 121.0
Single 8-3-12 12 4.3 513.5 523.7

Multi-look-ahead (Gangi) 8-3-12 12 4.3 321.8 342.0
Multi-look-ahead (Unity) 8-3-12 12 7.0 138.3 155.6
Multi-look-ahead (Bif) 8-3-12 18 4.3 181.5 203.6
Multi-look-ahead (Bif)* 8-3-12 12 4.5 159.1 177.3

Single 8-3-12 18 4.3 538.3 555.2
Multi-look-ahead (Gangi) 8-3-12 18 4.3 336.5 352.3
Multi-look-ahead (Unity) 8-3-12 18 7.0 183.2 205.4

Table 4.6 Improvements of Gangi model on CSJ dataset.

Frame-wise Delay

Model Block Frame shift WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Multi-look-ahead (Gangi) 8-3-12 3 4.3 321.8 342.0
Multi-look-ahead (Gangi) 8-5-10 5 4.3 203.6 256.0
Multi-look-ahead (Gangi) 8-5-10 3 4.3 201.9 257.5

can be reduced. As a result, the next section presents additional experimental results that focus

on exploring the impact of parameter sharing in the Bifurcation models.

4.4.5 Effect of parameter sharing

To investigate how the number of shared layers affects the Bifurcation model performance, we

conducted experiments on the TED2 dataset using the Bifurcation model with different numbers

of shared layers. Similar to the TED2 experiments in the previous section, the results were

provided based on two different settings: CBS block setting of 8-4-12 with a frame rate of 40ms;

and CBS block setting of 8-3-12 with a frame rate of 33ms, presented in Table 4.7 and Table 4.8,

respectively. In each table, the experimental results of Bifurcation models with shared layer

values of 12, 9, 6, 3, and 0 are reported. When the number of shared layers is 12, it is equivalent
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Table 4.7 Bifurcation model performance with various number of shared layers on TED2 dataset
with a frame rate of 40ms and a block setting of 8-4-12.

Frame-wise Delay

Model Shared layers #params WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Multi-look-ahead (Bif) 12 33.72M 11.4 124.2 138.2
Multi-look-ahead (Bif) 9 41.42M 10.9 140.7 169.3
Multi-look-ahead (Bif) 6 49.13M 10.8 149.3 177.7
Multi-look-ahead (Bif) 3 56.84M 11.0 153.2 179.7
Multi-look-ahead (Bif) 0 64.55M 11.4 172.4 182.5

to the Gangi model. The Bifurcation models discussed in the previous experiments were set with

the number of shared layers as 6. The total number of parameters in each model is shown in the

column #params.

From the results we can see that decreasing the number of shared layers resulted in increased

frame-wise delay due to the additional computational cost in separate layers of the bifurcate

encoder structure. On the other hand, the WER did not improve linearly with the computational

cost increments. Instead, in Table 4.7, we observed a constant improvement in accuracy as we

reduced the number of shared layers from 12 to 6. Further reduction to 3 shared layers or no

shared layers resulted in accuracy degradation, with a 0.2% and 0.6% WER increment compared

to the result with 6 shared layers, respectively.

In Table 4.8, the best WER result was achieved by both the model with 9 shared layers and

the model with 6 shared layers. Accuracy degradation happened when reducing the number of

shared layer to 3 and 0, highlighting the importance of shared layers in maintaining consistency

between the output features of the two encoders. Compared to the model with 6 shared layers,

the model with 9 shared layers contained fewer parameters and achieved lower frame-wise delay

while maintaining the same recognition accuracy. Therefore, the setting of 9 shared layers is

optimal in this specific case.
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Table 4.8 Bifurcation model performance with various number of shared layers on TED2 dataset
with a frame rate of 33ms and a block setting of 8-3-12.

Frame-wise Delay

Model shared layers #params WER [%](↓) P50 [ms](↓) P90 [ms](↓)
Multi-look-ahead (Bif) 12 33.76M 12.3 133.3 150.0
Multi-look-ahead (Bif) 9 41.49M 11.5 155.6 174.1
Multi-look-ahead (Bif) 6 49.21M 11.5 181.1 199.8
Multi-look-ahead (Bif) 3 56.93M 11.8 208.0 226.4
Multi-look-ahead (Bif) 0 64.65M 11.9 229.1 248.9

4.5 Summary

In this chapter, we introduce a novel multi-look-ahead architecture based on the CBS encoder,

which effectively eliminates the look-ahead latency associated with using look-ahead frames in

the input blocks. To realize this architecture, we present three implementation methods: Gangi,

Unity, and Bifurcation.

Through experimentation on English and Japanese datasets, we demonstrate that our proposed

multi-look-ahead streaming ASR system maintains high recognition accuracy without incurring

any look-ahead latency. Among the three implementation methods, the Bifurcation model pre-

sented the best performance and highest suitability for real-world applications.

4.6 Appendix

In this section, the detailed results of the measured frame-wise delay for each experiment are

reported. In each table, TG denotes delay caused by target input frames. LH denotes delay

caused by look-ahead input frames. Enc presents the encoding processing time and Dec presents

the decoding time using beam search.
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Table 4.9 Detailed frame-wise delay results of multi-look-ahead CBS-T on TED2 in Table 4.2.

Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Model Block TG LH Enc Dec Total TG LH Enc Dec Total

Single 8-4-12 80 480 18.2 16.1 594.3 80 480 21.2 21.6 602.8
MLA (Gangi) 8-4-12 80 0 111.3 23.3 214.6 80 0 113.4 30.6 224.0
MLA (Unity) 8-4-12 80 0 18.4 25.8 124.2 80 0 23.0 35.2 138.2
MLA (Bif) 8-4-12 80 0 44.2 25.1 149.3 80 0 64.7 33.0 177.7

Table 4.10 Detailed frame-wise delay results of multi-look-ahead CBS-T on TED2 in Table 4.3.

Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Model Block TG LH Enc Dec Total TG LH Enc Dec Total

Single 8-3-0 49.5 0 52.0 15.9 117.4 49.5 0 49.5 23.4 122.4
Single 8-3-12 49.5 396 52.5 19.6 517.6 49.5 396 53.8 23.8 523.1

MLA (Gangi) 8-3-12 49.5 0 241.8 27.0 318.3 49.5 0 254.5 31.9 335.9
MLA (Unity) 8-3-12 49.5 0 58.5 25.3 133.3 49.5 0 66.7 33.8 150.0
MLA (Bif) 8-3-12 49.5 0 105.8 25.8 181.1 49.5 0 78.5 35.9 199.8
MLA (Bif)* 8-3-12 49.5 0 89.3 24.3 163.1 49.5 0 96.2 30.8 176.5

Table 4.11 Detailed frame-wise delay results of multi-look-ahead CBS-T on TED2 in Table 4.4.

Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Model Block TG LH Enc Dec Total TG LH Enc Dec Total

MLA (Gangi) 8-3-12 49.5 0 241.8 27.0 318.3 49.5 0 254.5 31.9 335.9
MLA (Gangi) 8-5-10 49.5 0 101.0 24.8 175.3 49.5 0 166.9 31.8 248.2

MLA (Gangi) + 3-shift 8-5-10 49.5 0 106.3 24.0 179.8 49.5 0 169.2 31.5 250.2
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Table 4.12 Detailed frame-wise delay results of multi-look-ahead CBS-T on CSJ in Table 4.5.

Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Model Block TG LH Enc Dec Total TG LH Enc Dec Total

Single 8-3-0 49.5 0 46.8 15.2 111.5 49.5 0 45.4 26.1 121.0
Single 8-3-12 49.5 396 48.6 19.4 513.5 49.5 396 49.7 28.5 523.7

MLA (Gangi) 8-3-12 49.5 0 242.9 29.4 321.8 49.5 0 254.4 38.1 342.0
MLA (Unity) 8-3-12 49.5 0 64.4 24.4 138.3 49.5 0 70.8 35.3 155.6
MLA (Bif) 8-3-12 49.5 0 107.3 24.7 181.5 49.5 0 119.2 34.9 203.6
MLA (Bif)* 8-3-12 49.5 0 84.3 25.3 159.1 49.5 0 94.6 33.2 177.3

Single 18 8-3-12 49.5 396 73.1 19.7 538.3 49.5 396 81.9 27.8 555.2
MLA (Gangi) 18 8-3-12 49.5 0 259.2 27.8 336.5 49.5 0 37.9 264.9 352.3
MLA (Unity) 18 8-3-12 49.5 0 106.5 27.2 183.2 49.5 0 38.3 117.6 205.4

Table 4.13 Detailed frame-wise delay results of multi-look-ahead CBS-T on CSJ in Table 4.6.
Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Model Block TG LH Enc Dec Total TG LH Enc Dec Total

MLA (Gangi) 8-3-12 49.5 0 242.9 29.4 321.8 49.5 0 254.4 38.1 342.0
MLA (Gangi) 8-5-10 49.5 0 127.8 26.3 203.6 49.5 0 174.3 32.2 256.0

MLA (Gangi) + 3-shift 8-5-10 49.5 0 125.6 26.8 201.9 49.5 0 176.5 31.5 257.5

Table 4.14 Detailed frame-wise delay results of multi-look-ahead CBS-T on TED2 in Table 4.7.

Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Shared layers TG LH Enc Dec Total TG LH Enc Dec Total

12 80 0 18.4 25.8 124.2 80 0 23.0 35.2 138.2
9 80 0 34.9 25.8 140.7 80 0 54.5 34.8 169.3
6 80 0 44.2 25.1 149.3 80 0 64.7 33.0 177.7
3 80 0 46.9 26.3 153.2 80 0 65.5 34.2 179.7
0 80 0 66.5 25.9 172.4 80 0 69.0 33.5 182.5
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Table 4.15 Detailed frame-wise delay results of multi-look-ahead CBS-T on TED2 in Table 4.8.

Frame-wise Delay

P50 [ms](↓) P90 [ms](↓)
Shared layers TG LH Enc Dec Total TG LH Enc Dec Total

12 49.5 0 58.5 25.3 133.3 49.5 0 66.7 33.8 150.0
9 49.5 0 79.4 26.7 155.6 49.5 0 91.0 33.6 174.1
6 49.5 0 105.8 25.8 181.1 49.5 0 78.5 35.9 199.8
3 49.5 0 132.8 25.7 208.0 49.5 0 143.2 33.7 226.4
0 49.5 0 153.3 26.3 229.1 49.5 0 163.2 36.2 248.9
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5 Conclusion and future work

The objective of this thesis was to construct streaming ASR models with low latency and high

accuracy. Conventional streaming ASR suffers from the trade-off between recognition accuracy

and the latency introduced by look-ahead frames, which are utilized to enable accurate recognition.

In order to reduce the streaming ASR latency while keeping the accuracy, we proposed two

different approaches, including enhancing encoder representations with Mask-CTC-based pre-

training method; and avoiding look-ahead latency with Multi-look-ahead streaming architecture.

In Chapter 2, we introduced various types of existing streaming ASR models that we adopted as

baseline models in this thesis. For streaming ASR utilizing attention masks, the trigger attention-

based encoder-decoder streaming ASR (TA-E/D) and the streaming Transformer-Transducer (T-T)

were introduced. For streaming ASR based on block processing, we covered CBS-E/D and CBS-T,

both of which utilize the contextual block streaming encoder.

In Chapter 3, we introduced the first proposal: Mask-CTC-based encoder pre-training method

for achieving low latency and high accuracy in streaming speech recognition. By pre-training

the encoder networks of the streaming ASR models with the Mask-CTC framework, we expected

to transfer the capability of considering long-term dependencies into the streaming encoder and

therefore, reduce the latency requirements. Experimental results showed the effectiveness of the

method on various model architectures, including TA-E/D, streaming T-T and CBS-E/D. The

enhanced models managed to achieve higher accuracy with lower latency settings. Furthermore,

by studying the output spike timings of the streaming models, we discovered that more precise

alignments of the input and output sequences are learnt by the pre-training, which contributes to

the latency reduction in streaming ASR.

In Chapter 4, we proposed a multi-look-ahead streaming ASR architecture to avoid the latency

induced by the look-ahead frames in streaming ASR. Our work was based on the CBS encoder,

where look-ahead frames are included in each input block and cannot be recognized promptly

within the current block recognition. To remedy this issue, we proposed a multi-look-ahead

architecture with two encoders operating in parallel. where a primary encoder generates accurate
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outputs utilizing look-ahead frames, and the auxiliary encoder recognizes the look-ahead portion

of the primary encoder without look-ahead. We studied various methods to implement the

proposed system, including the Gangi method (shifting the network to perform as different

encoders), the Unity method (generating both encoders’ outputs in one encoding pass) as well as

the Bifurcation method to improve the training performance of the Unity model. Experimental

results on both English and Japanese datasets have shown that the proposed system yields equal

recognition accuracy than the baseline models while maintaining zero look-ahead.

The future work of this thesis is listed as follows.

• In-depth study of the Bifurcation multi-look-ahead model: As one of the implementa-

tion methods for the multi-look-ahead streaming ASR, the bifurcation model achieves high

recognition results with separate encoder layers for each latency mode. However, such a

model structure results in higher number of total parameters in the streaming ASR, which

might not be considered a fair comparisons to other implementation methods. On the other

hand, other techniques can be utilized to realize the bifurcate architecture without adding

encoder layers. For instance, adapters have been actively utilized in the field of automatic

speech recognition [59, 60, 61]. In the work of [61], adapters were applied to the encoder

layers of an ASR model to enable the learning of new tasks, which might also contribute to

the training of multi-look-ahead streaming ASR when considering different latency modes

as different training tasks. We expect that by utilizing adapters in the encoder layers, the

additional layers can be pruned and the number of parameters can stay consistent among

different methods.

• Application to conversational systems: As the motivation of the proposed multi-look-

ahead architecture, conversational systems require the streaming ASR model to transcribe

the input speech accurately and promptly to achieve rhythmic conversations. Therefore, our

ultimate goal is to integrate the multi-look-ahead streaming ASR into the development of

conversational systems. Prior work [62] has been conducted to utilize the multi-look-ahead

method for response time estimation of the conversational system. In the future work, we

aim to optimize the application of the multi-look-ahead streaming ASR and contribute to a

rhythmic and natural conversational system.
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