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ABSTRACT 

PURPOSE. We investigated the relationship between high myopia and single nucleotide 

polymorphisms (SNPs) in six proteoglycan genes: aggrecan (ACAN), fibromodulin (FMOD), decorin 

(DCN), lumican (LUM), keratocan (KERA) and epiphycan (EPYC). These genes were selected for 

study because they are involved in induced myopia in animals and/or are within the human MYP3 

locus identified by linkage analysis of families with high myopia. 

 

METHODS. Two groups of Chinese subjects were studied: Group 1 (300 cases and 300 controls) and 

Group 2 (356 cases and 354 controls). Cases were high myopes with spherical equivalent (SE) ≤-8.00 

dioptres and controls had SE between +1.0 and -1.0 dioptre. From these candidate genes, 60 tagging 

SNPs were selected. First, 12 DNA pools were each constructed from 50 samples of the same 

phenotype from Group 1 subjects, and tested for association for the SNPs. Second, putatively positive 

SNPs were confirmed by individual genotyping of Group 1 subjects. Finally, positive results were 

replicated in Group 2 subjects. 

 

RESULTS. Of the 58 SNPs successfully screened by DNA pooling, 8 ACAN SNPs passed the 

threshold of P ≤0.10 (nested ANOVA) and were then genotyped for individual samples. Haplotypes 

of rs3784757 and rs1516794 showed significant association with high myopia. However, the positive 

result could not be replicated in the second subject group. 

 

CONCLUSION. These six proteoglycan genes were not associated with high myopia in Chinese and 

hence were unlikely to be important in the genetic predisposition to high myopia. 

 

(238 words) 
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INTRODUCTION 

Myopic eyes focus distant objects in front of, instead of on, the retina. Myopia is the most frequent 

ocular disorder worldwide with a wide range of prevalence in different populations. It is much more 

frequent in Asian populations (50-70%) than in Caucasians populations (up to 30%).
1
 High myopia, 

usually defined as -5.00 dioptres (D) or worse, is a predisposing factor for many pathological ocular 

complications such as glaucoma and retinal detachment.
1
 It is a multifactorial disease caused by 

genetic factors, environmental factors and their interactions.
1
 

 

 Myopia usually develops as a result of excessive elongation of the eyeball with concomitant 

scleral remodelling that involves changes in the metabolism of collagen fibrils and proteoglycans.
2,3

 

Proteoglycans are proteins that are heavily glycosylated, and are each composed of a core protein 

covalently-linked with at least one glycosaminoglycan chain. They are important in regulating the 

assembly and interaction of collagen fibrils and scleral hydration although they contribute less than 

1% to the dry weight of the sclera.
2,3

 Proteoglycans found in the sclera include aggrecan (ACAN), 

fibromodulin (FMOD), lumican (LUM), decorin (DCN), biglycan (BGN), keratocan (KERA), 

epiphycan (EPYC) and others.
2,3

 

 

 In chicks induced to develop myopia by form deprivation, proteoglycan identified as aggrecan 

was found to accumulate in increased amounts in the presence of increased turnover rate in the 

cartilaginous layer of the posterior sclera in parallel with scleral growth of the treated eye when 

compared to the control eye.
4,5

 Interestingly, the changes were in the opposite direction in the fibrous 

scleral layer of chick, and the sclera (fibrous in nature) of mammals like tree shrew and monkey.
6
 In 

tree shrew, synthesis of glycosaminoglycan (and hence proteoglycan) was decreased in the posterior 

sclera of form-deprived eye with accompanying axial elongation and scleral thinning when compared 

to the control eye.
7
 This could be explained by reduced ACAN gene expression as shown in the sclera 

of lens-induced myopic eye in tree shrew.
8
 In induced myopia, alteration of DCN synthesis has been 

demonstrated in the sclera of the elongated eye in chick
4
 and marmoset,

9
 but not in tree shrew.

8,10
 

BGN and LUM showed little differential regulation in the sclera in response to lens-induced myopia 
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in tree shrew.
8
 Intriguingly, features of high myopia (thin sclera, increased axial length and retinal 

detachment) were found in the eyes of lumican-fibromodulin double-null mice.
11

 Linkage analysis of 

high myopia families has identified the MYP3 locus at chromosome 12q21-23, and the proteoglycan 

genes DCN, LUM, KERA and EPYC lie adjacent to each other within this locus.
12

 

 

 This biological and positional information justifies our investigation of these proteoglycan 

genes as candidate genes for high myopia. An efficient stepwise DNA pooling-based case-control 

study approach
13,14

 was used to investigate whether common tagging single nucleotide polymorphisms 

(tSNPs) of these genes were associated with high myopia in a Chinese population. We examined six 

proteoglycan genes ACAN, FMOD, DCN, LUM, KERA and EPYC (Table 1). BGN is an X-linked gene 

and hence cannot be studied by DNA pooling-based approach, in which DNA samples from male and 

female subjects are randomly mixed to construct DNA pools. 

 

 

MATERIALS AND METHODS 

Overview of the study approach 

The first stage was a screen of separate case and control DNA pools to discover putatively positive 

SNPs. The second stage was to confirm these putatively positive SNPs by genotyping individual DNA 

samples that formed the original DNA pools. The third stage was to replicate the confirmed positive 

SNPs with a new sample set. 

 

Study subjects 

For the first and the second stage of the study, we recruited 600 unrelated ethnic Chinese (Group 1 

subjects): 300 cases of high myopia, and 300 controls of emmetropia.
15

 For the third stage of the 

study, we recruited 710 unrelated ethnic Chinese (Group 2 subjects): 356 cases of high myopia and 

354 controls of emmetropia.
16

 We used the same recruitment criteria for both subject groups: high 

myopia was defined as spherical equivalent (SE) ≤-8.00 D for both eyes, and emmetropia as SE 

between +1.0 D and -1.0 D for both eyes. The characteristics of the subjects have been reported 
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previously,
15,16

 and are summarized here. For cases, the average SE and axial length were -10.53 D 

and 27.76 mm in Group 1, and -10.30 D and 27.64 mm in Group 2, respectively. For controls, the 

mean SE and axial length were 0.03 D and 23.85 mm in Group 1, and 0.08 D and 23.73 mm in Group 

2, respectively. Group 1 subjects were younger than group 2 subjects (26.1 years vs 33.6 years). 

 

 Ethics approval was obtained from the Human Subjects Ethics Subcommittee of the Hong 

Kong Polytechnic University, and tenets of the Declaration of Helsinki were observed. We recruited 

all subjects with written informed consent in the Optometry Clinic of our University, collected blood 

samples and extracted DNA from blood samples as has been reported previously.
15

 

 

DNA pool construction 

DNA concentration was accurately measured with a commercial PicoGreen Kit (Invitrogen, Carlsbad, 

CA) for DNA samples (Group 1 subjects). DNA samples at 5.0±0.3 ng/µl were mixed in equal 

amounts to create DNA pools. DNA pools were each created from 50 different subjects of the same 

disease status: 6 case pools from 300 case samples, and 6 control pools from 300 control samples. 

 

Genotyping of DNA pools and individual samples 

From the six candidate genes ACAN, FMOD, DCN, LUM, KERA and EPYC, 60 tSNPs were selected 

using the Tagger software (http://www.broadinstitute.org/mpg/tagger/) with the criteria of pairwise 

tagging, a correlation coefficient (r
2
) of at least 0.8 and a minor allele frequency (MAF) of at least 0.1, 

and based on HapMap Han Chinese data (release 23a, phase II; http://www.hapmap.org/) (Table 1). 

For each of the selected tSNPs, DNA pools were amplified using touchdown polymerase chain 

reaction (PCR) as described previously
16

 with specific primers and conditions shown in 

Supplementary Table S1. The PCR products were purified and then used as templates for primer 

extension (PE).
16

 The PE products were injected into a denaturing high performance liquid 

chromatography (DHPLC) system (WAVE Nucleic Acid Fragment Analysis System; Transgenomic, 

Omaha, NE) to estimate the relative allele frequencies of the two alleles for each SNP.
16

 Each DNA 

pool was independently tested and analyzed three times for each SNP, and hence each SNP had a total 
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of 36 sets of readings from 12 DNA pools. Differential incorporation of dideoxynucleotides in PE was 

corrected by means of a correction factor (called k correction factor),
17

 which was obtained as the 

mean value of three independent analyses of a heterozygous sample for each SNP. 

 

 In the second stage of the study, individual samples of Group 1 subjects were genotyped with 

MassArray iPLEX assays (Sequenom, San Diego, CA) according to the recommended protocols 

(http://www.sequenom.com/); primer sequences are shown in Supplementary Table S2. Putatively 

positive SNPs from the first stage were grouped together with genetic markers of other studies, and 

genotyped using this method by a local genotyping laboratory (http://genome.hku.hk/portal/). One 

SNP (rs1516794) could not be grouped with other SNPs for iPLEX genotyping, and was genotyped 

in-house by restriction analysis. In the third stage, two confirmed SNPs (rs3784757 and rs1516794) 

were further genotyped for individual samples from Group 2 subjects by in-house methods based on 

restriction analysis (Supplementary Table S2). 

 

Statistical analysis 

The STATA package (version 8.2; StataCorp, Colleage Station, Texas, USA) was used to analyze the 

relative allele frequency data from DNA pools. For each SNP, the relative allele frequencies were 

calculated from the peak intensities of the two PE products with adjustment based on the k correction 

factor as described previously.
17

 Nested analysis of variance (ANOVA) was used to compare the 

relative allele frequencies obtained from the case pools and the control pools because DNA pools 

were nested separately within the cases and the controls and there was no link between any case pools 

to any control pools.
16

 To avoid excluding potential significant SNP, we used a P value ≤0.10 as the 

cutoff for following up putatively positive SNPs in the second stage. 

 

 Linkage disequilibrium (LD) measures were calculated and plotted using Haploveiw (version 

4.2; http://www.broad.mit.edu/mpg/haploview/). Data of individual genotypes (second and third 

stages) were analyzed by Plink (ver. 1.07; http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml).  

Exact test was used to test for Hardy-Weinberg equilibrium (HWE)
18

 for cases and controls separately. 
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Logistic regression was employed for testing association between high myopia and single markers and 

their haplotypes. Exhaustive haplotype analysis was performed with a sliding-window strategy for 

windows of all possible sizes (i.e. 1 SNP to 7 SNPs per window). To avoid potential confounding, 

both sex and age were included as covariates for adjustment in all analyses. Wald test gave an 

asymptotic P value (Pasym) for each test. To correct for multiple comparisons, we used permutation 

test to permute the phenotype status of the subjects without changing the genotypes across all single 

markers and all haplotypes for samples individually genotyped within a subject group (Group 1, 

Group 2 or combined groups, each separately). We generated empirical P values (Pemp) based on 

10,000 permutations within each subject group. 

 

 

RESULTS 

Stage 1: Analysis of DNA pools (Group 1 subjects) 

We failed to find any heterozygous sample after screening 40 samples for two SNPs (rs7174219 and 

rs7173022) of the ACAN gene, which were then dropped from testing. Thus, 58 were successfully 

analyzed by the DNA pooling approach (Table 2). The mean k correction factor was 0.9488 (range: 

0.5645 – 2.6026). The first eluted allele had an estimated frequency ranging from 0.0811 to 0.8991 for 

cases, and from 0.1130 to 0.9037 for controls. Estimated difference in allele frequencies (case pools – 

control pools) ranged from -0.0548 to 0.0434. Of the 58 tSNPs tested, 8 SNPs showed a significant 

difference in allele frequencies at a cutoff of P ≤0.10, all belonging to the ACAN gene (Table 2). For 

confirmation, these 8 SNPs were genotyped for individual samples that formed the original DNA 

pools (Group 1 subjects). No significant difference in allele frequencies was detected for the 

remaining 50 SNPs, which were thus not tested any further. 

 

Stage 2: Confirming pooled DNA results by individual genotyping (Group 1 subjects) 

One SNP (rs1516793) genotyped by the MassArray iPLEX assay failed to pass filtering quality 

checks because of poor assay performance, and was thus not included in subsequent data analysis. 

The remaining 7 SNPs were also designated as S1 to S7 for easy referencing (Figure 1; Tables 3 and 
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4).  The genotypes of these 7 SNPs were in HWE (P >0.05) for Group 1 subjects. The LD among the 

SNPs was in general very weak (Figure 2) although two LD blocks could be constructed. Single-

marker analysis did not reveal any significant difference in allele frequencies between cases and 

controls (Pemp >0.05, Table 3). However, exhaustive sliding-window-based haplotype analysis 

identified a 2-SNP window that showed significant difference in haplotype frequencies between cases 

and controls (Pasym=0.0002 and Pemp=0.0017 for S6..S7 or rs3784757-rs1516794; Tables 4 and 5). Of 

all 28 possible sliding windows, 16 sliding windows gave Pasym values ≤0.05, but only the S6..S7 

window showed association with high myopia after correction for multiple comparisons (Table 4). 

Therefore, these two SNPs were further tested in the third stage of the study (replication study) using 

Group 2 subjects. The remaining five SNPs were dropped from further examination. 

 

Stage 3: Replication study using Group 2 subjects 

For rs3784757 and rs1516794, the genotypes of Group 2 subjects were in HWE (P >0.05). No 

significant difference in allele frequencies (Table 3) and haplotype frequencies (Table 5) was revealed 

between cases and controls. Therefore, the initial positive results obtained with Group 1 subjects were 

not substantiated in a second group of subjects of the same ethnicity. Further analysis was performed 

by combining both subject groups (656 cases and 654 controls in total). Significant difference 

between cases and controls in frequencies of alleles and haplotypes was still not detected (Tables 3 

and 5). 

 

 

DISCUSSION 

Six proteoglycan genes ACAN, FMOD, DCN, LUM, KERA and EPYC were selected for study because 

of their involvement in induced myopia in animal models and/or being within the MYP3 interval 

identified by linkage analysis of families with high myopia.
4-12

 In particular, ACAN and FMOD were 

selected as biological candidate genes, KERA and EPYC as positional candidate genes, and DCN and 

LUM as biological and positional candidate genes. Association studies of candidate genes selected on 

the basis of biological and/or positional information have meet with different levels of success. 
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However, there are indeed examples of myopia susceptibility genes identified from each approach: 

TGFB1 from biology-based approach,
17,19,20

 MFN1, SOX2OT and PSARL from position-based 

approach (MYP8 locus);
21

 and HGF and PAX6 from a combined approach based on both biological 

and positional information.
22-27

 

 

 Sixty tSNPs were selected from the six selected genes (Table 1), 58 tSNPs were successfully 

screened by DNA pooling strategy (Table 2), and 8 tSNPs (P ≤0.1, nested ANOVA, Table 2) were 

followed up by individual genotyping of 300 cases and 300 controls. Although single-marker analysis 

did not reveal any significant results (Table 3), a sliding-window-based haplotype analysis identified 

significant difference between cases and controls in the frequencies of haplotypes consisting of 

rs3784757 and rs1516794 (S6..S7, Table 4). However, attempt to validate these findings with a 

second subject group (356 cases and 354 controls) failed to replicate the initial positive results. In 

other words, these six proteoglycan genes were not associated with high myopia in the Chinese 

population under study, and are therefore unlikely to make a major contribution to the genetic 

predisposition to high myopia. 

 

 To exclude type II error as a possible explanation for the lack of positive association results,  

we examine the power of our study. To calculate the power of the first stage of the study (screening 

tSNPs by DNA pooling approach), an online calculator for power and sample size 

(http://www.stat.uiowa.edu/~rlenth/Power/) is used. In our nested ANOVA model,
16

 the subject group 

was a fixed-effects factor with 2 levels (case and control) while the DNA pool was a random-effects 

factor with 6 levels (6 DNA pools per subject group). The technical replicate measurement also 

assumed a random effect. For random effects and from the analysis output of the STATA package, the 

effect size expressed as the square root of variance component was on average 0.0356 for the factor 

DNA pool, and 0.0099 for the technical replicate measurements. An allele frequency difference of 

0.015 (1.5%) between the subject groups was translated into an effect size of 0.0441 for the fixed-

effects factor subject group and calculated as the square root of the sum of squares (from STATA 
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analysis output) divided by the degree of freedom (df=1). With the significance level set at α=0.10 for 

this screening stage, a SNP showing an allele frequency difference of 1.5% between the subject 

groups could be detected with a power of 89% (last row of Supplementary Table S3) and hence would 

be followed up in the second stage by individual genotyping. We tested 7 SNPs in the second stage of 

the study. We assume a prevalence of 0.05 for high myopia in the general Chinese population of Hong 

Kong,
28

 and a Bonferroni-adjusted significance of 0.0071 for 7 SNPs, which is much more 

conservative than the permutation tests used in the data analysis. Under a log-additive model as 

examined using the QUANTO package (version 1.2.4),
29

 a sample size of 300 cases and 300 controls 

would give a power of ~80% for an odds ratio of 1.85 and a minor allele frequency of 0.10 

(Supplementary Table S4). We tested 2 SNPs in the third stage of the study. With similar assumptions 

and a Bonferroni-adjusted significance of 0.025 for 2 SNPs, a sample size of 356 cases and 356 

controls would give a power of ~80% for an odds ratio of 1.65 and a minor allele frequency of 0.10 

(Supplementary Table S4). In other words, the power is at least 80% for all parts of the study under 

reasonable assumptions and using the empirical data from the study. 

 

 While the role of ACAN and KERA common polymorphisms in high myopia was investigated 

for the first time in this study, the other four genes have been examined previously in relation to high 

myopia in smaller studies. One group examined one FMOD SNP (rs7543418), but did not find any 

association in a study involving 195 Chinese cases (SE ≤-6.5 D) and 94 controls.
30

 With a DNA 

pooling approach, we examined nine tSNPs from FMOD and did not find any association for 

rs7543418 either (Table 2). Another group explored four DCN and four EPYC polymorphisms with 

only four (rs2070985 of DCN, and rs1920748, rs1920751 and rs1920752 of EPYC) being 

polymorphic in the Chinese population under study, and these four polymorphic markers were found 

to be not associated with high myopia in a study of 120 cases (SE ≤-10.0D) and 137 controls.
31

 Two 

DCN and three EPYC tSNPs were screened in the present study, and found to be not associated with 

high myopia either (Table 2). We did not examine rs2070985 of DCN and rs1920748 of EPYC 

because their MAFs (0.089 and 0.081, respectively) documented in HapMap database for Han 
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Chinese are less than the selection threshold (MAF ≥0.10) for our study. We examined rs10859081 of 

EPYC (Table 2), which is in perfect linkage disequilibrium (i.e., r
2
=1; http://www.hapmap.org/) with 

rs1920751 and rs1920752. One Taiwanese group examined five SNPs located in either the promoter 

or the 3’ untranslated region of the LUM gene in 201 cases of high myopia (mean SE ≤-6.0D) and 86 

controls (mean SE within ±0.5D), and found that one SNP in 3’ untranslated region (c.1567C>T) was 

associated with high myopia (P = 0.0036 for allelic test and 0.0016 for genotypic test).
32

 However, 

this SNP was not documented in HapMap database and hence not examined in the present study. 

Another Taiwanese group investigated 8 SNPs in the LUM gene in 120 cases of high myopia (≤-

10.0D) and 137 controls (-1.5D to +0.5D), and found that rs3759223 showed a significant association 

with high myopia (P = 2.83×10
-4

).
31

 Nonetheless, this association was not substantiated in two other 

studies of Chinese subjects.
32,33

 We did not examine rs3759223. Instead, rs2300588 was genotyped in 

the present study, but did not pass the initial screen by DNA pools (P = 0.4250, nested ANOVA; 

Table 2). Note that rs2300588 is in strong LD with rs3759223 (r
2
=0.773). This discrepancy may be 

due to the use of different thresholds for defining high myopia in different studies: -10.0D in the 

positive study,
31

 -8.0D in the present study, and -6.0 D in the other two negative studies.
32,33

 

 

 We focused on common polymorphisms of these six candidate genes, but did not explore the 

role of their rare variants in high myopia. A few studies did search by DNA sequence analysis for rare 

causal variants in the exons of FMOD or EPYC in small numbers of high myopes, but without fruitful 

results.
34-36

 

 

 DNA pooling cannot be used for screening X-linked candidate genes like BGN. In addition, it 

makes haplotype analysis extremely difficult, if not impossible.
14

 However, DNA pooling strategy 

offers a very cost-effective initial screen of SNPs for follow-up studies.
14

 It has also been proposed to 

be used in the initial phase of genome-wide association studies
37

 and in re-sequencing studies for rare 

variants to make the latter two approaches even more affordable.
38
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 In conclusion, we used an efficient three-stage approach to examining the relationship 

between high myopia and six candidate proteoglycan genes (ACAN, FMOD, DCN, LUM, KERA and 

EPYC). In the second stage, haplotypes consisting of 2 ACAN SNPs (rs3784757 and rs1516794) were 

found significantly associated with high myopia. However, the initial positive result failed to be 

replicated in the third stage in a second subject group. Therefore, these six proteoglycan genes are 

unlikely to play a major role in the genetic susceptibility to high myopia. 
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FIGURE LEGEND 

 

Figure 1. The structure of the aggrecan (ACAN) gene and the seven single nucleotide polymorphisms 

(SNPs) tested in the second stage of the study. The top panel shows the alternative exon-intron 

organizations of the ACAN gene taken from UCSC Genome Browser (http://genome.ucsc.edu/cgi-

bin/hgGateway) together with their corresponding positions on chromosome 15 based on the 

GRCh37/hg19 human reference sequence assembly. The physical positions of the seven intronic 

SNPs tested in the second stage of the study are shown in the bottom panel. 

 

Figure 2. The linkage disequilibrium (LD) pattern of seven single nucleotide polymorphisms (SNPs) 

of the ACAN gene. The SNPs are indicated in the 5’>3’ direction (left>right) along the sense strand of 

the gene. Shown are the LD measures expressed as D’ and r
2
 for all subjects of Group 1, and 

calculated by Haploview. The shades of gray represent the magnitude of the LD measures. 
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Table 1. Features of candidate genes and their tag single nucleotide polymorphisms (tSNPs) 

Gene Gene name GeneID 

Chromosome 

location 

Region 

captured* 

No. of 

tSNPs 

No. of SNPs 

captured at r
2
=? 

ACAN Aggrecan 176 15q26.1 76.8 kb 41 106 (r
2
=0.964) 

FMOD Fibromodulin 2331 1q32 16.5 kb 9 23 (r
2
=0.955) 

DCN Decorin 1634 12q21.33 43.8 kb 2 3 (r
2
=1.000) 

LUM Lumican 4060 12q21.3-22 14.3 kb 3 15 (r
2
=0.982) 

KERA Keratocan 11081 12q22 13.9 kb 2 17 (r
2
=1.000) 

EPYC Epiphycan 1833 12q21 47.3 kb 3 31 (r
2
=1.000) 

* The region captured includes the gene and its 6-kb adjoining region (3 kb upstream and 3 kb downstream). 
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Table 2. Pooled DNA analysis of tag SNPs in the ACAN, FMOD, DCN, LUM, KERA and EPYC genes 

Candidate  Alleles† k correction factor Estimated freq of 1st allele in DNA pools Nested ANOVA 

gene SNP* (1st/2nd) peak height ratio (1st/2nd) Case Control Diff (Case - Control) P value 

ACAN rs2203642 G/A 0.8991 0.4179 0.4407 -0.0228 0.3202 

 rs12439075‡ C/T 1.0880 0.4051 0.4461 -0.0410 0.0862 

 rs8033375 C/T 0.6940 0.3178 0.329 -0.0112 0.5053 

 rs4932429 G/C 1.1401 0.8991 0.8689  0.0302 0.1916 

 rs11858871 G/T 0.9799 0.1593 0.1946 -0.0353 0.1479 

 rs17199220 G/A 0.9069 0.8331 0.8122  0.0209 0.5378 

 rs16942248 T/A 1.0196 0.1721 0.1714  0.0007 0.9739 

 rs12905259 G/A 0.9024 0.5185 0.4965  0.0220 0.2407 

 rs12905452 A/C 1.0506 0.5257 0.5448 -0.0191 0.3009 

 rs7179602 T/A 2.6026 0.2653 0.2769 -0.0116 0.4223 

 rs4932433 A/T 1.1017 0.3360 0.3302  0.0058 0.8087 

 rs16942277 G/T 0.9047 0.7090 0.7004  0.0086 0.6283 

 rs4932434 C/A 0.9939 0.5989 0.5979  0.0010 0.9605 

 rs939586 G/A 0.9888 0.2369 0.2399 -0.0030 0.9134 

 rs11073814 A/T 1.0536 0.8451 0.8442  0.0009 0.9688 

 rs8040435 T/A 1.0101 0.5917 0.5908  0.0009 0.9722 

 rs2280468‡ G/A 0.9654 0.7338 0.6974  0.0364 0.0762 

 rs1015081 G/A 0.8835 0.1868 0.1748  0.0120 0.6409 

 rs1015080 G/A 0.8955 0.1252 0.1521 -0.0269 0.1928 

 rs883325 G/T 1.0082 0.2962 0.2804  0.0158 0.4727 

 rs4932435 G/T 0.9796 0.5223 0.508  0.0143 0.5982 

 rs2293087‡ G/T 0.8570 0.3109 0.2737  0.0372 0.0338 

 rs4932438‡ C/T 1.1072 0.2270 0.2818 -0.0548 0.0142 

 rs3743398 C/T 0.8793 0.8990 0.9037 -0.0047 0.7613 

 rs938608 G/T 0.8455 0.6948 0.7125 -0.0177 0.4717 

 rs4932439 G/A 0.6748 0.4747 0.4896 -0.0149 0.5029 

 rs1042631 C/T 0.9011 0.6006 0.6211 -0.0205 0.4229 

 rs698621 G/T 0.9484 0.4812 0.4461 0.0351 0.1423 

 rs953065‡ C/T 0.8001 0.4959 0.5358 -0.0399 0.0785 

 rs3784757‡ G/A 0.9776 0.8457 0.8201 0.0256 0.0346 

 rs1516793‡ G/A 0.9921 0.1391 0.1606 -0.0215 0.0982 

 rs1516794‡ T/A 1.0360 0.0811 0.113 -0.0319 0.0542 

 rs1516797 G/T 0.9280 0.329 0.3207  0.0083 0.6185 

 rs1879529 G/T 0.9867 0.7336 0.714  0.0196 0.2597 

 rs3817428 C/G 1.0224 0.8572 0.8469  0.0103 0.5798 

 rs16942409 G/T 0.8121 0.2824 0.2786  0.0038 0.8381 

 rs7163146 A/T 0.5858 0.1443 0.1576 -0.0133 0.6233 

 rs2280465 G/A 0.7680 0.8701 0.873 -0.0029 0.8892 

 rs8031741 G/A 0.9224 0.1496 0.1513 -0.0017 0.9627 

FMOD rs10920617 C/T 0.8611 0.7186 0.6885  0.0301 0.1331 

 rs10920615 C/T 0.6669 0.5774 0.5628  0.0146 0.2744 

 rs7543148 G/A 0.9589 0.3008 0.3225 -0.0217 0.3377 

 rs10800913 C/T 0.8889 0.2549 0.2591 -0.0042 0.8300 

 rs2105309 C/T 0.9142 0.6212 0.6244 -0.0032 0.8281 

 rs3766913 G/A 0.9426 0.8716 0.8773 -0.0057 0.6797 

 rs3820224 G/A 0.9440 0.8088 0.7654 0.0434 0.1191 

 rs2886220 G/A 0.8671 0.4865 0.4965 -0.0100 0.6271 

 rs16851319 C/G 0.7840 0.2402 0.1986  0.0416 0.1072 

DCN rs3138295 G/A 0.6552 0.2696 0.2428  0.0268 0.4038 

 rs566806 C/T 0.9447 0.6043 0.6039  0.0004 0.9851 

LUM rs3759222 C/A 0.9089 0.6220 0.6486 -0.0266 0.4192 

 rs10859110 C/T 0.9339 0.5868 0.5793  0.0075 0.7974 

 rs2300588 G/T 0.7815 0.3538 0.3345  0.0193 0.4250 

KERA rs2041711 G/T 0.9056 0.8214 0.8109  0.0105 0.6897 

 rs2268579 G/A 0.5645 0.1430 0.1324  0.0106 0.6827 

EPYC rs11105899 T/A 1.1288 0.8827 0.8558  0.0269 0.5534 

 rs11105898 C/T 1.1958 0.4723 0.4970 -0.0247 0.5943 

 rs10859081 G/A 1.0734 0.1850 0.1826  0.0024 0.9200 

* SNPs are arranged down the column in the 5’>3’ order along the sense strand of the gene concerned. 

† The 1st allele is eluted first (shorter elution) while the 2nd allele is eluted last (longer elution time). The alleles are named with reference to 

the sense strand of the respective gene. 

‡ SNPs with P value ≤0.1 are highlighted in boldface, and are followed up by individual genotyping in the second stage of the study. 
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Table 3. Allelic association tests of ACAN SNPs genotyped individually 

 Alleles* Genotype counts (11/12/22)* Minor allele freq  Allelic test‡ 

SNP 1 2 Cases Controls Cases Controls OR (95%CI) † Pasym Pemp 

Group 1 subjects 

rs12439075 (S1) T C 118/134/44 106/140/52 0.3750 0.4094 0.87 (0.69 - 1.11) 0.2667 0.9319 

rs2280468  (S2) G A 162/104/14 143/123/15 0.2357 0.2823 0.78 (0.58 - 1.04) 0.0879 0.5690 

rs2293087 (S3) T G 147/130/21 170/117/10 0.2886 0.2306 1.40 (1.05 - 1.86) 0.0224 0.1936 

rs4932438 (S4) T C 198/83/16 172/103/22 0.1936 0.2475 0.71 (0.53 - 0.93) 0.0148 0.1333 

rs953065 (S5) C T 79/141/68 89/138/64 0.4809 0.4570 1.11 (0.88 - 1.41) 0.3732 0.9801 

rs3784757 (S6) G A 243/53/3 232/62/5 0.0987 0.1204 0.74 (0.51 - 1.08) 0.1234 0.6957 

rs1516794 (S7) A T 246/34/0 241/47/3 0.0607 0.0911 0.60 (0.37 - 0.96) 0.0326 0.2717 

Group 2 subjects 

rs3784757 (S6) G A 281/70/3 282/67/4 0.1073 0.1062 1.02 (0.72 - 1.43) 0.9213 0.9916 

rs1516794 (S7) A T 304/50/0 302/47/1 0.0706 0.0700 1.02 (0.67 - 1.55) 0.9373 0.9960 

Combined (Groups 1 & 2) 

rs3784757 (S6) G A 524/123/6 514/129/9 0.1034 0.1127 0.90 (0.70 - 1.15) 0.3998 0.6024 

rs1516794 (S7) A T 550/84/0 543/94/4 0.0662 0.0796 0.82 (0.60 - 1.11) 0.1976 0.3389 

* Alleles 1 and 2 refer to the major and the minor alleles, respectively; and the genotype counts are indicated in the order of 

11, 12 and 22, respectively. There are 300 cases and 300 controls in Group 1 subjects, and 356 cases and 354 controls in 

Group 2 subjects.  Since some samples failed to be genotyped in a random manner, the total counts of genotypes may not 

add up to the expected numbers. 

† The odds ratio (OR) is calculated for allele 2 (minor allele) with allele 1 (major allele) as the reference. Within brackets 

are the 95% confidence intervals (CI). 

‡ Allele frequencies are compared by logistic regression with adjustment for sex and age as covariates to give the 

asymptotic P values (Pasym). Multiple comparisons are corrected by 10,000 permutations across single marker allelic tests 

(this table) and omnibus tests of haplotypes for Group 1 subjects (Table 4), for Group 2 subjects (Table 5) or Combined 

(Groups 1 and 2, Table 5), each separately. 
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Table 4. Summary of exhaustive haplotype analyses based on sex- and age-adjusted omnibus tests 

for sliding windows of all possible sizes across 7 ACAN SNPs genotyped individually for 

Group 1 subjects* 

Sliding window (SW)  Most significant omnibus test 

SNPs/SW No. of SW  SW Pasym Pemp 

1 7  S4 0.0148 0.1333 

2 6  S6..S7 0.0002 0.0017 

3 5  S4..S6 0.0078 0.0753 

4 4  S3..S6 0.0088 0.0829 

5 3  S3..S7 0.0020 0.1782 

6 2  S2..S7 0.0156 0.1400 

7 1  S1..S7 0.0152 0.1365 

* Plink was used to compare haplotypes between cases and controls in all sliding windows (SW) of all possible 

window sizes (the number of SNPs per SW; 1 to 7 SNPs per SW). With logistic regression and adjustment 

for sex and age as covariates, a single omnibus test of (n-1) degrees was performed for each SW to jointly 

assess the significance of the haplotype effects for this SW, where n is the number of haplotypes for the 

specific SW being considered. Hence, a single asymptotic P value (Pasym) is generated for each SW. For a 

given window size, the omnibus test was conducted for all possible windows of the same size, shifting one 

SNP at a time. There were 28 windows in total (the sum of numbers in the second column from the left), and 

multiple comparisons were corrected by performing 10,000 permutations to produce an empirical P value 

(Pemp). The SW is shown as Sx..Sy, where x is the first SNP and y the last SNP of the SW, and the SW S3-

S4-S5-S6, for instance, is indicated as S3..S6. The rightmost columns show the most significant omnibus 

tests for each fixed-size SW. Note that only S6..S7 remained significant after multiple testing correction (Pemp 

= 0.0017; indicated in boldface). Please refer to Table 3 for the identities of the SNPs S1 to S7. 
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Table 5. Haplotype analysis of two ACAN SNPs (rs3784757- rs1516794)* 

 Haplotype freq  Logistic regression adjusted for sex & age 

Haplotype Cases Controls  OR Pasym Pemp 

Group 1 subjects 

Omnibus test – –  – 0.0002 0.0017 

AT 0.0373 0.0871  0.37 0.0005  

GT 0.0237 0.0026  12.50 0.0119  

AA 0.0595 0.0370  1.61 0.1150  

GA 0.8795 0.8733  1.13 0.5100  

Group 2 subjects 

Omnibus test – –  – 0.9940 1.0000 

AT 0.0697 0.0689  1.02 0.9280  

AA 0.0370 0.0373  0.98 0.9550  

GA 0.8933 0.8938  0.99 0.9660  

Combined (Groups 1 & 2) 

Omnibus test – –  – 0.2670 0.4369 

AT 0.0561 0.0776  0.69 0.0238  

AA 0.0473 0.0368  1.26 0.2510  

GA 0.8966 0.8856  1.03 0.8020  

* Asymptotic P values (Pasym) are obtained from Wald test based on logistic regression. Multiple comparisons 

are corrected by 10,000 permutations across single marker allelic tests (Table 3) and omnibus tests of 

haplotypes (this table) for Group 2 subjects or Combined groups, each separately. For Group 1 subjects, the 

result is an expansion of the sliding window S6..S7 shown in Table 4, and the correction for multiple 

comparisons was performed for all single-marker allelic tests (Table 3) and haplotype tests of all sliding 

windows (Table 4). The empirical P value is indicated as Pemp. Note that Plink does not generate confidence 

intervals for odds ratios (OR) in haplotype analysis. 
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Figure 1. The structure of the aggrecan (ACAN) gene and the seven single nucleotide 
polymorphisms (SNPs) tested in the second stage of the study. The top panel shows the alternative 

exon-intron organizations of the ACAN gene taken from UCSC Genome Browser 
(http://genome.ucsc.edu/cgi-bin/hgGateway) together with their corresponding positions on 

chromosome 15 based on the GRCh37/hg19 human reference sequence assembly. The physical 
positions of the seven intronic SNPs tested in the second stage of the study are shown in the bottom 

panel.  
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Figure 2. The linkage disequilibrium (LD) pattern of seven single nucleotide polymorphisms (SNPs) 
of the ACAN gene. The SNPs are indicated in the 5’>3’ direction (left>right) along the sense strand 
of the gene. Shown are the LD measures expressed as D’ and r2 for all subjects of Group 1, and 

calculated by Haploview. The shades of gray represent the magnitude of the LD measures.  
74x37mm (300 x 300 DPI)  
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